mirror of
https://git.mirrors.martin98.com/https://github.com/Ultimaker/Cura
synced 2025-07-05 23:35:13 +08:00
Updated comments
CURA-7951
This commit is contained in:
parent
1e7c975929
commit
ac78de1227
@ -118,11 +118,40 @@ class GridArrange(Arranger):
|
||||
|
||||
return
|
||||
|
||||
# If there are multiple fixed nodes, an optimal solution is not always possible
|
||||
# We will try to find an offset that minimizes the number of grid intersections
|
||||
# with fixed nodes. The algorithm below achieves this by utilizing a scanline
|
||||
# algorithm. In this algorithm each axis is solved separately as offsetting
|
||||
# is completely independent in each axis. The comments explaining the algorithm
|
||||
# below are for the x-axis, but the same applies for the y-axis.
|
||||
#
|
||||
# Each node either occupies ceil((node.right - node.right) / grid_width) or
|
||||
# ceil((node.right - node.right) / grid_width) + 1 grid squares. We will call
|
||||
# these the node's "footprint".
|
||||
#
|
||||
# ┌────────────────┐
|
||||
# minimum food print │ NODE │
|
||||
# └────────────────┘
|
||||
# │ grid 1 │ grid 2 │ grid 3 │ grid 4 | grid 5 |
|
||||
# ┌────────────────┐
|
||||
# maximum food print │ NODE │
|
||||
# └────────────────┘
|
||||
#
|
||||
# The algorithm will find the grid offset such that the number of nodes with
|
||||
# a _minimal_ footprint is _maximized_.
|
||||
|
||||
# The scanline algorithm works as follows, we create events for both end points
|
||||
# of each node's footprint. The event have two properties,
|
||||
# - the coordinate: the amount the endpoint can move to the
|
||||
# left before it crosses a grid line
|
||||
# - the change: either +1 or -1, indicating whether crossing the grid line
|
||||
# would result in a minimal footprint node becoming a maximal footprint
|
||||
class Event:
|
||||
def __init__(self, coord: float, change: float):
|
||||
self.coord = coord
|
||||
self.change = change
|
||||
|
||||
# create events for both the horizontal and vertical axis
|
||||
events_horizontal: List[Event] = []
|
||||
events_vertical: List[Event] = []
|
||||
|
||||
@ -152,33 +181,39 @@ class GridArrange(Arranger):
|
||||
events_horizontal.sort(key=lambda event: event.coord)
|
||||
events_vertical.sort(key=lambda event: event.coord)
|
||||
|
||||
def findOptimalOffsetAxis(events: List[Event], interval: float) -> float:
|
||||
prev_coord = events[-1].coord - interval
|
||||
def findOptimalShiftAxis(events: List[Event], interval: float) -> float:
|
||||
# executing the actual scanline algorithm
|
||||
# iteratively go through events (left to right) and keep track of the
|
||||
# current footprint. The optimal location is the one with the minimal
|
||||
# footprint. If there are multiple locations with the same minimal
|
||||
# footprint, the optimal location is the one with the largest range
|
||||
# between the left and right endpoint of the footprint.
|
||||
prev_offset = events[-1].coord - interval
|
||||
current_minimal_footprint_count = 0
|
||||
|
||||
current_offset = 0
|
||||
|
||||
best_offset = float('inf')
|
||||
best_coord_length = float('-inf')
|
||||
best_coord = 0.0
|
||||
best_minimal_footprint_count = float('inf')
|
||||
best_offset_span = float('-inf')
|
||||
best_offset = 0.0
|
||||
|
||||
for event in events:
|
||||
coord_length = event.coord - prev_coord
|
||||
offset_span = event.coord - prev_offset
|
||||
|
||||
if current_offset < best_offset or (current_offset == best_offset and coord_length > best_coord_length):
|
||||
best_offset = current_offset
|
||||
best_coord_length = coord_length
|
||||
best_coord = event.coord
|
||||
if current_minimal_footprint_count < best_minimal_footprint_count or (
|
||||
current_minimal_footprint_count == best_minimal_footprint_count and offset_span > best_offset_span):
|
||||
best_minimal_footprint_count = current_minimal_footprint_count
|
||||
best_offset_span = offset_span
|
||||
best_offset = event.coord
|
||||
|
||||
current_offset += event.change
|
||||
prev_coord = event.coord
|
||||
current_minimal_footprint_count += event.change
|
||||
prev_offset = event.coord
|
||||
|
||||
return best_coord - best_coord_length * 0.5
|
||||
return best_offset - best_offset_span * 0.5
|
||||
|
||||
center_grid_x = 0.5 * self._grid_width
|
||||
center_grid_y = 0.5 * self._grid_height
|
||||
|
||||
optimal_center_x = self._grid_width - findOptimalOffsetAxis(events_horizontal, self._grid_width)
|
||||
optimal_center_y = self._grid_height - findOptimalOffsetAxis(events_vertical, self._grid_height)
|
||||
optimal_center_x = self._grid_width - findOptimalShiftAxis(events_horizontal, self._grid_width)
|
||||
optimal_center_y = self._grid_height - findOptimalShiftAxis(events_vertical, self._grid_height)
|
||||
|
||||
self._offset_x = optimal_center_x - center_grid_x
|
||||
self._offset_y = optimal_center_y - center_grid_y
|
||||
|
Loading…
x
Reference in New Issue
Block a user