# Copyright (c) 2015 Ultimaker B.V. # Cura is released under the terms of the AGPLv3 or higher. from UM.Mesh.MeshData import MeshData from UM.Mesh.MeshBuilder import MeshBuilder from UM.Math.Color import Color from UM.Math.Vector import Vector import numpy import math import copy class LayerData(MeshData): def __init__(self): super().__init__() self._layers = {} self._element_counts = {} def addLayer(self, layer): if layer not in self._layers: self._layers[layer] = Layer(layer) def addPolygon(self, layer, type, data, line_width): if layer not in self._layers: self.addLayer(layer) p = Polygon(self, type, data, line_width) self._layers[layer].polygons.append(p) def getLayer(self, layer): return self._layers[layer] def getLayers(self): return self._layers def getElementCounts(self): return self._element_counts def setLayerHeight(self, layer, height): if layer not in self._layers: self.addLayer(layer) self._layers[layer].setHeight(height) def setLayerThickness(self, layer, thickness): if layer not in self._layers: self.addLayer(layer) self._layers[layer].setThickness(thickness) def build(self): vertex_count = 0 for layer, data in self._layers.items(): vertex_count += data.vertexCount() vertices = numpy.empty((vertex_count, 3), numpy.float32) colors = numpy.empty((vertex_count, 4), numpy.float32) indices = numpy.empty((vertex_count, 2), numpy.int32) offset = 0 for layer, data in self._layers.items(): offset = data.build(offset, vertices, colors, indices) self._element_counts[layer] = data.elementCount self.addVertices(vertices) self.addColors(colors) self.addIndices(indices.flatten()) class Layer(): def __init__(self, id): self._id = id self._height = 0.0 self._thickness = 0.0 self._polygons = [] self._element_count = 0 @property def height(self): return self._height @property def thickness(self): return self._thickness @property def polygons(self): return self._polygons @property def elementCount(self): return self._element_count def setHeight(self, height): self._height = height def setThickness(self, thickness): self._thickness = thickness def vertexCount(self): result = 0 for polygon in self._polygons: result += polygon.vertexCount() return result def build(self, offset, vertices, colors, indices): result = offset for polygon in self._polygons: if polygon._type == Polygon.InfillType or polygon._type == Polygon.SupportInfillType: continue polygon.build(result, vertices, colors, indices) result += polygon.vertexCount() self._element_count += polygon.elementCount return result def createMesh(self): builder = MeshBuilder() for polygon in self._polygons: poly_color = polygon.getColor() points = numpy.copy(polygon.data) if polygon.type == Polygon.InfillType or polygon.type == Polygon.SkinType or polygon.type == Polygon.SupportInfillType: points[:,1] -= 0.01 # Calculate normals for the entire polygon using numpy. normals = numpy.copy(points) normals[:,1] = 0.0 # We are only interested in 2D normals # Calculate the edges between points. # The call to numpy.roll shifts the entire array by one so that # we end up subtracting each next point from the current, wrapping # around. This gives us the edges from the next point to the current # point. normals[:] = normals[:] - numpy.roll(normals, -1, axis = 0) # Calculate the length of each edge using standard Pythagoras lengths = numpy.sqrt(normals[:,0] ** 2 + normals[:,2] ** 2) # The normal of a 2D vector is equal to its x and y coordinates swapped # and then x inverted. This code does that. normals[:,[0, 2]] = normals[:,[2, 0]] normals[:,0] *= -1 # Normalize the normals. normals[:,0] /= lengths normals[:,2] /= lengths # Scale all by the line width of the polygon so we can easily offset. normals *= (polygon.lineWidth / 2) #TODO: Use numpy magic to perform the vertex creation to speed up things. for i in range(len(points)): start = points[i - 1] end = points[i] normal = normals[i - 1] point1 = Vector(data = start - normal) point2 = Vector(data = start + normal) point3 = Vector(data = end + normal) point4 = Vector(data = end - normal) builder.addQuad(point1, point2, point3, point4, color = poly_color) return builder.getData() class Polygon(): NoneType = 0 Inset0Type = 1 InsetXType = 2 SkinType = 3 SupportType = 4 SkirtType = 5 InfillType = 6 SupportInfillType = 7 def __init__(self, mesh, type, data, line_width): super().__init__() self._mesh = mesh self._type = type self._data = data self._line_width = line_width / 1000 def build(self, offset, vertices, colors, indices): self._begin = offset color = self.getColor() color.setValues(color.r * 0.5, color.g * 0.5, color.b * 0.5, color.a) for i in range(len(self._data)): vertices[offset + i, :] = self._data[i, :] colors[offset + i, 0] = color.r colors[offset + i, 1] = color.g colors[offset + i, 2] = color.b colors[offset + i, 3] = color.a self._end = self._begin + len(self._data) - 1 for i in range(self._begin, self._end): indices[i, 0] = i indices[i, 1] = i + 1 indices[self._end, 0] = self._end indices[self._end, 1] = self._begin def getColor(self): if self._type == self.Inset0Type: return Color(1.0, 0.0, 0.0, 1.0) elif self._type == self.InsetXType: return Color(0.0, 1.0, 0.0, 1.0) elif self._type == self.SkinType: return Color(1.0, 1.0, 0.0, 1.0) elif self._type == self.SupportType: return Color(0.0, 1.0, 1.0, 1.0) elif self._type == self.SkirtType: return Color(0.0, 1.0, 1.0, 1.0) elif self._type == self.InfillType: return Color(1.0, 1.0, 0.0, 1.0) elif self._type == self.SupportInfillType: return Color(0.0, 1.0, 1.0, 1.0) else: return Color(1.0, 1.0, 1.0, 1.0) def vertexCount(self): return len(self._data) @property def type(self): return self._type @property def data(self): return self._data @property def elementCount(self): return ((self._end - self._begin) + 1) * 2 #The range of vertices multiplied by 2 since each vertex is used twice @property def lineWidth(self): return self._line_width