Merge pull request #16547 from Ultimaker/optimal_offset

Find optimal offset for grid arrange
This commit is contained in:
Saumya Jain 2023-08-24 11:56:31 +02:00 committed by GitHub
commit 300f3fa5db
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,11 +1,11 @@
import math
from typing import List, TYPE_CHECKING, Optional, Tuple, Set
from typing import List, TYPE_CHECKING, Tuple, Set
if TYPE_CHECKING:
from UM.Scene.SceneNode import SceneNode
from cura.BuildVolume import BuildVolume
from UM.Application import Application
from UM.Math import AxisAlignedBox
from UM.Math.Vector import Vector
from UM.Operations.AddSceneNodeOperation import AddSceneNodeOperation
from UM.Operations.GroupedOperation import GroupedOperation
@ -22,14 +22,25 @@ class GridArrange(Arranger):
self._build_volume_bounding_box = build_volume.getBoundingBox()
self._fixed_nodes = fixed_nodes
self._offset_x: float = 10
self._offset_y: float = 10
self._margin_x: float = 1
self._margin_y: float = 1
self._grid_width = 0
self._grid_height = 0
for node in self._nodes_to_arrange:
bounding_box = node.getBoundingBox()
self._grid_width = max(self._grid_width, bounding_box.width)
self._grid_height = max(self._grid_height, bounding_box.depth)
self._grid_width += self._margin_x
self._grid_height += self._margin_y
# Round up the grid size to the nearest cm
self._grid_width = math.ceil(self._grid_width / 10) * 10
self._grid_height = math.ceil(self._grid_height / 10) * 10
self._offset_x = 0
self._offset_y = 0
self._findOptimalGridOffset()
coord_initial_leftover_x = self._build_volume_bounding_box.right + 2 * self._grid_width
coord_initial_leftover_y = (self._build_volume_bounding_box.back + self._build_volume_bounding_box.front) * 0.5
@ -37,32 +48,31 @@ class GridArrange(Arranger):
self._initial_leftover_grid_x = math.floor(self._initial_leftover_grid_x)
self._initial_leftover_grid_y = math.floor(self._initial_leftover_grid_y)
def createGroupOperationForArrange(self, add_new_nodes_in_scene: bool = False) -> Tuple[GroupedOperation, int]:
# Find grid indexes that intersect with fixed objects
fixed_nodes_grid_ids = set()
self._fixed_nodes_grid_ids = set()
for node in self._fixed_nodes:
fixed_nodes_grid_ids = fixed_nodes_grid_ids.union(self.intersectingGridIdxInclusive(node.getBoundingBox()))
self._fixed_nodes_grid_ids = self._fixed_nodes_grid_ids.union(
self.intersectingGridIdxInclusive(node.getBoundingBox()))
build_plate_grid_ids = self.intersectingGridIdxExclusive(self._build_volume_bounding_box)
self._build_plate_grid_ids = self.intersectingGridIdxExclusive(self._build_volume_bounding_box)
# Filter out the corner grid squares if the build plate shape is elliptic
if self._build_volume.getShape() == "elliptic":
build_plate_grid_ids = set(filter(lambda grid_id: self.checkGridUnderDiscSpace(grid_id[0], grid_id[1]), build_plate_grid_ids))
self._build_plate_grid_ids = set(
filter(lambda grid_id: self.checkGridUnderDiscSpace(grid_id[0], grid_id[1]),
self._build_plate_grid_ids))
allowed_grid_idx = build_plate_grid_ids.difference(fixed_nodes_grid_ids)
self._allowed_grid_idx = self._build_plate_grid_ids.difference(self._fixed_nodes_grid_ids)
def createGroupOperationForArrange(self, add_new_nodes_in_scene: bool = False) -> Tuple[GroupedOperation, int]:
# Find the sequence in which items are placed
coord_build_plate_center_x = self._build_volume_bounding_box.width * 0.5 + self._build_volume_bounding_box.left
coord_build_plate_center_y = self._build_volume_bounding_box.depth * 0.5 + self._build_volume_bounding_box.back
grid_build_plate_center_x, grid_build_plate_center_y = self.coordSpaceToGridSpace(coord_build_plate_center_x, coord_build_plate_center_y)
def distToCenter(grid_id: Tuple[int, int]) -> float:
grid_x, grid_y = grid_id
distance_squared = (grid_build_plate_center_x - grid_x) ** 2 + (grid_build_plate_center_y - grid_y) ** 2
return distance_squared
sequence: List[Tuple[int, int]] = list(allowed_grid_idx)
sequence.sort(key=distToCenter)
sequence: List[Tuple[int, int]] = list(self._allowed_grid_idx)
sequence.sort(key=lambda grid_id: (grid_build_plate_center_x - grid_id[0]) ** 2 + (
grid_build_plate_center_y - grid_id[1]) ** 2)
scene_root = Application.getInstance().getController().getScene().getRoot()
grouped_operation = GroupedOperation()
@ -70,7 +80,7 @@ class GridArrange(Arranger):
if add_new_nodes_in_scene:
grouped_operation.addOperation(AddSceneNodeOperation(node, scene_root))
grid_x, grid_y = grid_id
operation = self.moveNodeOnGrid(node, grid_x, grid_y)
operation = self._moveNodeOnGrid(node, grid_x, grid_y)
grouped_operation.addOperation(operation)
leftover_nodes = self._nodes_to_arrange[len(sequence):]
@ -80,18 +90,138 @@ class GridArrange(Arranger):
if add_new_nodes_in_scene:
grouped_operation.addOperation(AddSceneNodeOperation(node, scene_root))
# find the first next grid position that isn't occupied by a fixed node
while (self._initial_leftover_grid_x, left_over_grid_y) in fixed_nodes_grid_ids:
while (self._initial_leftover_grid_x, left_over_grid_y) in self._fixed_nodes_grid_ids:
left_over_grid_y = left_over_grid_y - 1
operation = self.moveNodeOnGrid(node, self._initial_leftover_grid_x, left_over_grid_y)
operation = self._moveNodeOnGrid(node, self._initial_leftover_grid_x, left_over_grid_y)
grouped_operation.addOperation(operation)
left_over_grid_y = left_over_grid_y - 1
return grouped_operation, len(leftover_nodes)
def moveNodeOnGrid(self, node: "SceneNode", grid_x: int, grid_y: int) -> "Operation.Operation":
coord_grid_x, coord_grid_y = self.gridSpaceToCoordSpace(grid_x, grid_y)
center_grid_x = coord_grid_x + (0.5 * (self._grid_width + self._offset_x))
center_grid_y = coord_grid_y + (0.5 * (self._grid_height + self._offset_y))
def _findOptimalGridOffset(self):
if len(self._fixed_nodes) == 0:
self._offset_x = 0
self._offset_y = 0
return
if len(self._fixed_nodes) == 1:
center_grid_x = 0.5 * self._grid_width + self._build_volume_bounding_box.left
center_grid_y = 0.5 * self._grid_height + self._build_volume_bounding_box.back
bounding_box = self._fixed_nodes[0].getBoundingBox()
center_node_x = (bounding_box.left + bounding_box.right) * 0.5
center_node_y = (bounding_box.back + bounding_box.front) * 0.5
self._offset_x = center_node_x - center_grid_x
self._offset_y = center_node_y - center_grid_y
return
# If there are multiple fixed nodes, an optimal solution is not always possible
# We will try to find an offset that minimizes the number of grid intersections
# with fixed nodes. The algorithm below achieves this by utilizing a scanline
# algorithm. In this algorithm each axis is solved separately as offsetting
# is completely independent in each axis. The comments explaining the algorithm
# below are for the x-axis, but the same applies for the y-axis.
#
# Each node either occupies ceil((node.right - node.right) / grid_width) or
# ceil((node.right - node.right) / grid_width) + 1 grid squares. We will call
# these the node's "footprint".
#
# ┌────────────────┐
# minimum food print │ NODE │
# └────────────────┘
# │ grid 1 │ grid 2 │ grid 3 │ grid 4 | grid 5 |
# ┌────────────────┐
# maximum food print │ NODE │
# └────────────────┘
#
# The algorithm will find the grid offset such that the number of nodes with
# a _minimal_ footprint is _maximized_.
# The scanline algorithm works as follows, we create events for both end points
# of each node's footprint. The event have two properties,
# - the coordinate: the amount the endpoint can move to the
# left before it crosses a grid line
# - the change: either +1 or -1, indicating whether crossing the grid line
# would result in a minimal footprint node becoming a maximal footprint
class Event:
def __init__(self, coord: float, change: float):
self.coord = coord
self.change = change
# create events for both the horizontal and vertical axis
events_horizontal: List[Event] = []
events_vertical: List[Event] = []
for node in self._fixed_nodes:
bounding_box = node.getBoundingBox()
left = bounding_box.left - self._build_volume_bounding_box.left
right = bounding_box.right - self._build_volume_bounding_box.left
back = bounding_box.back - self._build_volume_bounding_box.back
front = bounding_box.front - self._build_volume_bounding_box.back
value_left = math.ceil(left / self._grid_width) * self._grid_width - left
value_right = math.ceil(right / self._grid_width) * self._grid_width - right
value_back = math.ceil(back / self._grid_height) * self._grid_height - back
value_front = math.ceil(front / self._grid_height) * self._grid_height - front
# give nodes a weight according to their size. This
# weight is heuristically chosen to be proportional to
# the number of grid squares the node-boundary occupies
weight = bounding_box.width + bounding_box.depth
events_horizontal.append(Event(value_left, weight))
events_horizontal.append(Event(value_right, -weight))
events_vertical.append(Event(value_back, weight))
events_vertical.append(Event(value_front, -weight))
events_horizontal.sort(key=lambda event: event.coord)
events_vertical.sort(key=lambda event: event.coord)
def findOptimalShiftAxis(events: List[Event], interval: float) -> float:
# executing the actual scanline algorithm
# iteratively go through events (left to right) and keep track of the
# current footprint. The optimal location is the one with the minimal
# footprint. If there are multiple locations with the same minimal
# footprint, the optimal location is the one with the largest range
# between the left and right endpoint of the footprint.
prev_offset = events[-1].coord - interval
current_minimal_footprint_count = 0
best_minimal_footprint_count = float('inf')
best_offset_span = float('-inf')
best_offset = 0.0
for event in events:
offset_span = event.coord - prev_offset
if current_minimal_footprint_count < best_minimal_footprint_count or (
current_minimal_footprint_count == best_minimal_footprint_count and offset_span > best_offset_span):
best_minimal_footprint_count = current_minimal_footprint_count
best_offset_span = offset_span
best_offset = event.coord
current_minimal_footprint_count += event.change
prev_offset = event.coord
return best_offset - best_offset_span * 0.5
center_grid_x = 0.5 * self._grid_width
center_grid_y = 0.5 * self._grid_height
optimal_center_x = self._grid_width - findOptimalShiftAxis(events_horizontal, self._grid_width)
optimal_center_y = self._grid_height - findOptimalShiftAxis(events_vertical, self._grid_height)
self._offset_x = optimal_center_x - center_grid_x
self._offset_y = optimal_center_y - center_grid_y
def _moveNodeOnGrid(self, node: "SceneNode", grid_x: int, grid_y: int) -> "Operation.Operation":
coord_grid_x, coord_grid_y = self._gridSpaceToCoordSpace(grid_x, grid_y)
center_grid_x = coord_grid_x + (0.5 * self._grid_width)
center_grid_y = coord_grid_y + (0.5 * self._grid_height)
bounding_box = node.getBoundingBox()
center_node_x = (bounding_box.left + bounding_box.right) * 0.5
@ -102,7 +232,7 @@ class GridArrange(Arranger):
return TranslateOperation(node, Vector(delta_x, 0, delta_y))
def getGridCornerPoints(self, bounding_box: "BoundingVolume") -> Tuple[float, float, float, float]:
def _getGridCornerPoints(self, bounding_box: "BoundingVolume") -> Tuple[float, float, float, float]:
coord_x1 = bounding_box.left
coord_x2 = bounding_box.right
coord_y1 = bounding_box.back
@ -112,7 +242,7 @@ class GridArrange(Arranger):
return grid_x1, grid_y1, grid_x2, grid_y2
def intersectingGridIdxInclusive(self, bounding_box: "BoundingVolume") -> Set[Tuple[int, int]]:
grid_x1, grid_y1, grid_x2, grid_y2 = self.getGridCornerPoints(bounding_box)
grid_x1, grid_y1, grid_x2, grid_y2 = self._getGridCornerPoints(bounding_box)
grid_idx = set()
for grid_x in range(math.floor(grid_x1), math.ceil(grid_x2)):
for grid_y in range(math.floor(grid_y1), math.ceil(grid_y2)):
@ -120,26 +250,26 @@ class GridArrange(Arranger):
return grid_idx
def intersectingGridIdxExclusive(self, bounding_box: "BoundingVolume") -> Set[Tuple[int, int]]:
grid_x1, grid_y1, grid_x2, grid_y2 = self.getGridCornerPoints(bounding_box)
grid_x1, grid_y1, grid_x2, grid_y2 = self._getGridCornerPoints(bounding_box)
grid_idx = set()
for grid_x in range(math.ceil(grid_x1), math.floor(grid_x2)):
for grid_y in range(math.ceil(grid_y1), math.floor(grid_y2)):
grid_idx.add((grid_x, grid_y))
return grid_idx
def gridSpaceToCoordSpace(self, x: float, y: float) -> Tuple[float, float]:
grid_x = x * (self._grid_width + self._offset_x) + self._build_volume_bounding_box.left
grid_y = y * (self._grid_height + self._offset_y) + self._build_volume_bounding_box.back
def _gridSpaceToCoordSpace(self, x: float, y: float) -> Tuple[float, float]:
grid_x = x * self._grid_width + self._build_volume_bounding_box.left + self._offset_x
grid_y = y * self._grid_height + self._build_volume_bounding_box.back + self._offset_y
return grid_x, grid_y
def coordSpaceToGridSpace(self, grid_x: float, grid_y: float) -> Tuple[float, float]:
coord_x = (grid_x - self._build_volume_bounding_box.left) / (self._grid_width + self._offset_x)
coord_y = (grid_y - self._build_volume_bounding_box.back) / (self._grid_height + self._offset_y)
coord_x = (grid_x - self._build_volume_bounding_box.left - self._offset_x) / self._grid_width
coord_y = (grid_y - self._build_volume_bounding_box.back - self._offset_y) / self._grid_height
return coord_x, coord_y
def checkGridUnderDiscSpace(self, grid_x: int, grid_y: int) -> bool:
left, back = self.gridSpaceToCoordSpace(grid_x, grid_y)
right, front = self.gridSpaceToCoordSpace(grid_x + 1, grid_y + 1)
left, back = self._gridSpaceToCoordSpace(grid_x, grid_y)
right, front = self._gridSpaceToCoordSpace(grid_x + 1, grid_y + 1)
corners = [(left, back), (right, back), (right, front), (left, front)]
return all([self.checkPointUnderDiscSpace(x, y) for x, y in corners])
@ -166,15 +296,14 @@ class GridArrange(Arranger):
disc_y = ((y - self._build_volume_bounding_box.back) / self._build_volume_bounding_box.depth) * 2.0 - 1.0
return disc_x, disc_y
def drawDebugSvg(self):
def _drawDebugSvg(self):
with open("Builvolume_test.svg", "w") as f:
build_volume_bounding_box = self._build_volume_bounding_box
f.write(
f"<svg xmlns='http://www.w3.org/2000/svg' viewBox='{build_volume_bounding_box.left - 100} {build_volume_bounding_box.back - 100} {build_volume_bounding_box.width + 200} {build_volume_bounding_box.depth + 200}'>\n")
ellipse = True
if ellipse:
if self._build_volume.getShape() == "elliptic":
f.write(
f"""
<ellipse
@ -182,7 +311,7 @@ class GridArrange(Arranger):
cy='{(build_volume_bounding_box.back + build_volume_bounding_box.front) * 0.5}'
rx='{build_volume_bounding_box.width * 0.5}'
ry='{build_volume_bounding_box.depth * 0.5}'
fill=\"blue\"
fill=\"lightgrey\"
/>
""")
else:
@ -197,30 +326,32 @@ class GridArrange(Arranger):
/>
""")
for grid_x in range(0, 100):
for grid_y in range(0, 100):
# if (grid_x, grid_y) in intersecting_grid_idx:
# fill_color = "red"
# elif (grid_x, grid_y) in build_plate_grid_idx:
# fill_color = "green"
# else:
# fill_color = "orange"
for grid_x in range(-10, 10):
for grid_y in range(-10, 10):
if (grid_x, grid_y) in self._allowed_grid_idx:
fill_color = "rgba(0, 255, 0, 0.5)"
elif (grid_x, grid_y) in self._build_plate_grid_ids:
fill_color = "rgba(255, 165, 0, 0.5)"
else:
fill_color = "rgba(255, 0, 0, 0.5)"
coord_grid_x, coord_grid_y = self.gridSpaceToCoordSpace(grid_x, grid_y)
coord_grid_x, coord_grid_y = self._gridSpaceToCoordSpace(grid_x, grid_y)
f.write(
f"""
<rect
x="{coord_grid_x}"
y="{coord_grid_y}"
width="{self._grid_width}"
height="{self._grid_height}"
fill="#ff00ff88"
x="{coord_grid_x + self._margin_x * 0.5}"
y="{coord_grid_y + self._margin_y * 0.5}"
width="{self._grid_width - self._margin_x}"
height="{self._grid_height - self._margin_y}"
fill="{fill_color}"
stroke="black"
/>
""")
f.write(f"""
<text
font-size="8"
font-size="4"
text-anchor="middle"
alignment-baseline="middle"
x="{coord_grid_x + self._grid_width * 0.5}"
y="{coord_grid_y + self._grid_height * 0.5}"
>
@ -238,24 +369,25 @@ class GridArrange(Arranger):
fill="red"
/>
""")
for node in self._nodes_to_arrange:
bounding_box = node.getBoundingBox()
f.write(f"""
<rect
x="{bounding_box.left}"
y="{bounding_box.back}"
width="{bounding_box.width}"
height="{bounding_box.depth}"
fill="rgba(0,0,0,0.1)"
stroke="blue"
stroke-width="3"
/>
""")
for x in range(math.floor(self._build_volume_bounding_box.left), math.floor(self._build_volume_bounding_box.right), 50):
for y in range(math.floor(self._build_volume_bounding_box.back), math.floor(self._build_volume_bounding_box.front), 50):
color = "green" if self.checkPointUnderDiscSpace(x, y) else "red"
f.write(f"""
<circle cx="{x}" cy="{y}" r="10" fill="{color}" />
""")
f.write(f"</svg>")
f.write(f"""
<circle
cx="{self._offset_x}"
cy="{self._offset_y}"
r="2"
stroke="red"
fill="none"
/>""")
# coord_build_plate_center_x = self._build_volume_bounding_box.width * 0.5 + self._build_volume_bounding_box.left
# coord_build_plate_center_y = self._build_volume_bounding_box.depth * 0.5 + self._build_volume_bounding_box.back
# f.write(f"""
# <circle
# cx="{coord_build_plate_center_x}"
# cy="{coord_build_plate_center_y}"
# r="2"
# stroke="blue"
# fill="none"
# />""")
f.write(f"</svg>")