mirror of
https://git.mirrors.martin98.com/https://github.com/Ultimaker/Cura
synced 2025-08-13 00:28:59 +08:00
Merge branch 'main' into CURA-10475_engineplugin
This commit is contained in:
commit
4f06ea4f87
@ -8,17 +8,20 @@ from UM.Logger import Logger
|
||||
from UM.Message import Message
|
||||
from UM.Scene.SceneNode import SceneNode
|
||||
from UM.i18n import i18nCatalog
|
||||
from cura.Arranging.Nest2DArrange import arrange
|
||||
from cura.Arranging.GridArrange import GridArrange
|
||||
from cura.Arranging.Nest2DArrange import Nest2DArrange
|
||||
|
||||
i18n_catalog = i18nCatalog("cura")
|
||||
|
||||
|
||||
class ArrangeObjectsJob(Job):
|
||||
def __init__(self, nodes: List[SceneNode], fixed_nodes: List[SceneNode], min_offset = 8) -> None:
|
||||
def __init__(self, nodes: List[SceneNode], fixed_nodes: List[SceneNode], min_offset = 8,
|
||||
*, grid_arrange: bool = False) -> None:
|
||||
super().__init__()
|
||||
self._nodes = nodes
|
||||
self._fixed_nodes = fixed_nodes
|
||||
self._min_offset = min_offset
|
||||
self._grid_arrange = grid_arrange
|
||||
|
||||
def run(self):
|
||||
found_solution_for_all = False
|
||||
@ -29,10 +32,18 @@ class ArrangeObjectsJob(Job):
|
||||
title = i18n_catalog.i18nc("@info:title", "Finding Location"))
|
||||
status_message.show()
|
||||
|
||||
if self._grid_arrange:
|
||||
arranger = GridArrange(self._nodes, Application.getInstance().getBuildVolume(), self._fixed_nodes)
|
||||
else:
|
||||
arranger = Nest2DArrange(self._nodes, Application.getInstance().getBuildVolume(), self._fixed_nodes,
|
||||
factor=1000)
|
||||
|
||||
found_solution_for_all = False
|
||||
try:
|
||||
found_solution_for_all = arrange(self._nodes, Application.getInstance().getBuildVolume(), self._fixed_nodes)
|
||||
found_solution_for_all = arranger.arrange()
|
||||
except: # If the thread crashes, the message should still close
|
||||
Logger.logException("e", "Unable to arrange the objects on the buildplate. The arrange algorithm has crashed.")
|
||||
Logger.logException("e",
|
||||
"Unable to arrange the objects on the buildplate. The arrange algorithm has crashed.")
|
||||
|
||||
status_message.hide()
|
||||
|
||||
|
28
cura/Arranging/Arranger.py
Normal file
28
cura/Arranging/Arranger.py
Normal file
@ -0,0 +1,28 @@
|
||||
from typing import List, TYPE_CHECKING, Optional, Tuple, Set
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from UM.Operations.GroupedOperation import GroupedOperation
|
||||
|
||||
|
||||
class Arranger:
|
||||
def createGroupOperationForArrange(self, *, add_new_nodes_in_scene: bool = False) -> Tuple["GroupedOperation", int]:
|
||||
"""
|
||||
Find placement for a set of scene nodes, but don't actually move them just yet.
|
||||
:param add_new_nodes_in_scene: Whether to create new scene nodes before applying the transformations and rotations
|
||||
:return: tuple (found_solution_for_all, node_items)
|
||||
WHERE
|
||||
found_solution_for_all: Whether the algorithm found a place on the buildplate for all the objects
|
||||
node_items: A list of the nodes return by libnest2d, which contain the new positions on the buildplate
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def arrange(self, *, add_new_nodes_in_scene: bool = False) -> bool:
|
||||
"""
|
||||
Find placement for a set of scene nodes, and move them by using a single grouped operation.
|
||||
:param add_new_nodes_in_scene: Whether to create new scene nodes before applying the transformations and rotations
|
||||
:return: found_solution_for_all: Whether the algorithm found a place on the buildplate for all the objects
|
||||
"""
|
||||
grouped_operation, not_fit_count = self.createGroupOperationForArrange(
|
||||
add_new_nodes_in_scene=add_new_nodes_in_scene)
|
||||
grouped_operation.push()
|
||||
return not_fit_count == 0
|
331
cura/Arranging/GridArrange.py
Normal file
331
cura/Arranging/GridArrange.py
Normal file
@ -0,0 +1,331 @@
|
||||
import math
|
||||
from typing import List, TYPE_CHECKING, Tuple, Set
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from UM.Scene.SceneNode import SceneNode
|
||||
from cura.BuildVolume import BuildVolume
|
||||
|
||||
from UM.Application import Application
|
||||
from UM.Math.Vector import Vector
|
||||
from UM.Operations.AddSceneNodeOperation import AddSceneNodeOperation
|
||||
from UM.Operations.GroupedOperation import GroupedOperation
|
||||
from UM.Operations.TranslateOperation import TranslateOperation
|
||||
from cura.Arranging.Arranger import Arranger
|
||||
|
||||
|
||||
class GridArrange(Arranger):
|
||||
def __init__(self, nodes_to_arrange: List["SceneNode"], build_volume: "BuildVolume", fixed_nodes: List["SceneNode"] = None):
|
||||
if fixed_nodes is None:
|
||||
fixed_nodes = []
|
||||
self._nodes_to_arrange = nodes_to_arrange
|
||||
self._build_volume = build_volume
|
||||
self._build_volume_bounding_box = build_volume.getBoundingBox()
|
||||
self._fixed_nodes = fixed_nodes
|
||||
|
||||
self._margin_x: float = 1
|
||||
self._margin_y: float = 1
|
||||
|
||||
self._grid_width = 0
|
||||
self._grid_height = 0
|
||||
for node in self._nodes_to_arrange:
|
||||
bounding_box = node.getBoundingBox()
|
||||
self._grid_width = max(self._grid_width, bounding_box.width)
|
||||
self._grid_height = max(self._grid_height, bounding_box.depth)
|
||||
self._grid_width += self._margin_x
|
||||
self._grid_height += self._margin_y
|
||||
|
||||
# Round up the grid size to the nearest cm
|
||||
grid_precision = 10 # 1cm
|
||||
self._grid_width = math.ceil(self._grid_width / grid_precision) * grid_precision
|
||||
self._grid_height = math.ceil(self._grid_height / grid_precision) * grid_precision
|
||||
|
||||
self._offset_x = 0
|
||||
self._offset_y = 0
|
||||
self._findOptimalGridOffset()
|
||||
|
||||
coord_initial_leftover_x = self._build_volume_bounding_box.right + 2 * self._grid_width
|
||||
coord_initial_leftover_y = (self._build_volume_bounding_box.back + self._build_volume_bounding_box.front) * 0.5
|
||||
self._initial_leftover_grid_x, self._initial_leftover_grid_y = self._coordSpaceToGridSpace(
|
||||
coord_initial_leftover_x, coord_initial_leftover_y)
|
||||
self._initial_leftover_grid_x = math.floor(self._initial_leftover_grid_x)
|
||||
self._initial_leftover_grid_y = math.floor(self._initial_leftover_grid_y)
|
||||
|
||||
# Find grid indexes that intersect with fixed objects
|
||||
self._fixed_nodes_grid_ids = set()
|
||||
for node in self._fixed_nodes:
|
||||
self._fixed_nodes_grid_ids = self._fixed_nodes_grid_ids.union(
|
||||
self._intersectingGridIdxInclusive(node.getBoundingBox()))
|
||||
|
||||
#grid indexes that are in disallowed area
|
||||
for polygon in self._build_volume.getDisallowedAreas():
|
||||
self._fixed_nodes_grid_ids = self._fixed_nodes_grid_ids.union(
|
||||
self._getIntersectingGridIdForPolygon(polygon))
|
||||
|
||||
self._build_plate_grid_ids = self._intersectingGridIdxExclusive(self._build_volume_bounding_box)
|
||||
|
||||
# Filter out the corner grid squares if the build plate shape is elliptic
|
||||
if self._build_volume.getShape() == "elliptic":
|
||||
self._build_plate_grid_ids = set(
|
||||
filter(lambda grid_id: self._checkGridUnderDiscSpace(grid_id[0], grid_id[1]),
|
||||
self._build_plate_grid_ids))
|
||||
|
||||
self._allowed_grid_idx = self._build_plate_grid_ids.difference(self._fixed_nodes_grid_ids)
|
||||
|
||||
def createGroupOperationForArrange(self, *, add_new_nodes_in_scene: bool = False) -> Tuple[GroupedOperation, int]:
|
||||
# Find the sequence in which items are placed
|
||||
coord_build_plate_center_x = self._build_volume_bounding_box.width * 0.5 + self._build_volume_bounding_box.left
|
||||
coord_build_plate_center_y = self._build_volume_bounding_box.depth * 0.5 + self._build_volume_bounding_box.back
|
||||
grid_build_plate_center_x, grid_build_plate_center_y = self._coordSpaceToGridSpace(coord_build_plate_center_x,
|
||||
coord_build_plate_center_y)
|
||||
|
||||
sequence: List[Tuple[int, int]] = list(self._allowed_grid_idx)
|
||||
sequence.sort(key=lambda grid_id: (grid_build_plate_center_x - grid_id[0]) ** 2 + (
|
||||
grid_build_plate_center_y - grid_id[1]) ** 2)
|
||||
scene_root = Application.getInstance().getController().getScene().getRoot()
|
||||
grouped_operation = GroupedOperation()
|
||||
|
||||
for grid_id, node in zip(sequence, self._nodes_to_arrange):
|
||||
if add_new_nodes_in_scene:
|
||||
grouped_operation.addOperation(AddSceneNodeOperation(node, scene_root))
|
||||
grid_x, grid_y = grid_id
|
||||
operation = self._moveNodeOnGrid(node, grid_x, grid_y)
|
||||
grouped_operation.addOperation(operation)
|
||||
|
||||
leftover_nodes = self._nodes_to_arrange[len(sequence):]
|
||||
|
||||
left_over_grid_y = self._initial_leftover_grid_y
|
||||
for node in leftover_nodes:
|
||||
if add_new_nodes_in_scene:
|
||||
grouped_operation.addOperation(AddSceneNodeOperation(node, scene_root))
|
||||
# find the first next grid position that isn't occupied by a fixed node
|
||||
while (self._initial_leftover_grid_x, left_over_grid_y) in self._fixed_nodes_grid_ids:
|
||||
left_over_grid_y = left_over_grid_y - 1
|
||||
|
||||
operation = self._moveNodeOnGrid(node, self._initial_leftover_grid_x, left_over_grid_y)
|
||||
grouped_operation.addOperation(operation)
|
||||
left_over_grid_y = left_over_grid_y - 1
|
||||
|
||||
return grouped_operation, len(leftover_nodes)
|
||||
|
||||
def _findOptimalGridOffset(self):
|
||||
if len(self._fixed_nodes) == 0:
|
||||
self._offset_x = 0
|
||||
self._offset_y = 0
|
||||
return
|
||||
|
||||
if len(self._fixed_nodes) == 1:
|
||||
center_grid_x = 0.5 * self._grid_width + self._build_volume_bounding_box.left
|
||||
center_grid_y = 0.5 * self._grid_height + self._build_volume_bounding_box.back
|
||||
|
||||
bounding_box = self._fixed_nodes[0].getBoundingBox()
|
||||
center_node_x = (bounding_box.left + bounding_box.right) * 0.5
|
||||
center_node_y = (bounding_box.back + bounding_box.front) * 0.5
|
||||
|
||||
self._offset_x = center_node_x - center_grid_x
|
||||
self._offset_y = center_node_y - center_grid_y
|
||||
|
||||
return
|
||||
|
||||
# If there are multiple fixed nodes, an optimal solution is not always possible
|
||||
# We will try to find an offset that minimizes the number of grid intersections
|
||||
# with fixed nodes. The algorithm below achieves this by utilizing a scanline
|
||||
# algorithm. In this algorithm each axis is solved separately as offsetting
|
||||
# is completely independent in each axis. The comments explaining the algorithm
|
||||
# below are for the x-axis, but the same applies for the y-axis.
|
||||
#
|
||||
# Each node either occupies ceil((node.right - node.right) / grid_width) or
|
||||
# ceil((node.right - node.right) / grid_width) + 1 grid squares. We will call
|
||||
# these the node's "footprint".
|
||||
#
|
||||
# ┌────────────────┐
|
||||
# minimum foot-print │ NODE │
|
||||
# └────────────────┘
|
||||
# │ grid 1 │ grid 2 │ grid 3 │ grid 4 | grid 5 |
|
||||
# ┌────────────────┐
|
||||
# maximum foot-print │ NODE │
|
||||
# └────────────────┘
|
||||
#
|
||||
# The algorithm will find the grid offset such that the number of nodes with
|
||||
# a _minimal_ footprint is _maximized_.
|
||||
|
||||
# The scanline algorithm works as follows, we create events for both end points
|
||||
# of each node's footprint. The event have two properties,
|
||||
# - the coordinate: the amount the endpoint can move to the
|
||||
# left before it crosses a grid line
|
||||
# - the change: either +1 or -1, indicating whether crossing the grid line
|
||||
# would result in a minimal footprint node becoming a maximal footprint
|
||||
class Event:
|
||||
def __init__(self, coord: float, change: float):
|
||||
self.coord = coord
|
||||
self.change = change
|
||||
|
||||
# create events for both the horizontal and vertical axis
|
||||
events_horizontal: List[Event] = []
|
||||
events_vertical: List[Event] = []
|
||||
|
||||
for node in self._fixed_nodes:
|
||||
bounding_box = node.getBoundingBox()
|
||||
|
||||
left = bounding_box.left - self._build_volume_bounding_box.left
|
||||
right = bounding_box.right - self._build_volume_bounding_box.left
|
||||
back = bounding_box.back - self._build_volume_bounding_box.back
|
||||
front = bounding_box.front - self._build_volume_bounding_box.back
|
||||
|
||||
value_left = math.ceil(left / self._grid_width) * self._grid_width - left
|
||||
value_right = math.ceil(right / self._grid_width) * self._grid_width - right
|
||||
value_back = math.ceil(back / self._grid_height) * self._grid_height - back
|
||||
value_front = math.ceil(front / self._grid_height) * self._grid_height - front
|
||||
|
||||
# give nodes a weight according to their size. This
|
||||
# weight is heuristically chosen to be proportional to
|
||||
# the number of grid squares the node-boundary occupies
|
||||
weight = bounding_box.width + bounding_box.depth
|
||||
|
||||
events_horizontal.append(Event(value_left, weight))
|
||||
events_horizontal.append(Event(value_right, -weight))
|
||||
events_vertical.append(Event(value_back, weight))
|
||||
events_vertical.append(Event(value_front, -weight))
|
||||
|
||||
events_horizontal.sort(key=lambda event: event.coord)
|
||||
events_vertical.sort(key=lambda event: event.coord)
|
||||
|
||||
def findOptimalShiftAxis(events: List[Event], interval: float) -> float:
|
||||
# executing the actual scanline algorithm
|
||||
# iteratively go through events (left to right) and keep track of the
|
||||
# current footprint. The optimal location is the one with the minimal
|
||||
# footprint. If there are multiple locations with the same minimal
|
||||
# footprint, the optimal location is the one with the largest range
|
||||
# between the left and right endpoint of the footprint.
|
||||
prev_offset = events[-1].coord - interval
|
||||
current_minimal_footprint_count = 0
|
||||
|
||||
best_minimal_footprint_count = float('inf')
|
||||
best_offset_span = float('-inf')
|
||||
best_offset = 0.0
|
||||
|
||||
for event in events:
|
||||
offset_span = event.coord - prev_offset
|
||||
|
||||
if current_minimal_footprint_count < best_minimal_footprint_count or (
|
||||
current_minimal_footprint_count == best_minimal_footprint_count and offset_span > best_offset_span):
|
||||
best_minimal_footprint_count = current_minimal_footprint_count
|
||||
best_offset_span = offset_span
|
||||
best_offset = event.coord
|
||||
|
||||
current_minimal_footprint_count += event.change
|
||||
prev_offset = event.coord
|
||||
|
||||
return best_offset - best_offset_span * 0.5
|
||||
|
||||
center_grid_x = 0.5 * self._grid_width
|
||||
center_grid_y = 0.5 * self._grid_height
|
||||
|
||||
optimal_center_x = self._grid_width - findOptimalShiftAxis(events_horizontal, self._grid_width)
|
||||
optimal_center_y = self._grid_height - findOptimalShiftAxis(events_vertical, self._grid_height)
|
||||
|
||||
self._offset_x = optimal_center_x - center_grid_x
|
||||
self._offset_y = optimal_center_y - center_grid_y
|
||||
|
||||
def _moveNodeOnGrid(self, node: "SceneNode", grid_x: int, grid_y: int) -> "Operation.Operation":
|
||||
coord_grid_x, coord_grid_y = self._gridSpaceToCoordSpace(grid_x, grid_y)
|
||||
center_grid_x = coord_grid_x + (0.5 * self._grid_width)
|
||||
center_grid_y = coord_grid_y + (0.5 * self._grid_height)
|
||||
|
||||
bounding_box = node.getBoundingBox()
|
||||
center_node_x = (bounding_box.left + bounding_box.right) * 0.5
|
||||
center_node_y = (bounding_box.back + bounding_box.front) * 0.5
|
||||
|
||||
delta_x = center_grid_x - center_node_x
|
||||
delta_y = center_grid_y - center_node_y
|
||||
|
||||
return TranslateOperation(node, Vector(delta_x, 0, delta_y))
|
||||
|
||||
def _getGridCornerPoints(self, bounding_box: "BoundingVolume") -> Tuple[float, float, float, float]:
|
||||
coord_x1 = bounding_box.left
|
||||
coord_x2 = bounding_box.right
|
||||
coord_y1 = bounding_box.back
|
||||
coord_y2 = bounding_box.front
|
||||
grid_x1, grid_y1 = self._coordSpaceToGridSpace(coord_x1, coord_y1)
|
||||
grid_x2, grid_y2 = self._coordSpaceToGridSpace(coord_x2, coord_y2)
|
||||
return grid_x1, grid_y1, grid_x2, grid_y2
|
||||
|
||||
def _getIntersectingGridIdForPolygon(self, polygon)-> Set[Tuple[int, int]]:
|
||||
# (x0, y0)
|
||||
# |
|
||||
# v
|
||||
# ┌─────────────┐
|
||||
# │ │
|
||||
# │ │
|
||||
# └─────────────┘ < (x1, y1)
|
||||
x0 = float('inf')
|
||||
y0 = float('inf')
|
||||
x1 = float('-inf')
|
||||
y1 = float('-inf')
|
||||
grid_idx = set()
|
||||
for [x, y] in polygon.getPoints():
|
||||
x0 = min(x0, x)
|
||||
y0 = min(y0, y)
|
||||
x1 = max(x1, x)
|
||||
y1 = max(y1, y)
|
||||
grid_x1, grid_y1 = self._coordSpaceToGridSpace(x0, y0)
|
||||
grid_x2, grid_y2 = self._coordSpaceToGridSpace(x1, y1)
|
||||
|
||||
for grid_x in range(math.floor(grid_x1), math.ceil(grid_x2)):
|
||||
for grid_y in range(math.floor(grid_y1), math.ceil(grid_y2)):
|
||||
grid_idx.add((grid_x, grid_y))
|
||||
return grid_idx
|
||||
|
||||
def _intersectingGridIdxInclusive(self, bounding_box: "BoundingVolume") -> Set[Tuple[int, int]]:
|
||||
grid_x1, grid_y1, grid_x2, grid_y2 = self._getGridCornerPoints(bounding_box)
|
||||
grid_idx = set()
|
||||
for grid_x in range(math.floor(grid_x1), math.ceil(grid_x2)):
|
||||
for grid_y in range(math.floor(grid_y1), math.ceil(grid_y2)):
|
||||
grid_idx.add((grid_x, grid_y))
|
||||
return grid_idx
|
||||
|
||||
def _intersectingGridIdxExclusive(self, bounding_box: "BoundingVolume") -> Set[Tuple[int, int]]:
|
||||
grid_x1, grid_y1, grid_x2, grid_y2 = self._getGridCornerPoints(bounding_box)
|
||||
grid_idx = set()
|
||||
for grid_x in range(math.ceil(grid_x1), math.floor(grid_x2)):
|
||||
for grid_y in range(math.ceil(grid_y1), math.floor(grid_y2)):
|
||||
grid_idx.add((grid_x, grid_y))
|
||||
return grid_idx
|
||||
|
||||
def _gridSpaceToCoordSpace(self, x: float, y: float) -> Tuple[float, float]:
|
||||
grid_x = x * self._grid_width + self._build_volume_bounding_box.left + self._offset_x
|
||||
grid_y = y * self._grid_height + self._build_volume_bounding_box.back + self._offset_y
|
||||
return grid_x, grid_y
|
||||
|
||||
def _coordSpaceToGridSpace(self, grid_x: float, grid_y: float) -> Tuple[float, float]:
|
||||
coord_x = (grid_x - self._build_volume_bounding_box.left - self._offset_x) / self._grid_width
|
||||
coord_y = (grid_y - self._build_volume_bounding_box.back - self._offset_y) / self._grid_height
|
||||
return coord_x, coord_y
|
||||
|
||||
def _checkGridUnderDiscSpace(self, grid_x: int, grid_y: int) -> bool:
|
||||
left, back = self._gridSpaceToCoordSpace(grid_x, grid_y)
|
||||
right, front = self._gridSpaceToCoordSpace(grid_x + 1, grid_y + 1)
|
||||
corners = [(left, back), (right, back), (right, front), (left, front)]
|
||||
return all([self._checkPointUnderDiscSpace(x, y) for x, y in corners])
|
||||
|
||||
def _checkPointUnderDiscSpace(self, x: float, y: float) -> bool:
|
||||
disc_x, disc_y = self._coordSpaceToDiscSpace(x, y)
|
||||
distance_to_center_squared = disc_x ** 2 + disc_y ** 2
|
||||
return distance_to_center_squared <= 1.0
|
||||
|
||||
def _coordSpaceToDiscSpace(self, x: float, y: float) -> Tuple[float, float]:
|
||||
# Transform coordinate system to
|
||||
#
|
||||
# coord_build_plate_left = -1
|
||||
# | coord_build_plate_right = 1
|
||||
# v (0,1) v
|
||||
# ┌───────┬───────┐ < coord_build_plate_back = -1
|
||||
# │ │ │
|
||||
# │ │(0,0) │
|
||||
# (-1,0)├───────o───────┤(1,0)
|
||||
# │ │ │
|
||||
# │ │ │
|
||||
# └───────┴───────┘ < coord_build_plate_front = +1
|
||||
# (0,-1)
|
||||
disc_x = ((x - self._build_volume_bounding_box.left) / self._build_volume_bounding_box.width) * 2.0 - 1.0
|
||||
disc_y = ((y - self._build_volume_bounding_box.back) / self._build_volume_bounding_box.depth) * 2.0 - 1.0
|
||||
return disc_x, disc_y
|
@ -15,149 +15,137 @@ from UM.Operations.AddSceneNodeOperation import AddSceneNodeOperation
|
||||
from UM.Operations.GroupedOperation import GroupedOperation
|
||||
from UM.Operations.RotateOperation import RotateOperation
|
||||
from UM.Operations.TranslateOperation import TranslateOperation
|
||||
|
||||
from cura.Arranging.Arranger import Arranger
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from UM.Scene.SceneNode import SceneNode
|
||||
from cura.BuildVolume import BuildVolume
|
||||
|
||||
|
||||
def findNodePlacement(nodes_to_arrange: List["SceneNode"], build_volume: "BuildVolume", fixed_nodes: Optional[List["SceneNode"]] = None, factor = 10000) -> Tuple[bool, List[Item]]:
|
||||
"""
|
||||
Find placement for a set of scene nodes, but don't actually move them just yet.
|
||||
:param nodes_to_arrange: The list of nodes that need to be moved.
|
||||
:param build_volume: The build volume that we want to place the nodes in. It gets size & disallowed areas from this.
|
||||
:param fixed_nodes: List of nods that should not be moved, but should be used when deciding where the others nodes
|
||||
are placed.
|
||||
:param factor: The library that we use is int based. This factor defines how accurate we want it to be.
|
||||
class Nest2DArrange(Arranger):
|
||||
def __init__(self,
|
||||
nodes_to_arrange: List["SceneNode"],
|
||||
build_volume: "BuildVolume",
|
||||
fixed_nodes: Optional[List["SceneNode"]] = None,
|
||||
*,
|
||||
factor: int = 10000,
|
||||
lock_rotation: bool = False):
|
||||
"""
|
||||
:param nodes_to_arrange: The list of nodes that need to be moved.
|
||||
:param build_volume: The build volume that we want to place the nodes in. It gets size & disallowed areas from this.
|
||||
:param fixed_nodes: List of nods that should not be moved, but should be used when deciding where the others nodes
|
||||
are placed.
|
||||
:param factor: The library that we use is int based. This factor defines how accuracte we want it to be.
|
||||
:param lock_rotation: If set to true the orientation of the object will remain the same
|
||||
"""
|
||||
super().__init__()
|
||||
self._nodes_to_arrange = nodes_to_arrange
|
||||
self._build_volume = build_volume
|
||||
self._fixed_nodes = fixed_nodes
|
||||
self._factor = factor
|
||||
self._lock_rotation = lock_rotation
|
||||
|
||||
:return: tuple (found_solution_for_all, node_items)
|
||||
WHERE
|
||||
found_solution_for_all: Whether the algorithm found a place on the buildplate for all the objects
|
||||
node_items: A list of the nodes return by libnest2d, which contain the new positions on the buildplate
|
||||
"""
|
||||
spacing = int(1.5 * factor) # 1.5mm spacing.
|
||||
def findNodePlacement(self) -> Tuple[bool, List[Item]]:
|
||||
spacing = int(1.5 * self._factor) # 1.5mm spacing.
|
||||
|
||||
machine_width = build_volume.getWidth()
|
||||
machine_depth = build_volume.getDepth()
|
||||
build_plate_bounding_box = Box(int(machine_width * factor), int(machine_depth * factor))
|
||||
machine_width = self._build_volume.getWidth()
|
||||
machine_depth = self._build_volume.getDepth()
|
||||
build_plate_bounding_box = Box(int(machine_width * self._factor), int(machine_depth * self._factor))
|
||||
|
||||
if fixed_nodes is None:
|
||||
fixed_nodes = []
|
||||
if self._fixed_nodes is None:
|
||||
self._fixed_nodes = []
|
||||
|
||||
# Add all the items we want to arrange
|
||||
node_items = []
|
||||
for node in nodes_to_arrange:
|
||||
hull_polygon = node.callDecoration("getConvexHull")
|
||||
if not hull_polygon or hull_polygon.getPoints is None:
|
||||
Logger.log("w", "Object {} cannot be arranged because it has no convex hull.".format(node.getName()))
|
||||
continue
|
||||
converted_points = []
|
||||
for point in hull_polygon.getPoints():
|
||||
converted_points.append(Point(int(point[0] * factor), int(point[1] * factor)))
|
||||
item = Item(converted_points)
|
||||
node_items.append(item)
|
||||
|
||||
# Use a tiny margin for the build_plate_polygon (the nesting doesn't like overlapping disallowed areas)
|
||||
half_machine_width = 0.5 * machine_width - 1
|
||||
half_machine_depth = 0.5 * machine_depth - 1
|
||||
build_plate_polygon = Polygon(numpy.array([
|
||||
[half_machine_width, -half_machine_depth],
|
||||
[-half_machine_width, -half_machine_depth],
|
||||
[-half_machine_width, half_machine_depth],
|
||||
[half_machine_width, half_machine_depth]
|
||||
], numpy.float32))
|
||||
|
||||
disallowed_areas = build_volume.getDisallowedAreas()
|
||||
num_disallowed_areas_added = 0
|
||||
for area in disallowed_areas:
|
||||
converted_points = []
|
||||
|
||||
# Clip the disallowed areas so that they don't overlap the bounding box (The arranger chokes otherwise)
|
||||
clipped_area = area.intersectionConvexHulls(build_plate_polygon)
|
||||
|
||||
if clipped_area.getPoints() is not None and len(clipped_area.getPoints()) > 2: # numpy array has to be explicitly checked against None
|
||||
for point in clipped_area.getPoints():
|
||||
converted_points.append(Point(int(point[0] * factor), int(point[1] * factor)))
|
||||
|
||||
disallowed_area = Item(converted_points)
|
||||
disallowed_area.markAsDisallowedAreaInBin(0)
|
||||
node_items.append(disallowed_area)
|
||||
num_disallowed_areas_added += 1
|
||||
|
||||
for node in fixed_nodes:
|
||||
converted_points = []
|
||||
hull_polygon = node.callDecoration("getConvexHull")
|
||||
|
||||
if hull_polygon is not None and hull_polygon.getPoints() is not None and len(hull_polygon.getPoints()) > 2: # numpy array has to be explicitly checked against None
|
||||
# Add all the items we want to arrange
|
||||
node_items = []
|
||||
for node in self._nodes_to_arrange:
|
||||
hull_polygon = node.callDecoration("getConvexHull")
|
||||
if not hull_polygon or hull_polygon.getPoints is None:
|
||||
Logger.log("w", "Object {} cannot be arranged because it has no convex hull.".format(node.getName()))
|
||||
continue
|
||||
converted_points = []
|
||||
for point in hull_polygon.getPoints():
|
||||
converted_points.append(Point(int(point[0] * factor), int(point[1] * factor)))
|
||||
converted_points.append(Point(int(point[0] * self._factor), int(point[1] * self._factor)))
|
||||
item = Item(converted_points)
|
||||
item.markAsFixedInBin(0)
|
||||
node_items.append(item)
|
||||
num_disallowed_areas_added += 1
|
||||
|
||||
config = NfpConfig()
|
||||
config.accuracy = 1.0
|
||||
config.alignment = NfpConfig.Alignment.DONT_ALIGN
|
||||
# Use a tiny margin for the build_plate_polygon (the nesting doesn't like overlapping disallowed areas)
|
||||
half_machine_width = 0.5 * machine_width - 1
|
||||
half_machine_depth = 0.5 * machine_depth - 1
|
||||
build_plate_polygon = Polygon(numpy.array([
|
||||
[half_machine_width, -half_machine_depth],
|
||||
[-half_machine_width, -half_machine_depth],
|
||||
[-half_machine_width, half_machine_depth],
|
||||
[half_machine_width, half_machine_depth]
|
||||
], numpy.float32))
|
||||
|
||||
num_bins = nest(node_items, build_plate_bounding_box, spacing, config)
|
||||
disallowed_areas = self._build_volume.getDisallowedAreas()
|
||||
num_disallowed_areas_added = 0
|
||||
for area in disallowed_areas:
|
||||
converted_points = []
|
||||
|
||||
# Strip the fixed items (previously placed) and the disallowed areas from the results again.
|
||||
node_items = list(filter(lambda item: not item.isFixed(), node_items))
|
||||
# Clip the disallowed areas so that they don't overlap the bounding box (The arranger chokes otherwise)
|
||||
clipped_area = area.intersectionConvexHulls(build_plate_polygon)
|
||||
|
||||
found_solution_for_all = num_bins == 1
|
||||
if clipped_area.getPoints() is not None and len(
|
||||
clipped_area.getPoints()) > 2: # numpy array has to be explicitly checked against None
|
||||
for point in clipped_area.getPoints():
|
||||
converted_points.append(Point(int(point[0] * self._factor), int(point[1] * self._factor)))
|
||||
|
||||
return found_solution_for_all, node_items
|
||||
disallowed_area = Item(converted_points)
|
||||
disallowed_area.markAsDisallowedAreaInBin(0)
|
||||
node_items.append(disallowed_area)
|
||||
num_disallowed_areas_added += 1
|
||||
|
||||
for node in self._fixed_nodes:
|
||||
converted_points = []
|
||||
hull_polygon = node.callDecoration("getConvexHull")
|
||||
|
||||
def createGroupOperationForArrange(nodes_to_arrange: List["SceneNode"],
|
||||
build_volume: "BuildVolume",
|
||||
fixed_nodes: Optional[List["SceneNode"]] = None,
|
||||
factor = 10000,
|
||||
add_new_nodes_in_scene: bool = False) -> Tuple[GroupedOperation, int]:
|
||||
scene_root = Application.getInstance().getController().getScene().getRoot()
|
||||
found_solution_for_all, node_items = findNodePlacement(nodes_to_arrange, build_volume, fixed_nodes, factor)
|
||||
if hull_polygon is not None and hull_polygon.getPoints() is not None and len(
|
||||
hull_polygon.getPoints()) > 2: # numpy array has to be explicitly checked against None
|
||||
for point in hull_polygon.getPoints():
|
||||
converted_points.append(Point(int(point[0] * self._factor), int(point[1] * self._factor)))
|
||||
item = Item(converted_points)
|
||||
item.markAsFixedInBin(0)
|
||||
node_items.append(item)
|
||||
num_disallowed_areas_added += 1
|
||||
|
||||
not_fit_count = 0
|
||||
grouped_operation = GroupedOperation()
|
||||
for node, node_item in zip(nodes_to_arrange, node_items):
|
||||
if add_new_nodes_in_scene:
|
||||
grouped_operation.addOperation(AddSceneNodeOperation(node, scene_root))
|
||||
config = NfpConfig()
|
||||
config.accuracy = 1.0
|
||||
config.alignment = NfpConfig.Alignment.DONT_ALIGN
|
||||
if self._lock_rotation:
|
||||
config.rotations = [0.0]
|
||||
|
||||
if node_item.binId() == 0:
|
||||
# We found a spot for it
|
||||
rotation_matrix = Matrix()
|
||||
rotation_matrix.setByRotationAxis(node_item.rotation(), Vector(0, -1, 0))
|
||||
grouped_operation.addOperation(RotateOperation(node, Quaternion.fromMatrix(rotation_matrix)))
|
||||
grouped_operation.addOperation(TranslateOperation(node, Vector(node_item.translation().x() / factor, 0,
|
||||
node_item.translation().y() / factor)))
|
||||
else:
|
||||
# We didn't find a spot
|
||||
grouped_operation.addOperation(
|
||||
TranslateOperation(node, Vector(200, node.getWorldPosition().y, -not_fit_count * 20), set_position = True))
|
||||
not_fit_count += 1
|
||||
num_bins = nest(node_items, build_plate_bounding_box, spacing, config)
|
||||
|
||||
return grouped_operation, not_fit_count
|
||||
# Strip the fixed items (previously placed) and the disallowed areas from the results again.
|
||||
node_items = list(filter(lambda item: not item.isFixed(), node_items))
|
||||
|
||||
found_solution_for_all = num_bins == 1
|
||||
|
||||
def arrange(nodes_to_arrange: List["SceneNode"],
|
||||
build_volume: "BuildVolume",
|
||||
fixed_nodes: Optional[List["SceneNode"]] = None,
|
||||
factor = 10000,
|
||||
add_new_nodes_in_scene: bool = False) -> bool:
|
||||
"""
|
||||
Find placement for a set of scene nodes, and move them by using a single grouped operation.
|
||||
:param nodes_to_arrange: The list of nodes that need to be moved.
|
||||
:param build_volume: The build volume that we want to place the nodes in. It gets size & disallowed areas from this.
|
||||
:param fixed_nodes: List of nods that should not be moved, but should be used when deciding where the others nodes
|
||||
are placed.
|
||||
:param factor: The library that we use is int based. This factor defines how accuracte we want it to be.
|
||||
:param add_new_nodes_in_scene: Whether to create new scene nodes before applying the transformations and rotations
|
||||
return found_solution_for_all, node_items
|
||||
|
||||
:return: found_solution_for_all: Whether the algorithm found a place on the buildplate for all the objects
|
||||
"""
|
||||
def createGroupOperationForArrange(self, *, add_new_nodes_in_scene: bool = False) -> Tuple[GroupedOperation, int]:
|
||||
scene_root = Application.getInstance().getController().getScene().getRoot()
|
||||
found_solution_for_all, node_items = self.findNodePlacement()
|
||||
|
||||
grouped_operation, not_fit_count = createGroupOperationForArrange(nodes_to_arrange, build_volume, fixed_nodes, factor, add_new_nodes_in_scene)
|
||||
grouped_operation.push()
|
||||
return not_fit_count == 0
|
||||
not_fit_count = 0
|
||||
grouped_operation = GroupedOperation()
|
||||
for node, node_item in zip(self._nodes_to_arrange, node_items):
|
||||
if add_new_nodes_in_scene:
|
||||
grouped_operation.addOperation(AddSceneNodeOperation(node, scene_root))
|
||||
|
||||
if node_item.binId() == 0:
|
||||
# We found a spot for it
|
||||
rotation_matrix = Matrix()
|
||||
rotation_matrix.setByRotationAxis(node_item.rotation(), Vector(0, -1, 0))
|
||||
grouped_operation.addOperation(RotateOperation(node, Quaternion.fromMatrix(rotation_matrix)))
|
||||
grouped_operation.addOperation(
|
||||
TranslateOperation(node, Vector(node_item.translation().x() / self._factor, 0,
|
||||
node_item.translation().y() / self._factor)))
|
||||
else:
|
||||
# We didn't find a spot
|
||||
grouped_operation.addOperation(
|
||||
TranslateOperation(node, Vector(200, node.getWorldPosition().y, -not_fit_count * 20), set_position = True))
|
||||
not_fit_count += 1
|
||||
|
||||
return grouped_operation, not_fit_count
|
||||
|
@ -203,6 +203,9 @@ class BuildVolume(SceneNode):
|
||||
if shape:
|
||||
self._shape = shape
|
||||
|
||||
def getShape(self) -> str:
|
||||
return self._shape
|
||||
|
||||
def getDiagonalSize(self) -> float:
|
||||
"""Get the length of the 3D diagonal through the build volume.
|
||||
|
||||
|
@ -22,7 +22,10 @@ from cura.Operations.SetParentOperation import SetParentOperation
|
||||
from cura.MultiplyObjectsJob import MultiplyObjectsJob
|
||||
from cura.Settings.SetObjectExtruderOperation import SetObjectExtruderOperation
|
||||
from cura.Settings.ExtruderManager import ExtruderManager
|
||||
from cura.Arranging.Nest2DArrange import createGroupOperationForArrange
|
||||
|
||||
from cura.Arranging.GridArrange import GridArrange
|
||||
from cura.Arranging.Nest2DArrange import Nest2DArrange
|
||||
|
||||
|
||||
from cura.Operations.SetBuildPlateNumberOperation import SetBuildPlateNumberOperation
|
||||
|
||||
@ -82,16 +85,25 @@ class CuraActions(QObject):
|
||||
center_operation = TranslateOperation(current_node, Vector(0, center_y, 0), set_position = True)
|
||||
operation.addOperation(center_operation)
|
||||
operation.push()
|
||||
|
||||
@pyqtSlot(int)
|
||||
def multiplySelection(self, count: int) -> None:
|
||||
"""Multiply all objects in the selection
|
||||
:param count: The number of times to multiply the selection.
|
||||
"""
|
||||
min_offset = cura.CuraApplication.CuraApplication.getInstance().getBuildVolume().getEdgeDisallowedSize() + 2 # Allow for some rounding errors
|
||||
job = MultiplyObjectsJob(Selection.getAllSelectedObjects(), count, min_offset = max(min_offset, 8))
|
||||
job.start()
|
||||
|
||||
@pyqtSlot(int)
|
||||
def multiplySelectionToGrid(self, count: int) -> None:
|
||||
"""Multiply all objects in the selection
|
||||
|
||||
:param count: The number of times to multiply the selection.
|
||||
"""
|
||||
|
||||
min_offset = cura.CuraApplication.CuraApplication.getInstance().getBuildVolume().getEdgeDisallowedSize() + 2 # Allow for some rounding errors
|
||||
job = MultiplyObjectsJob(Selection.getAllSelectedObjects(), count, min_offset = max(min_offset, 8))
|
||||
job = MultiplyObjectsJob(Selection.getAllSelectedObjects(), count, min_offset=max(min_offset, 8),
|
||||
grid_arrange=True)
|
||||
job.start()
|
||||
|
||||
@pyqtSlot()
|
||||
@ -229,9 +241,9 @@ class CuraActions(QObject):
|
||||
if node.callDecoration("isSliceable"):
|
||||
fixed_nodes.append(node)
|
||||
# Add the new nodes to the scene, and arrange them
|
||||
group_operation, not_fit_count = createGroupOperationForArrange(nodes, application.getBuildVolume(),
|
||||
fixed_nodes, factor=10000,
|
||||
add_new_nodes_in_scene=True)
|
||||
|
||||
arranger = GridArrange(nodes, application.getBuildVolume(), fixed_nodes)
|
||||
group_operation, not_fit_count = arranger.createGroupOperationForArrange(add_new_nodes_in_scene = True)
|
||||
group_operation.push()
|
||||
|
||||
# deselect currently selected nodes, and select the new nodes
|
||||
|
@ -54,7 +54,6 @@ from cura import ApplicationMetadata
|
||||
from cura.API import CuraAPI
|
||||
from cura.API.Account import Account
|
||||
from cura.Arranging.ArrangeObjectsJob import ArrangeObjectsJob
|
||||
from cura.Arranging.Nest2DArrange import arrange
|
||||
from cura.Machines.MachineErrorChecker import MachineErrorChecker
|
||||
from cura.Machines.Models.BuildPlateModel import BuildPlateModel
|
||||
from cura.Machines.Models.CustomQualityProfilesDropDownMenuModel import CustomQualityProfilesDropDownMenuModel
|
||||
@ -115,6 +114,7 @@ from . import CameraAnimation
|
||||
from . import CuraActions
|
||||
from . import PlatformPhysics
|
||||
from . import PrintJobPreviewImageProvider
|
||||
from .Arranging.Nest2DArrange import Nest2DArrange
|
||||
from .AutoSave import AutoSave
|
||||
from .Machines.Models.CompatibleMachineModel import CompatibleMachineModel
|
||||
from .Machines.Models.MachineListModel import MachineListModel
|
||||
@ -1447,6 +1447,13 @@ class CuraApplication(QtApplication):
|
||||
# Single build plate
|
||||
@pyqtSlot()
|
||||
def arrangeAll(self) -> None:
|
||||
self._arrangeAll(grid_arrangement = False)
|
||||
|
||||
@pyqtSlot()
|
||||
def arrangeAllInGrid(self) -> None:
|
||||
self._arrangeAll(grid_arrangement = True)
|
||||
|
||||
def _arrangeAll(self, *, grid_arrangement: bool) -> None:
|
||||
nodes_to_arrange = []
|
||||
active_build_plate = self.getMultiBuildPlateModel().activeBuildPlate
|
||||
locked_nodes = []
|
||||
@ -1476,17 +1483,17 @@ class CuraApplication(QtApplication):
|
||||
locked_nodes.append(node)
|
||||
else:
|
||||
nodes_to_arrange.append(node)
|
||||
self.arrange(nodes_to_arrange, locked_nodes)
|
||||
self.arrange(nodes_to_arrange, locked_nodes, grid_arrangement = grid_arrangement)
|
||||
|
||||
def arrange(self, nodes: List[SceneNode], fixed_nodes: List[SceneNode]) -> None:
|
||||
def arrange(self, nodes: List[SceneNode], fixed_nodes: List[SceneNode], *, grid_arrangement: bool = False) -> None:
|
||||
"""Arrange a set of nodes given a set of fixed nodes
|
||||
|
||||
:param nodes: nodes that we have to place
|
||||
:param fixed_nodes: nodes that are placed in the arranger before finding spots for nodes
|
||||
:param grid_arrangement: If set to true if objects are to be placed in a grid
|
||||
"""
|
||||
|
||||
min_offset = self.getBuildVolume().getEdgeDisallowedSize() + 2 # Allow for some rounding errors
|
||||
job = ArrangeObjectsJob(nodes, fixed_nodes, min_offset = max(min_offset, 8))
|
||||
job = ArrangeObjectsJob(nodes, fixed_nodes, min_offset = max(min_offset, 8), grid_arrange = grid_arrangement)
|
||||
job.start()
|
||||
|
||||
@pyqtSlot()
|
||||
@ -1980,7 +1987,8 @@ class CuraApplication(QtApplication):
|
||||
if select_models_on_load:
|
||||
Selection.add(node)
|
||||
try:
|
||||
arrange(nodes_to_arrange, self.getBuildVolume(), fixed_nodes)
|
||||
arranger = Nest2DArrange(nodes_to_arrange, self.getBuildVolume(), fixed_nodes)
|
||||
arranger.arrange()
|
||||
except:
|
||||
Logger.logException("e", "Failed to arrange the models")
|
||||
|
||||
|
@ -14,17 +14,19 @@ from UM.Operations.TranslateOperation import TranslateOperation
|
||||
from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
|
||||
from UM.Scene.SceneNode import SceneNode
|
||||
from UM.i18n import i18nCatalog
|
||||
from cura.Arranging.Nest2DArrange import arrange, createGroupOperationForArrange
|
||||
from cura.Arranging.GridArrange import GridArrange
|
||||
from cura.Arranging.Nest2DArrange import Nest2DArrange
|
||||
|
||||
i18n_catalog = i18nCatalog("cura")
|
||||
|
||||
|
||||
class MultiplyObjectsJob(Job):
|
||||
def __init__(self, objects, count, min_offset = 8):
|
||||
def __init__(self, objects, count: int, min_offset: int = 8 ,* , grid_arrange: bool = False):
|
||||
super().__init__()
|
||||
self._objects = objects
|
||||
self._count = count
|
||||
self._min_offset = min_offset
|
||||
self._count: int = count
|
||||
self._min_offset: int = min_offset
|
||||
self._grid_arrange: bool = grid_arrange
|
||||
|
||||
def run(self) -> None:
|
||||
status_message = Message(i18n_catalog.i18nc("@info:status", "Multiplying and placing objects"), lifetime = 0,
|
||||
@ -39,7 +41,7 @@ class MultiplyObjectsJob(Job):
|
||||
|
||||
root = scene.getRoot()
|
||||
|
||||
processed_nodes = [] # type: List[SceneNode]
|
||||
processed_nodes: List[SceneNode] = []
|
||||
nodes = []
|
||||
|
||||
fixed_nodes = []
|
||||
@ -76,12 +78,12 @@ class MultiplyObjectsJob(Job):
|
||||
found_solution_for_all = True
|
||||
group_operation = GroupedOperation()
|
||||
if nodes:
|
||||
group_operation, not_fit_count = createGroupOperationForArrange(nodes,
|
||||
Application.getInstance().getBuildVolume(),
|
||||
fixed_nodes,
|
||||
factor = 10000,
|
||||
add_new_nodes_in_scene = True)
|
||||
found_solution_for_all = not_fit_count == 0
|
||||
if self._grid_arrange:
|
||||
arranger = GridArrange(nodes, Application.getInstance().getBuildVolume(), fixed_nodes)
|
||||
else:
|
||||
arranger = Nest2DArrange(nodes, Application.getInstance().getBuildVolume(), fixed_nodes, factor=1000)
|
||||
|
||||
group_operation, not_fit_count = arranger.createGroupOperationForArrange(add_new_nodes_in_scene=True)
|
||||
|
||||
if nodes_to_add_without_arrange:
|
||||
for nested_node in nodes_to_add_without_arrange:
|
||||
|
@ -41,7 +41,7 @@ Item
|
||||
property alias deleteAll: deleteAllAction
|
||||
property alias reloadAll: reloadAllAction
|
||||
property alias arrangeAll: arrangeAllAction
|
||||
property alias arrangeSelection: arrangeSelectionAction
|
||||
property alias arrangeAllGrid: arrangeAllGridAction
|
||||
property alias resetAllTranslation: resetAllTranslationAction
|
||||
property alias resetAll: resetAllAction
|
||||
|
||||
@ -462,9 +462,10 @@ Item
|
||||
|
||||
Action
|
||||
{
|
||||
id: arrangeSelectionAction
|
||||
text: catalog.i18nc("@action:inmenu menubar:edit","Arrange Selection")
|
||||
onTriggered: Printer.arrangeSelection()
|
||||
id: arrangeAllGridAction
|
||||
text: catalog.i18nc("@action:inmenu menubar:edit","Arrange All Models in a grid")
|
||||
onTriggered: Printer.arrangeAllInGrid()
|
||||
shortcut: "Shift+Ctrl+R"
|
||||
}
|
||||
|
||||
Action
|
||||
|
@ -66,6 +66,7 @@ Cura.Menu
|
||||
Cura.MenuSeparator {}
|
||||
Cura.MenuItem { action: Cura.Actions.selectAll }
|
||||
Cura.MenuItem { action: Cura.Actions.arrangeAll }
|
||||
Cura.MenuItem { action: Cura.Actions.arrangeAllGrid }
|
||||
Cura.MenuItem { action: Cura.Actions.deleteAll }
|
||||
Cura.MenuItem { action: Cura.Actions.reloadAll }
|
||||
Cura.MenuItem { action: Cura.Actions.resetAllTranslation }
|
||||
@ -108,9 +109,7 @@ Cura.Menu
|
||||
height: UM.Theme.getSize("small_popup_dialog").height
|
||||
minimumWidth: UM.Theme.getSize("small_popup_dialog").width
|
||||
minimumHeight: UM.Theme.getSize("small_popup_dialog").height
|
||||
|
||||
onAccepted: CuraActions.multiplySelection(copiesField.value)
|
||||
|
||||
onAccepted: gridPlacementSelected.checked? CuraActions.multiplySelectionToGrid(copiesField.value) : CuraActions.multiplySelection(copiesField.value)
|
||||
buttonSpacing: UM.Theme.getSize("thin_margin").width
|
||||
|
||||
rightButtons:
|
||||
@ -127,28 +126,49 @@ Cura.Menu
|
||||
}
|
||||
]
|
||||
|
||||
Row
|
||||
Column
|
||||
{
|
||||
spacing: UM.Theme.getSize("default_margin").width
|
||||
spacing: UM.Theme.getSize("default_margin").height
|
||||
|
||||
UM.Label
|
||||
Row
|
||||
{
|
||||
text: catalog.i18nc("@label", "Number of Copies")
|
||||
anchors.verticalCenter: copiesField.verticalCenter
|
||||
width: contentWidth
|
||||
wrapMode: Text.NoWrap
|
||||
spacing: UM.Theme.getSize("default_margin").width
|
||||
|
||||
UM.Label
|
||||
{
|
||||
text: catalog.i18nc("@label", "Number of Copies")
|
||||
anchors.verticalCenter: copiesField.verticalCenter
|
||||
width: contentWidth
|
||||
wrapMode: Text.NoWrap
|
||||
}
|
||||
|
||||
Cura.SpinBox
|
||||
{
|
||||
id: copiesField
|
||||
editable: true
|
||||
focus: true
|
||||
from: 1
|
||||
to: 99
|
||||
width: 2 * UM.Theme.getSize("button").width
|
||||
value: 1
|
||||
}
|
||||
}
|
||||
|
||||
Cura.SpinBox
|
||||
UM.CheckBox
|
||||
{
|
||||
id: copiesField
|
||||
editable: true
|
||||
focus: true
|
||||
from: 1
|
||||
to: 99
|
||||
width: 2 * UM.Theme.getSize("button").width
|
||||
value: 1
|
||||
id: gridPlacementSelected
|
||||
text: catalog.i18nc("@label", "Grid Placement")
|
||||
|
||||
UM.ToolTip
|
||||
{
|
||||
visible: parent.hovered
|
||||
targetPoint: Qt.point(parent.x + Math.round(parent.width / 2), parent.y)
|
||||
x: 0
|
||||
y: parent.y + parent.height + UM.Theme.getSize("default_margin").height
|
||||
tooltipText: catalog.i18nc("@info", "Multiply selected item and place them in a grid of build plate.")
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user