import numpy from UM.Math.Polygon import Polygon ## Polygon representation as an array # class ShapeArray: def __init__(self, arr, offset_x, offset_y, scale = 1): self.arr = arr self.offset_x = offset_x self.offset_y = offset_y self.scale = scale @classmethod def fromPolygon(cls, vertices, scale = 1): # scale vertices = vertices * scale # flip y, x -> x, y flip_vertices = numpy.zeros((vertices.shape)) flip_vertices[:, 0] = vertices[:, 1] flip_vertices[:, 1] = vertices[:, 0] flip_vertices = flip_vertices[::-1] # offset, we want that all coordinates have positive values offset_y = int(numpy.amin(flip_vertices[:, 0])) offset_x = int(numpy.amin(flip_vertices[:, 1])) flip_vertices[:, 0] = numpy.add(flip_vertices[:, 0], -offset_y) flip_vertices[:, 1] = numpy.add(flip_vertices[:, 1], -offset_x) shape = [int(numpy.amax(flip_vertices[:, 0])), int(numpy.amax(flip_vertices[:, 1]))] arr = cls.arrayFromPolygon(shape, flip_vertices) return cls(arr, offset_x, offset_y) ## Return an offset and hull ShapeArray from a scenenode. @classmethod def fromNode(cls, node, min_offset, scale = 0.5): # hacky way to undo transformation transform = node._transformation transform_x = transform._data[0][3] transform_y = transform._data[2][3] hull_verts = node.callDecoration("getConvexHull") offset_verts = hull_verts.getMinkowskiHull(Polygon.approximatedCircle(min_offset)) offset_points = copy.deepcopy(offset_verts._points) # x, y offset_points[:, 0] = numpy.add(offset_points[:, 0], -transform_x) offset_points[:, 1] = numpy.add(offset_points[:, 1], -transform_y) offset_shape_arr = ShapeArray.fromPolygon(offset_points, scale = scale) hull_points = copy.deepcopy(hull_verts._points) hull_points[:, 0] = numpy.add(hull_points[:, 0], -transform_x) hull_points[:, 1] = numpy.add(hull_points[:, 1], -transform_y) hull_shape_arr = ShapeArray.fromPolygon(hull_points, scale = scale) # x, y return offset_shape_arr, hull_shape_arr ## Create np.array with dimensions defined by shape # Fills polygon defined by vertices with ones, all other values zero # Only works correctly for convex hull vertices # Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array @classmethod def arrayFromPolygon(cls, shape, vertices): base_array = numpy.zeros(shape, dtype=float) # Initialize your array of zeros fill = numpy.ones(base_array.shape) * True # Initialize boolean array defining shape fill # Create check array for each edge segment, combine into fill array for k in range(vertices.shape[0]): fill = numpy.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0) # Set all values inside polygon to one base_array[fill] = 1 return base_array ## Return indices that mark one side of the line, used by array_from_polygon # Uses the line defined by p1 and p2 to check array of # input indices against interpolated value # Returns boolean array, with True inside and False outside of shape # Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array @classmethod def _check(cls, p1, p2, base_array): if p1[0] == p2[0] and p1[1] == p2[1]: return idxs = numpy.indices(base_array.shape) # Create 3D array of indices p1 = p1.astype(float) p2 = p2.astype(float) if p2[0] == p1[0]: sign = numpy.sign(p2[1] - p1[1]) return idxs[1] * sign if p2[1] == p1[1]: sign = numpy.sign(p2[0] - p1[0]) return idxs[1] * sign # Calculate max column idx for each row idx based on interpolated line between two points max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1] sign = numpy.sign(p2[0] - p1[0]) return idxs[1] * sign <= max_col_idx * sign from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator from UM.Logger import Logger import copy class Arrange: def __init__(self, x, y, offset_x, offset_y, scale=1): self.shape = (y, x) self._priority = numpy.zeros((x, y), dtype=numpy.int32) self._priority_unique_values = [] self._occupied = numpy.zeros((x, y), dtype=numpy.int32) self._scale = scale # convert input coordinates to arrange coordinates self._offset_x = offset_x self._offset_y = offset_y ## Helper to create an Arranger instance # # Either fill in scene_root and create will find all sliceable nodes by itself, # or use fixed_nodes to provide the nodes yourself. # \param scene_root # \param fixed_nodes @classmethod def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5): arranger = Arrange(220, 220, 110, 110, scale = scale) arranger.centerFirst() if fixed_nodes is None: fixed_nodes = [] for node_ in DepthFirstIterator(scene_root): # Only count sliceable objects if node_.callDecoration("isSliceable"): fixed_nodes.append(node_) # place all objects fixed nodes for fixed_node in fixed_nodes: Logger.log("d", " # Placing [%s]" % str(fixed_node)) vertices = fixed_node.callDecoration("getConvexHull") points = copy.deepcopy(vertices._points) shape_arr = ShapeArray.fromPolygon(points, scale = scale) arranger.place(0, 0, shape_arr) Logger.log("d", "Current buildplate: \n%s" % str(arranger._occupied[::10, ::10])) return arranger ## Find placement for a node and place it # def findNodePlacements(self, node, offset_shape_arr, hull_shape_arr, count = 1, step = 1): # offset_shape_arr, hull_shape_arr, arranger -> nodes, arranger nodes = [] start_prio = 0 for i in range(count): new_node = copy.deepcopy(node) Logger.log("d", " # Finding spot for %s" % new_node) x, y, penalty_points, start_prio = self.bestSpot( offset_shape_arr, start_prio = start_prio, step = step) transformation = new_node._transformation if x is not None: # We could find a place transformation._data[0][3] = x transformation._data[2][3] = y Logger.log("d", "Best place is: %s %s (points = %s)" % (x, y, penalty_points)) self.place(x, y, hull_shape_arr) # take place before the next one Logger.log("d", "New buildplate: \n%s" % str(self._occupied[::10, ::10])) else: Logger.log("d", "Could not find spot!") transformation._data[0][3] = 200 transformation._data[2][3] = -100 + i * 20 nodes.append(new_node) return nodes ## Fill priority, take offset as center. lower is better def centerFirst(self): # Distance x + distance y #self._priority = np.fromfunction( # lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape, dtype=np.int32) # Square distance # self._priority = np.fromfunction( # lambda i, j: abs(self._offset_x-i)**2+abs(self._offset_y-j)**2, self.shape, dtype=np.int32) self._priority = numpy.fromfunction( lambda i, j: abs(self._offset_x-i)**3+abs(self._offset_y-j)**3, self.shape, dtype=numpy.int32) # self._priority = np.fromfunction( # lambda i, j: max(abs(self._offset_x-i), abs(self._offset_y-j)), self.shape, dtype=np.int32) self._priority_unique_values = numpy.unique(self._priority) self._priority_unique_values.sort() ## Return the amount of "penalty points" for polygon, which is the sum of priority # 999999 if occupied def checkShape(self, x, y, shape_arr): x = int(self._scale * x) y = int(self._scale * y) offset_x = x + self._offset_x + shape_arr.offset_x offset_y = y + self._offset_y + shape_arr.offset_y occupied_slice = self._occupied[ offset_y:offset_y + shape_arr.arr.shape[0], offset_x:offset_x + shape_arr.arr.shape[1]] try: if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]): return 999999 except IndexError: # out of bounds if you try to place an object outside return 999999 prio_slice = self._priority[ offset_y:offset_y + shape_arr.arr.shape[0], offset_x:offset_x + shape_arr.arr.shape[1]] return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)]) ## Find "best" spot for ShapeArray def bestSpot(self, shape_arr, start_prio = 0, step = 1): start_idx_list = numpy.where(self._priority_unique_values == start_prio) if start_idx_list: start_idx = start_idx_list[0] else: start_idx = 0 for prio in self._priority_unique_values[start_idx::step]: tryout_idx = numpy.where(self._priority == prio) for idx in range(len(tryout_idx[0])): x = tryout_idx[0][idx] y = tryout_idx[1][idx] projected_x = x - self._offset_x projected_y = y - self._offset_y # array to "world" coordinates penalty_points = self.checkShape(projected_x, projected_y, shape_arr) if penalty_points != 999999: return projected_x, projected_y, penalty_points, prio return None, None, None, prio # No suitable location found :-( ## Place the object def place(self, x, y, shape_arr): x = int(self._scale * x) y = int(self._scale * y) offset_x = x + self._offset_x + shape_arr.offset_x offset_y = y + self._offset_y + shape_arr.offset_y shape_y, shape_x = self._occupied.shape min_x = min(max(offset_x, 0), shape_x - 1) min_y = min(max(offset_y, 0), shape_y - 1) max_x = min(max(offset_x + shape_arr.arr.shape[1], 0), shape_x - 1) max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1) occupied_slice = self._occupied[min_y:max_y, min_x:max_x] # we use a slice of shape because it can be out of bounds occupied_slice[numpy.where(shape_arr.arr[ min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 1 # Set priority to low (= high number), so it won't get picked at trying out. prio_slice = self._priority[min_y:max_y, min_x:max_x] prio_slice[numpy.where(shape_arr.arr[ min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 999