CURA-5370 The minimum offset between objects in the Arranger is now determined by the brim/skirt/... setting

This commit is contained in:
Jack Ha 2018-05-23 12:54:18 +02:00
parent f5bed242ed
commit a3ac20172b
4 changed files with 53 additions and 17 deletions

View File

@ -460,7 +460,7 @@ class BuildVolume(SceneNode):
minimum = Vector(min_w, min_h - 1.0, min_d),
maximum = Vector(max_w, max_h - self._raft_thickness - self._extra_z_clearance, max_d))
bed_adhesion_size = self._getEdgeDisallowedSize()
bed_adhesion_size = self.getEdgeDisallowedSize()
# As this works better for UM machines, we only add the disallowed_area_size for the z direction.
# This is probably wrong in all other cases. TODO!
@ -652,7 +652,7 @@ class BuildVolume(SceneNode):
extruder_manager = ExtruderManager.getInstance()
used_extruders = extruder_manager.getUsedExtruderStacks()
disallowed_border_size = self._getEdgeDisallowedSize()
disallowed_border_size = self.getEdgeDisallowedSize()
if not used_extruders:
# If no extruder is used, assume that the active extruder is used (else nothing is drawn)
@ -962,12 +962,12 @@ class BuildVolume(SceneNode):
all_values[i] = 0
return all_values
## Convenience function to calculate the disallowed radius around the edge.
## Calculate the disallowed radius around the edge.
#
# This disallowed radius is to allow for space around the models that is
# not part of the collision radius, such as bed adhesion (skirt/brim/raft)
# and travel avoid distance.
def _getEdgeDisallowedSize(self):
def getEdgeDisallowedSize(self):
if not self._global_container_stack or not self._global_container_stack.extruders:
return 0

View File

@ -73,7 +73,8 @@ class CuraActions(QObject):
# \param count The number of times to multiply the selection.
@pyqtSlot(int)
def multiplySelection(self, count: int) -> None:
job = MultiplyObjectsJob(Selection.getAllSelectedObjects(), count, min_offset = 8)
min_offset = Application.getInstance().getBuildVolume().getEdgeDisallowedSize() + 2 # Allow for some rounding errors
job = MultiplyObjectsJob(Selection.getAllSelectedObjects(), count, min_offset = max(min_offset, 8))
job.start()
## Delete all selected objects.

View File

@ -1264,7 +1264,8 @@ class CuraApplication(QtApplication):
# \param nodes nodes that we have to place
# \param fixed_nodes nodes that are placed in the arranger before finding spots for nodes
def arrange(self, nodes, fixed_nodes):
job = ArrangeObjectsJob(nodes, fixed_nodes)
min_offset = self.getBuildVolume().getEdgeDisallowedSize() + 2 # Allow for some rounding errors
job = ArrangeObjectsJob(nodes, fixed_nodes, min_offset = max(min_offset, 8))
job.start()
## Reload all mesh data on the screen from file.
@ -1613,7 +1614,6 @@ class CuraApplication(QtApplication):
if(original_node.getScale() != Vector(1.0, 1.0, 1.0)):
node.scale(original_node.getScale())
node.setSelectable(True)
node.setName(os.path.basename(filename))
self.getBuildVolume().checkBoundsAndUpdate(node)

View File

@ -4,16 +4,26 @@ from cura.Arranging.Arrange import Arrange
from cura.Arranging.ShapeArray import ShapeArray
## Triangle of area 12
def gimmeTriangle():
return numpy.array([[-3, 1], [3, 1], [0, -3]], dtype=numpy.int32)
## Boring square
def gimmeSquare():
return numpy.array([[-2, -2], [2, -2], [2, 2], [-2, 2]], dtype=numpy.int32)
## Triangle of area 12
def gimmeShapeArray(scale = 1.0):
vertices = numpy.array([[-3, 1], [3, 1], [0, -3]], dtype=numpy.int32)
vertices = gimmeTriangle()
shape_arr = ShapeArray.fromPolygon(vertices, scale = scale)
return shape_arr
## Boring square
def gimmeShapeArraySquare(scale = 1.0):
vertices = numpy.array([[-2, -2], [2, -2], [2, 2], [-2, 2]], dtype=numpy.int32)
vertices = gimmeSquare()
shape_arr = ShapeArray.fromPolygon(vertices, scale = scale)
return shape_arr
@ -69,7 +79,7 @@ def test_ShapeArray_scaling2():
## Test centerFirst
def test_centerFirst():
ar = Arrange(300, 300, 150, 150)
ar = Arrange(300, 300, 150, 150, scale = 1)
ar.centerFirst()
assert ar._priority[150][150] < ar._priority[170][150]
assert ar._priority[150][150] < ar._priority[150][170]
@ -81,7 +91,7 @@ def test_centerFirst():
## Test centerFirst
def test_centerFirst_rectangular():
ar = Arrange(400, 300, 200, 150)
ar = Arrange(400, 300, 200, 150, scale = 1)
ar.centerFirst()
assert ar._priority[150][200] < ar._priority[150][220]
assert ar._priority[150][200] < ar._priority[170][200]
@ -93,7 +103,7 @@ def test_centerFirst_rectangular():
## Test centerFirst
def test_centerFirst_rectangular():
ar = Arrange(10, 20, 5, 10)
ar = Arrange(10, 20, 5, 10, scale = 1)
ar.centerFirst()
print(ar._priority)
assert ar._priority[10][5] < ar._priority[10][7]
@ -101,7 +111,7 @@ def test_centerFirst_rectangular():
## Test backFirst
def test_backFirst():
ar = Arrange(300, 300, 150, 150)
ar = Arrange(300, 300, 150, 150, scale = 1)
ar.backFirst()
assert ar._priority[150][150] < ar._priority[170][150]
assert ar._priority[150][150] < ar._priority[170][170]
@ -111,7 +121,7 @@ def test_backFirst():
## See if the result of bestSpot has the correct form
def test_smoke_bestSpot():
ar = Arrange(30, 30, 15, 15)
ar = Arrange(30, 30, 15, 15, scale = 1)
ar.centerFirst()
shape_arr = gimmeShapeArray()
@ -124,7 +134,7 @@ def test_smoke_bestSpot():
## Real life test
def test_bestSpot():
ar = Arrange(16, 16, 8, 8)
ar = Arrange(16, 16, 8, 8, scale = 1)
ar.centerFirst()
shape_arr = gimmeShapeArray()
@ -144,7 +154,7 @@ def test_bestSpot():
## Real life test rectangular build plate
def test_bestSpot_rectangular_build_plate():
ar = Arrange(16, 40, 8, 20)
ar = Arrange(16, 40, 8, 20, scale = 1)
ar.centerFirst()
shape_arr = gimmeShapeArray()
@ -283,7 +293,7 @@ def test_checkShape_place():
## Test the whole sequence
def test_smoke_place_objects():
ar = Arrange(20, 20, 10, 10)
ar = Arrange(20, 20, 10, 10, scale = 1)
ar.centerFirst()
shape_arr = gimmeShapeArray()
@ -342,3 +352,28 @@ def test_check2():
assert check_array[3][4]
## Just adding some stuff to ensure fromNode works as expected. Some parts should actually be in UM
def test_parts_of_fromNode():
from UM.Math.Polygon import Polygon
p = Polygon(numpy.array([[-2, -2], [2, -2], [2, 2], [-2, 2]], dtype=numpy.int32))
offset = 1
print(p._points)
p_offset = p.getMinkowskiHull(Polygon.approximatedCircle(offset))
print("--------------")
print(p_offset._points)
assert len(numpy.where(p_offset._points[:, 0] >= 2.9)) > 0
assert len(numpy.where(p_offset._points[:, 0] <= -2.9)) > 0
assert len(numpy.where(p_offset._points[:, 1] >= 2.9)) > 0
assert len(numpy.where(p_offset._points[:, 1] <= -2.9)) > 0
def test_parts_of_fromNode2():
from UM.Math.Polygon import Polygon
p = Polygon(numpy.array([[-2, -2], [2, -2], [2, 2], [-2, 2]], dtype=numpy.int32) * 2) # 4x4
offset = 13.3
scale = 0.5
p_offset = p.getMinkowskiHull(Polygon.approximatedCircle(offset))
shape_arr1 = ShapeArray.fromPolygon(p._points, scale = scale)
shape_arr2 = ShapeArray.fromPolygon(p_offset._points, scale = scale)
assert shape_arr1.arr.shape[0] >= (4 * scale) - 1 # -1 is to account for rounding errors
assert shape_arr2.arr.shape[0] >= (2 * offset + 4) * scale - 1