Cura/cura/Arranging/Nest2DArrange.py
saumya.jain 118f49a052 review comments fixed
Co-authored-by: Casper Lamboo <c.lamboo@ultimaker.com>

CURA-7951
2023-08-23 15:39:23 +02:00

188 lines
8.8 KiB
Python

# Copyright (c) 2020 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
import numpy
from pynest2d import Point, Box, Item, NfpConfig, nest
from typing import List, TYPE_CHECKING, Optional, Tuple
from UM.Application import Application
from UM.Logger import Logger
from UM.Math.Matrix import Matrix
from UM.Math.Polygon import Polygon
from UM.Math.Quaternion import Quaternion
from UM.Math.Vector import Vector
from UM.Operations.AddSceneNodeOperation import AddSceneNodeOperation
from UM.Operations.GroupedOperation import GroupedOperation
from UM.Operations.RotateOperation import RotateOperation
from UM.Operations.TranslateOperation import TranslateOperation
from cura.Arranging.GridArrange import GridArrange
if TYPE_CHECKING:
from UM.Scene.SceneNode import SceneNode
from cura.BuildVolume import BuildVolume
def findNodePlacement(
nodes_to_arrange: List["SceneNode"],
build_volume: "BuildVolume",
fixed_nodes: Optional[List["SceneNode"]] = None,
factor: int = 10000,
*,
lock_rotation: bool = False
) -> Tuple[bool, List[Item]]:
"""
Find placement for a set of scene nodes, but don't actually move them just yet.
:param nodes_to_arrange: The list of nodes that need to be moved.
:param build_volume: The build volume that we want to place the nodes in. It gets size & disallowed areas from this.
:param fixed_nodes: List of nods that should not be moved, but should be used when deciding where the others nodes
are placed.
:param factor: The library that we use is int based. This factor defines how accurate we want it to be.
:param lock_rotation: If set to true the orientation of the object will remain the same
:return: tuple (found_solution_for_all, node_items)
WHERE
found_solution_for_all: Whether the algorithm found a place on the buildplate for all the objects
node_items: A list of the nodes return by libnest2d, which contain the new positions on the buildplate
"""
spacing = int(1.5 * factor) # 1.5mm spacing.
machine_width = build_volume.getWidth()
machine_depth = build_volume.getDepth()
build_plate_bounding_box = Box(int(machine_width * factor), int(machine_depth * factor))
if fixed_nodes is None:
fixed_nodes = []
# Add all the items we want to arrange
node_items = []
for node in nodes_to_arrange:
hull_polygon = node.callDecoration("getConvexHull")
if not hull_polygon or hull_polygon.getPoints is None:
Logger.log("w", "Object {} cannot be arranged because it has no convex hull.".format(node.getName()))
continue
converted_points = []
for point in hull_polygon.getPoints():
converted_points.append(Point(int(point[0] * factor), int(point[1] * factor)))
item = Item(converted_points)
node_items.append(item)
# Use a tiny margin for the build_plate_polygon (the nesting doesn't like overlapping disallowed areas)
half_machine_width = 0.5 * machine_width - 1
half_machine_depth = 0.5 * machine_depth - 1
build_plate_polygon = Polygon(numpy.array([
[half_machine_width, -half_machine_depth],
[-half_machine_width, -half_machine_depth],
[-half_machine_width, half_machine_depth],
[half_machine_width, half_machine_depth]
], numpy.float32))
disallowed_areas = build_volume.getDisallowedAreas()
num_disallowed_areas_added = 0
for area in disallowed_areas:
converted_points = []
# Clip the disallowed areas so that they don't overlap the bounding box (The arranger chokes otherwise)
clipped_area = area.intersectionConvexHulls(build_plate_polygon)
if clipped_area.getPoints() is not None and len(clipped_area.getPoints()) > 2: # numpy array has to be explicitly checked against None
for point in clipped_area.getPoints():
converted_points.append(Point(int(point[0] * factor), int(point[1] * factor)))
disallowed_area = Item(converted_points)
disallowed_area.markAsDisallowedAreaInBin(0)
node_items.append(disallowed_area)
num_disallowed_areas_added += 1
for node in fixed_nodes:
converted_points = []
hull_polygon = node.callDecoration("getConvexHull")
if hull_polygon is not None and hull_polygon.getPoints() is not None and len(hull_polygon.getPoints()) > 2: # numpy array has to be explicitly checked against None
for point in hull_polygon.getPoints():
converted_points.append(Point(int(point[0] * factor), int(point[1] * factor)))
item = Item(converted_points)
item.markAsFixedInBin(0)
node_items.append(item)
num_disallowed_areas_added += 1
config = NfpConfig()
config.accuracy = 1.0
config.alignment = NfpConfig.Alignment.DONT_ALIGN
if lock_rotation:
config.rotations = [0.0]
num_bins = nest(node_items, build_plate_bounding_box, spacing, config)
# Strip the fixed items (previously placed) and the disallowed areas from the results again.
node_items = list(filter(lambda item: not item.isFixed(), node_items))
found_solution_for_all = num_bins == 1
return found_solution_for_all, node_items
def createGroupOperationForArrange(nodes_to_arrange: List["SceneNode"],
build_volume: "BuildVolume",
fixed_nodes: Optional[List["SceneNode"]] = None,
factor: int = 10000,
*,
add_new_nodes_in_scene: bool = False,
lock_rotation: bool = False,
grid_arrange: bool = False) -> Tuple[GroupedOperation, int]:
if grid_arrange:
grid = GridArrange(nodes_to_arrange, build_volume, fixed_nodes)
return grid.createGroupOperationForArrange()
else:
scene_root = Application.getInstance().getController().getScene().getRoot()
found_solution_for_all, node_items = findNodePlacement(nodes_to_arrange, build_volume, fixed_nodes, factor,
lock_rotation = lock_rotation)
not_fit_count = 0
grouped_operation = GroupedOperation()
for node, node_item in zip(nodes_to_arrange, node_items):
if add_new_nodes_in_scene:
grouped_operation.addOperation(AddSceneNodeOperation(node, scene_root))
if node_item.binId() == 0:
# We found a spot for it
rotation_matrix = Matrix()
rotation_matrix.setByRotationAxis(node_item.rotation(), Vector(0, -1, 0))
grouped_operation.addOperation(RotateOperation(node, Quaternion.fromMatrix(rotation_matrix)))
grouped_operation.addOperation(TranslateOperation(node, Vector(node_item.translation().x() / factor, 0,
node_item.translation().y() / factor)))
else:
# We didn't find a spot
grouped_operation.addOperation(
TranslateOperation(node, Vector(200, node.getWorldPosition().y, -not_fit_count * 20), set_position = True))
not_fit_count += 1
return grouped_operation, not_fit_count
def arrange(
nodes_to_arrange: List["SceneNode"],
build_volume: "BuildVolume",
fixed_nodes: Optional[List["SceneNode"]] = None,
factor=10000,
add_new_nodes_in_scene: bool = False,
lock_rotation: bool = False,
grid_arrange: bool = False
) -> bool:
"""
Find placement for a set of scene nodes, and move them by using a single grouped operation.
:param nodes_to_arrange: The list of nodes that need to be moved.
:param build_volume: The build volume that we want to place the nodes in. It gets size & disallowed areas from this.
:param fixed_nodes: List of nods that should not be moved, but should be used when deciding where the others nodes
are placed.
:param factor: The library that we use is int based. This factor defines how accuracte we want it to be.
:param add_new_nodes_in_scene: Whether to create new scene nodes before applying the transformations and rotations
:param lock_rotation: If set to true the orientation of the object will remain the same
:return: found_solution_for_all: Whether the algorithm found a place on the buildplate for all the objects
"""
grouped_operation, not_fit_count = createGroupOperationForArrange(nodes_to_arrange, build_volume, fixed_nodes,
factor, add_new_nodes_in_scene = add_new_nodes_in_scene, lock_rotation = lock_rotation, grid_arrange = grid_arrange)
grouped_operation.push()
return not_fit_count == 0