diff --git a/plugins/X3DReader/X3DReader.py b/plugins/X3DReader/X3DReader.py new file mode 100644 index 0000000000..3b5af06d6e --- /dev/null +++ b/plugins/X3DReader/X3DReader.py @@ -0,0 +1,792 @@ +# Seva Alekseyev with National Institutes of Health, 2016 + +from UM.Mesh.MeshReader import MeshReader +from UM.Mesh.MeshBuilder import MeshBuilder +from UM.Logger import Logger +from UM.Math.Matrix import Matrix +from UM.Math.Vector import Vector +from UM.Scene.SceneNode import SceneNode +from UM.Scene.GroupDecorator import GroupDecorator +from UM.Job import Job +from math import pi, sin, cos, sqrt +import numpy + +EPSILON = 0.000001 # So very crude. :( + +try: + import xml.etree.cElementTree as ET +except ImportError: + import xml.etree.ElementTree as ET + + +DEFAULT_SUBDIV = 16 # Default subdivision factor for spheres, cones, and cylinders + +class X3DReader(MeshReader): + def __init__(self): + super().__init__() + self._supported_extensions = [".x3d"] + self._namespaces = {} + self.defs = {} + + def read(self, file_name): + try: + self.sceneNodes = [] + self.fileName = file_name + self.transform = Matrix() + self.transform.setByScaleVector(Vector(1000, 1000, 1000)) + + tree = ET.parse(file_name) + self.processNode(tree.getroot()) + + if len(self.sceneNodes) > 1: + theScene = SceneNode() + group_decorator = GroupDecorator() + theScene.addDecorator(group_decorator) + for node in self.sceneNodes: + theScene.addChild(node) + elif len(self.sceneNodes) == 1: + theScene = self.sceneNodes[0] + else: # No shapes read :( + return None + theScene.setName(file_name) + except Exception as e: + Logger.log("e", "exception occured in x3d reader: %s", e) + + try: + boundingBox = theScene.getBoundingBox() + boundingBox.isValid() + except: + return None + + return theScene + + # ------------------------- XML tree traversal + + def processNode(self, xmlNode): + xmlNode = self.resolveDefUse(xmlNode) + if xmlNode is None: + return + + tag = xmlNode.tag + if tag in ("X3D", "Scene", "Group", "StaticGroup", "CADAssembly", "CADFace", "CADLayer", "CADPart", "Collision"): + self.processChildNodes(xmlNode) + elif tag == "LOD": + self.processNode(xmlNode[0]) + elif tag == "Transform": + self.processTransform(xmlNode) + elif tag == "Shape": + self.processShape(xmlNode) + + + def processShape(self, xmlNode): + # Find the geometry and the appearance inside the Shape + geometry = appearance = None + for subNode in xmlNode: + if subNode.tag == "Appearance" and not appearance: + appearance = self.resolveDefUse(subNode) + elif subNode.tag in self.geometryImporters and not geometry: + geometry = self.resolveDefUse(subNode) + + # TODO: appearance is completely ignored. At least apply the material color... + if not geometry is None: + try: + bui = MeshBuilder() + self.geometryImporters[geometry.tag](self, geometry, bui) + + bui.calculateNormals() + bui.setFileName(self.fileName) + + sceneNode = SceneNode() + if "DEF" in geometry.attrib: + sceneNode.setName(geometry.tag + "#" + geometry.attrib["DEF"]) + else: + sceneNode.setName(geometry.tag) + + sceneNode.setMeshData(bui.build().getTransformed(self.transform)) + sceneNode.setSelectable(True) + self.sceneNodes.append(sceneNode) + + except Exception as e: + Logger.log("e", "exception occured in x3d reader while reading %s: %s", geometry.tag, e) + + # Returns the referenced node if the node has USE, the same node otherwise. + # May return None is USE points at a nonexistent node + # In X3DOM, when both DEF and USE are in the same node, DEF is ignored. + # Big caveat: XML node objects may evaluate to boolean False!!! + def resolveDefUse(self, node): + USE = node.attrib.get("USE") + if USE: + return self.defs.get(USE, None) + + DEF = node.attrib.get("DEF") + if DEF: + self.defs[DEF] = node + return node + + def processChildNodes(self, node): + for c in node: + self.processNode(c) + Job.yieldThread() + + # Since this is a grouping node, will recurse down the tree. + # According to the spec, the final transform matrix is: + # T * C * R * SR * S * -SR * -C + # Where SR corresponds to the rotation matrix to scaleOrientation + # C and SR are rather exotic. S, slightly less so. + def processTransform(self, node): + rot = readRotation(node, "rotation", (0, 0, 1, 0)) # (angle, axisVactor) tuple + trans = readVector(node, "translation", (0, 0, 0)) # Vector + scale = readVector(node, "scale", (1, 1, 1)) # Vector + center = readVector(node, "center", (0, 0, 0)) # Vector + scaleOrient = readRotation(node, "scaleOrientation", (0, 0, 1, 0)) # (angle, axisVactor) tuple + + # Store the previous transform; in Cura, the default matrix multiplication is in place + prev = Matrix(self.transform.getData()) # It's deep copy, I've checked + + # The rest of transform manipulation will be applied in place + gotCenter = (center.x != 0 or center.y != 0 or center.z != 0) + + T = self.transform + if trans.x != 0 or trans.y != 0 or trans.z !=0: + T.translate(trans) + if gotCenter: + T.translate(center) + if rot[0] != 0: + T.rotateByAxis(*rot) + if scale.x != 1 or scale.y != 1 or scale.z != 1: + gotScaleOrient = scaleOrient[0] != 0 + if gotScaleOrient: + T.rotateByAxis(*scaleOrient) + # No scale by vector in place operation in UM + S = Matrix() + S.setByScaleVector(scale) + T.multiply(S) + if gotScaleOrient: + T.rotateByAxis(-scaleOrient[0], scaleOrient[1]) + if gotCenter: + T.translate(-center) + + self.processChildNodes(node) + self.transform = prev + + # ------------------------- Geometry importers + # They are supposed to fill the MeshBuilder object with vertices and faces, the caller will do the rest + + # Primitives + + def geomBox(self, node, bui): + size = readFloatArray(node, "size", [2, 2, 2]) + bui.addCube(size[0], size[1], size[2]) + + # The sphere is subdivided into nr rings and ns segments + def geomSphere(self, node, bui): + r = readFloat(node, "radius", 0.5) + subdiv = readIntArray(node, 'subdivision', None) + if subdiv: + if len(subdiv) == 1: + nr = ns = subdiv[0] + else: + (nr, ns) = subdiv + else: + nr = ns = DEFAULT_SUBDIV + + + lau = pi / nr # Unit angle of latitude (rings) for the given tesselation + lou = 2 * pi / ns # Unit angle of longitude (segments) + + bui.reserveFaceAndVertexCount(ns*(nr*2 - 2), 2 + (nr + 1)*ns) + + + # +y and -y poles + bui.addVertex(0, r, 0) + bui.addVertex(0, -r, 0) + + # The non-polar vertices go from x=0, negative z plane counterclockwise - + # to -x, to +z, to +x, back to -z + for ring in range(1, nr): + for seg in range(ns): + bui.addVertex(-r*sin(lou * seg) * sin(lau * ring), + r*cos(lau * ring), + -r*cos(lou * seg) * sin(lau * ring)) + + vb = 2 + (nr - 2) * ns # First vertex index for the bottom cap + + # Faces go in order: top cap, sides, bottom cap. + # Sides go by ring then by segment. + + # Caps + # Top cap face vertices go in order: down right up + # (starting from +y pole) + # Bottom cap goes: up left down (starting from -y pole) + for seg in range(ns): + addTri(bui, 0, seg + 2, (seg + 1) % ns + 2) + addTri(bui, 1, vb + (seg + 1) % ns, vb + seg) + + # Sides + # Side face vertices go in order: down right upleft, downright up left + for ring in range(nr - 2): + tvb = 2 + ring * ns + # First vertex index for the top edge of the ring + bvb = tvb + ns + # First vertex index for the bottom edge of the ring + for seg in range(ns): + nseg = (seg + 1) % ns + addQuad(bui, tvb + seg, bvb + seg, bvb + nseg, tvb + nseg) + + def geomCone(self, node, bui): + r = readFloat(node, "bottomRadius", 1) + height = readFloat(node, "height", 2) + bottom = readBoolean(node, "bottom", True) + side = readBoolean(node, "side", True) + n = readInt(node, 'subdivision', DEFAULT_SUBDIV) + + d = height / 2 + angle = 2 * pi / n + + bui.reserveFaceAndVertexCount((n if side else 0) + (n-1 if bottom else 0), n+1) + + bui.addVertex(0, d, 0) + for i in range(n): + bui.addVertex(-r * sin(angle * i), -d, -r * cos(angle * i)) + + # Side face vertices go: up down right + if side: + for i in range(n): + addTri(bui, 1 + (i + 1) % n, 0, 1 + i) + if bottom: + for i in range(2, n): + addTri(bui, 1, i, i+1) + + def geomCylinder(self, node, bui): + r = readFloat(node, "radius", 1) + height = readFloat(node, "height", 2) + bottom = readBoolean(node, "bottom", True) + side = readBoolean(node, "side", True) + top = readBoolean(node, "top", True) + n = readInt(node, "subdivision", DEFAULT_SUBDIV) + + nn = n * 2 + angle = 2 * pi / n + hh = height/2 + + bui.reserveFaceAndVertexCount((nn if side else 0) + (n - 2 if top else 0) + (n - 2 if bottom else 0), nn) + + # The seam is at x=0, z=-r, vertices go ccw - + # to pos x, to neg z, to neg x, back to neg z + for i in range(n): + rs = -r * sin(angle * i) + rc = -r * cos(angle * i) + bui.addVertex(rs, hh, rc) + bui.addVertex(rs, -hh, rc) + + if side: + for i in range(n): + ni = (i + 1) % n + addQuad(bui, ni * 2 + 1, ni * 2, i * 2, i * 2 + 1) + + for i in range(2, nn-3, 2): + if top: + addTri(bui, 0, i, i+2) + if bottom: + addTri(bui, 1, i+1, i+3) + +# Semi-primitives + + def geomElevationGrid(self, node, bui): + dx = readFloat(node, "xSpacing", 1) + dz = readFloat(node, "zSpacing", 1) + nx = readInt(node, "xDimension", 0) + nz = readInt(node, "zDimension", 0) + height = readFloatArray(node, "height", False) + ccw = readBoolean(node, "ccw", True) + + if nx <= 0 or nz <= 0 or len(height) < nx*nz: + return # That's weird, the wording of the standard suggests grids with zero quads are somehow valid + + bui.reserveFaceAndVertexCount(2*(nx-1)*(nz-1), nx*nz) + + for z in range(nz): + for x in range(nx): + bui.addVertex(x * dx, height[z*nx + x], z * dz) + + for z in range(1, nz): + for x in range(1, nx): + addTriFlip(bui, (z - 1)*nx + x - 1, z*nx + x, (z - 1)*nx + x, ccw) + addTriFlip(bui, (z - 1)*nx + x - 1, z*nx + x - 1, z*nx + x, ccw) + + def geomExtrusion(self, node, bui): + ccw = readBoolean(node, "ccw", True) + beginCap = readBoolean(node, "beginCap", True) + endCap = readBoolean(node, "endCap", True) + cross = readFloatArray(node, "crossSection", (1, 1, 1, -1, -1, -1, -1, 1, 1, 1)) + cross = [(cross[i], cross[i+1]) for i in range(0, len(cross), 2)] + spine = readFloatArray(node, "spine", (0, 0, 0, 0, 1, 0)) + spine = [(spine[i], spine[i+1], spine[i+2]) for i in range(0, len(spine), 3)] + orient = readFloatArray(node, 'orientation', None) + if orient: + orient = [toNumpyRotation(orient[i:i+4]) if orient[i+3] != 0 else None for i in range(0, len(orient), 4)] + scale = readFloatArray(node, "scale", None) + if scale: + scale = [numpy.array(((scale[i], 0, 0), (0, 1, 0), (0, 0, scale[i+1]))) + if scale[i] != 1 or scale[i+1] != 1 else None for i in range(0, len(scale), 2)] + + + # Special treatment for the closed spine and cross section. + # Let's save some memory by not creating identical but distinct vertices; + # later we'll introduce conditional logic to link the last vertex with + # the first one where necessary. + crossClosed = cross[0] == cross[-1] + if crossClosed: + cross = cross[:-1] + nc = len(cross) + cross = [numpy.array((c[0], 0, c[1])) for c in cross] + ncf = nc if crossClosed else nc - 1 + # Face count along the cross; for closed cross, it's the same as the + # respective vertex count + + spineClosed = spine[0] == spine[-1] + if spineClosed: + spine = spine[:-1] + ns = len(spine) + spine = [Vector(*s) for s in spine] + nsf = ns if spineClosed else ns - 1 + + # This will be used for fallback, where the current spine point joins + # two collinear spine segments. No need to recheck the case of the + # closed spine/last-to-first point juncture; if there's an angle there, + # it would kick in on the first iteration of the main loop by spine. + def findFirstAngleNormal(): + for i in range(1, ns - 1): + spt = spine[i] + z = (spine[i + 1] - spt).cross(spine[i - 1] - spt) + if z.length() > EPSILON: + return z + # All the spines are collinear. Fallback to the rotated source + # XZ plane. + # TODO: handle the situation where the first two spine points match + v = spine[1] - spine[0] + orig_y = Vector(0, 1, 0) + orig_z = Vector(0, 0, 1) + if v.cross(orig_y).length() > EPSILON: + # Spine at angle with global y - rotate the z accordingly + a = v.cross(orig_y) # Axis of rotation to get to the Z + (x, y, z) = a.normalized().getData() + s = a.length()/v.length() + c = sqrt(1-s*s) + t = 1-c + m = numpy.array(( + (x * x * t + c, x * y * t + z*s, x * z * t - y * s), + (x * y * t - z*s, y * y * t + c, y * z * t + x * s), + (x * z * t + y * s, y * z * t - x * s, z * z * t + c))) + orig_z = Vector(*m.dot(orig_z.getData())) + return orig_z + + bui.reserveFaceAndVertexCount(2*nsf*ncf + (nc - 2 if beginCap else 0) + (nc - 2 if endCap else 0), ns*nc) + + z = None + for i, spt in enumerate(spine): + if (i > 0 and i < ns - 1) or spineClosed: + snext = spine[(i + 1) % ns] + sprev = spine[(i - 1 + ns) % ns] + y = snext - sprev + vnext = snext - spt + vprev = sprev - spt + try_z = vnext.cross(vprev) + # Might be zero, then all kinds of fallback + if try_z.length() > EPSILON: + if z is not None and try_z.dot(z) < 0: + try_z = -try_z + z = try_z + elif not z: # No z, and no previous z. + # Look ahead, see if there's at least one point where + # spines are not collinear. + z = findFirstAngleNormal() + elif i == 0: # And non-crossed + snext = spine[i + 1] + y = snext - spt + z = findFirstAngleNormal() + else: # last point and not crossed + sprev = spine[i - 1] + y = spt - sprev + # If there's more than one point in the spine, z is already set. + # One point in the spline is an error anyway. + + z = z.normalized() + y = y.normalized() + x = y.cross(z) # Already normalized + m = numpy.array((x.getData(), y.getData(), z.getData())) + + # Columns are the unit vectors for the xz plane for the cross-section + if orient: + mrot = orient[i] if len(orient) > 1 else orient[0] + if not mrot is None: + m = m.dot(mrot) # Not sure about this. Counterexample??? + + if scale: + mscale = scale[i] if len(scale) > 1 else scale[0] + if not mscale is None: + m = m.dot(mscale) + + # First the cross-section 2-vector is scaled, + # then rotated (which may make it a 3-vector), + # then applied to the xz plane unit vectors + + for cpt in cross: + v = numpy.array(spt.getData()[:3]) + m.dot(cpt) + bui.addVertex(*v) + # Could've done this with a single 4x4 matrix... Oh well + + if beginCap: + addFace(bui, [x for x in range(nc - 1, -1, -1)], ccw) + + # Order of edges in the face: forward along cross, forward along spine, + # backward along cross, backward along spine, flipped if now ccw. + # This order is assumed later in the texture coordinate assignment; + # please don't change without syncing. + + for s in range(ns - 1): + for c in range(ncf): + addQuadFlip(bui, s * nc + c, s * nc + (c + 1) % nc, + (s + 1) * nc + (c + 1) % nc, (s + 1) * nc + c, ccw) + + if spineClosed: + # The faces between the last and the first spine points + b = (ns - 1) * nc + for c in range(ncf): + addQuadFlip(bui, b + c, b + (c + 1) % nc, + (c + 1) % nc, c, ccw) + + if endCap: + addFace(bui, [(ns - 1) * nc + x for x in range(0, nc)], ccw) + +# Triangle meshes + + # Helper for numerous nodes with a Coordinate subnode holding vertices + # That all triangle meshes and IndexedFaceSet + # nFaces can be a function, in case the face count is a function of coord + def startCoordMesh(self, node, bui, nFaces): + ccw = readBoolean(node, "ccw", True) + coord = self.readVertices(node) + if hasattr(nFaces, '__call__'): + nFaces = nFaces(coord) + bui.reserveFaceAndVertexCount(nFaces, len(coord)) + for pt in coord: + bui.addVertex(*pt) + + return ccw + + + def geomIndexedTriangleSet(self, node, bui): + index = readIntArray(node, "index", []) + nFaces = len(index) // 3 + ccw = self.startCoordMesh(node, bui, nFaces) + + for i in range(0, nFaces*3, 3): + addTriFlip(bui, index[i], index[i+1], index[i+2], ccw) + + def geomIndexedTriangleStripSet(self, node, bui): + strips = readIndex(node, "index") + ccw = self.startCoordMesh(node, bui, sum([len(strip) - 2 for strip in strips])) + + for strip in strips: + sccw = ccw # Running CCW value, reset for each strip + for i in range(len(strip) - 2): + addTriFlip(bui, strip[i], strip[i+1], strip[i+2], sccw) + sccw = not sccw + + def geomIndexedTriangleFanSet(self, node, bui): + fans = readIndex(node, "index") + ccw = self.startCoordMesh(node, bui, sum([len(fan) - 2 for fan in fans])) + + for fan in fans: + for i in range(1, len(fan) - 1): + addTriFlip(bui, fan[0], fan[i], fan[i+1], ccw) + + + def geomTriangleSet(self, node, bui): + ccw = self.startCoordMesh(node, bui, lambda coord: len(coord) // 3) + for i in range(0, len(bui.getVertices()), 3): + addTriFlip(bui, i, i+1, i+2, ccw) + + def geomTriangleStripSet(self, node, bui): + strips = readIntArray(node, "stripCount", []) + ccw = self.startCoordMesh(node, bui, sum([n-2 for n in strips])) + + vb = 0 + for n in strips: + sccw = ccw + for i in range(n-2): + addTriFlip(bui, vb+i, vb+i+1, vb+i+2, sccw) + sccw = not sccw + vb += n + + def geomTriangleFanSet(self, node, bui): + fans = readIntArray(node, "fanCount", []) + ccw = self.startCoordMesh(node, bui, sum([n-2 for n in fans])) + + vb = 0 + for n in fans: + for i in range(1, n-1): + addTriFlip(bui, vb, vb+i, vb+i+1, ccw) + vb += n + + # Quad geometries from the CAD module, might be relevant for printing + + def geomQuadSet(self, node, bui): + ccw = self.startCoordMesh(node, bui, lambda coord: len(coord) // 4) + for i in range(0, len(bui.getVertices()), 4): + addQuadFlip(bui, i, i+1, i+2, i+4, ccw) + + def geomIndexedQuadSet(self, node, bui): + index = readIntArray(node, "index", []) + nFaces = len(index) // 4 + ccw = self.startCoordMesh(node, bui, nFaces) + + for i in range(0, nFaces*4, 4): + addQuadFlip(bui, index[i], index[i+1], index[i+2], index[i+3], ccw) + + + # General purpose polygon mesh + + def geomIndexedFaceSet(self, node, bui): + faces = readIndex(node, "coordIndex") + ccw = self.startCoordMesh(node, bui, sum([len(face) - 2 for face in faces])) + + for face in faces: + if len(face) == 3: + addTriFlip(bui, face[0], face[1], face[2], ccw) + elif len(face) > 3: + addFace(bui, face, ccw) + + geometryImporters = { + 'IndexedFaceSet': geomIndexedFaceSet, + 'IndexedTriangleSet': geomIndexedTriangleSet, + 'IndexedTriangleStripSet': geomIndexedTriangleStripSet, + 'IndexedTriangleFanSet': geomIndexedTriangleFanSet, + 'TriangleSet': geomTriangleSet, + 'TriangleStripSet': geomTriangleStripSet, + 'TriangleFanSet': geomTriangleFanSet, + 'QuadSet': geomQuadSet, + 'IndexedQuadSet': geomIndexedQuadSet, + 'ElevationGrid': geomElevationGrid, + 'Extrusion': geomExtrusion, + 'Sphere': geomSphere, + 'Box': geomBox, + 'Cylinder': geomCylinder, + 'Cone': geomCone + } + + # Parses the Coordinate.@point field + def readVertices(self, node): + for c in node: + if c.tag == "Coordinate": + c = self.resolveDefUse(c) + if not c is None: + pt = c.attrib.get("point") + if pt: + co = [float(x) for x in pt.split()] + # Group by three + return [(co[i], co[i+1], co[i+2]) for i in range(0, (len(co) // 3)*3, 3)] + return [] + +# ------------------------------------------------------------ +# X3D field parsers +# ------------------------------------------------------------ +def readFloatArray(node, attr, default): + s = node.attrib.get(attr) + if not s: + return default + return [float(x) for x in s.split()] + +def readIntArray(node, attr, default): + s = node.attrib.get(attr) + if not s: + return default + return [int(x, 0) for x in s.split()] + +def readFloat(node, attr, default): + s = node.attrib.get(attr) + if not s: + return default + return float(s) + +def readInt(node, attr, default): + s = node.attrib.get(attr) + if not s: + return default + return int(s, 0) + +def readBoolean(node, attr, default): + s = node.attrib.get(attr) + if not s: + return default + return s.lower() == "true" + +def readVector(node, attr, default): + v = readFloatArray(node, attr, default) + return Vector(v[0], v[1], v[2]) + +def readRotation(node, attr, default): + v = readFloatArray(node, attr, default) + return (v[3], Vector(v[0], v[1], v[2])) + +# Returns the -1-separated runs +def readIndex(node, attr): + v = readIntArray(node, attr, []) + chunks = [] + chunk = [] + for i in range(len(v)): + if v[i] == -1: + if chunk: + chunks.append(chunk) + chunk = [] + else: + chunk.append(v[i]) + if chunk: + chunks.append(chunk) + return chunks + +# Mesh builder helpers + +def addTri(bui, a, b, c): + bui._indices[bui._face_count, 0] = a + bui._indices[bui._face_count, 1] = b + bui._indices[bui._face_count, 2] = c + bui._face_count += 1 + +def addTriFlip(bui, a, b, c, ccw): + if ccw: + addTri(bui, a, b, c) + else: + addTri(bui, b, a, c) + +# Needs to be convex, but not necessaily planar +# Assumed ccw, cut along the ac diagonal +def addQuad(bui, a, b, c, d): + addTri(bui, a, b, c) + addTri(bui, c, d, a) + +def addQuadFlip(bui, a, b, c, d, ccw): + if ccw: + addTri(bui, a, b, c) + addTri(bui, c, d, a) + else: + addTri(bui, a, c, b) + addTri(bui, c, a, d) + + +# Arbitrary polygon triangulation. +# Doesn't assume convexity and doesn't check the "convex" flag in the file. +# Works by the "cutting of ears" algorithm: +# - Find an outer vertex with the smallest angle and no vertices inside its adjacent triangle +# - Remove the triangle at that vertex +# - Repeat until done +# Note that n is the count of vertices in the face, but the `face` array is one element bigger, with nth element same as the 0th one +# Vertex coordinates are supposed to be already in the mesh builder object +def addFace(bui, indices, ccw): + # Resolve indices to coordinates for faster math + n = len(indices) + verts = bui.getVertices() + face = [Vector(verts[i, 0], verts[i, 1], verts[i, 2]) for i in indices] + + # Need a normal to the plane so that we can know which vertices form inner angles + normal = findOuterNormal(face) + + if not normal: # Couldn't find an outer edge, non-planar polygon maybe? + return + + # Find the vertex with the smallest inner angle and no points inside, cut off. Repeat until done + m = len(face) + vi = [i for i in range(m)] # We'll be using this to kick vertices from the face + while m > 3: + maxCos = EPSILON # We don't want to check anything on Pi angles + iMin = 0 # max cos corresponds to min angle + for i in range(m): + inext = (i + 1) % m + iprev = (i + m - 1) % m + v = face[vi[i]] + next = face[vi[inext]] - v + prev = face[vi[iprev]] - v + nextXprev = next.cross(prev) + if nextXprev.dot(normal) > EPSILON: # If it's an inner angle + cos = next.dot(prev) / (next.length() * prev.length()) + if cos > maxCos: + # Check if there are vertices inside the triangle + noPointsInside = True + for j in range(m): + if j != i and j != iprev and j != inext: + vx = face[vi[j]] - v + if pointInsideTriangle(vx, next, prev, nextXprev): + noPointsInside = False + break + + if noPointsInside: + maxCos = cos + iMin = i + + addTriFlip(bui, indices[vi[(iMin + m - 1) % m]], indices[vi[iMin]], indices[vi[(iMin + 1) % m]], ccw) + vi.pop(iMin) + m -= 1 + addTriFlip(bui, indices[vi[0]], indices[vi[1]], indices[vi[2]], ccw) + + +# Given a face as a sequence of vectors, returns a normal to the polygon place that forms a right triple +# with a vector along the polygon sequence and a vector backwards +def findOuterNormal(face): + n = len(face) + for i in range(n): + for j in range(i+1, n): + edge = face[j] - face[i] + if edge.length() > EPSILON: + edge = edge.normalized() + prevRejection = Vector() + isOuter = True + for k in range(n): + if k != i and k != j: + pt = face[k] - face[i] + pte = pt.dot(edge) + rejection = pt - edge*pte + if rejection.dot(prevRejection) < -EPSILON: # points on both sides of the edge - not an outer one + isOuter = False + break + elif rejection.length() > prevRejection.length(): # Pick a greater rejection for numeric stability + prevRejection = rejection + + if isOuter: # Found an outer edge, prevRejection is the rejection inside the face. Generate a normal. + return edge.cross(prevRejection) + + return False + +# Assumes the vectors are either parallel or antiparallel and the denominator is nonzero. +# No error handling. +# For stability, taking the ration between the biggest coordinates would be better; none of that, either. +def ratio(a, b): + if b.x > EPSILON: + return a.x / b.x + elif b.y > EPSILON: + return a.y / b.y + else: + return a.z / b.z + +def pointInsideTriangle(vx, next, prev, nextXprev): + vxXprev = vx.cross(prev) + r = ratio(vxXprev, nextXprev) + if r < 0: + return False; + vxXnext = vx.cross(next); + s = -ratio(vxXnext, nextXprev) + return s > 0 and (s + r) < 1 + +def toNumpyRotation(rot): + (x, y, z) = rot[:3] + a = rot[3] + s = sin(a) + c = cos(a) + t = 1-c + return numpy.array(( + (x * x * t + c, x * y * t - z*s, x * z * t + y * s), + (x * y * t + z*s, y * y * t + c, y * z * t - x * s), + (x * z * t - y * s, y * z * t + x * s, z * z * t + c))) + + + \ No newline at end of file diff --git a/plugins/X3DReader/__init__.py b/plugins/X3DReader/__init__.py new file mode 100644 index 0000000000..84922f627f --- /dev/null +++ b/plugins/X3DReader/__init__.py @@ -0,0 +1,26 @@ +# Seva Alekseyev with National Institutes of Health, 2016 + +from . import X3DReader + +from UM.i18n import i18nCatalog +catalog = i18nCatalog("cura") + +def getMetaData(): + return { + "plugin": { + "name": catalog.i18nc("@label", "X3D Reader"), + "author": "Seva Alekseyev", + "version": "0.5", + "description": catalog.i18nc("@info:whatsthis", "Provides support for reading X3D files."), + "api": 3 + }, + "mesh_reader": [ + { + "extension": "x3d", + "description": catalog.i18nc("@item:inlistbox", "X3D File") + } + ] + } + +def register(app): + return { "mesh_reader": X3DReader.X3DReader() }