Cura/cura/BuildVolume.py
Ghostkeeper 45db315f77
Fix adding prime locations to final disallowed areas
They were added to several intermediary variables, but not to the final result.

Contributes to issue CURA-2625.
2016-11-11 15:10:39 +01:00

652 lines
32 KiB
Python

# Copyright (c) 2016 Ultimaker B.V.
# Cura is released under the terms of the AGPLv3 or higher.
from cura.Settings.ExtruderManager import ExtruderManager
from UM.i18n import i18nCatalog
from UM.Scene.Platform import Platform
from UM.Scene.Iterator.BreadthFirstIterator import BreadthFirstIterator
from UM.Scene.SceneNode import SceneNode
from UM.Application import Application
from UM.Resources import Resources
from UM.Mesh.MeshBuilder import MeshBuilder
from UM.Math.Vector import Vector
from UM.Math.Color import Color
from UM.Math.AxisAlignedBox import AxisAlignedBox
from UM.Math.Polygon import Polygon
from UM.Message import Message
from UM.Signal import Signal
from PyQt5.QtCore import QTimer
from UM.View.RenderBatch import RenderBatch
from UM.View.GL.OpenGL import OpenGL
catalog = i18nCatalog("cura")
import numpy
import copy
import UM.Settings.ContainerRegistry
# Setting for clearance around the prime
PRIME_CLEARANCE = 1.5
## Build volume is a special kind of node that is responsible for rendering the printable area & disallowed areas.
class BuildVolume(SceneNode):
VolumeOutlineColor = Color(12, 169, 227, 255)
XAxisColor = Color(255, 0, 0, 255)
YAxisColor = Color(0, 0, 255, 255)
ZAxisColor = Color(0, 255, 0, 255)
raftThicknessChanged = Signal()
def __init__(self, parent = None):
super().__init__(parent)
self._width = 0
self._height = 0
self._depth = 0
self._shader = None
self._origin_mesh = None
self._origin_line_length = 20
self._origin_line_width = 0.5
self._grid_mesh = None
self._grid_shader = None
self._disallowed_areas = []
self._disallowed_area_mesh = None
self._error_areas = []
self._error_mesh = None
self.setCalculateBoundingBox(False)
self._volume_aabb = None
self._raft_thickness = 0.0
self._adhesion_type = None
self._platform = Platform(self)
self._global_container_stack = None
Application.getInstance().globalContainerStackChanged.connect(self._onStackChanged)
self._onStackChanged()
self._has_errors = False
Application.getInstance().getController().getScene().sceneChanged.connect(self._onSceneChanged)
# Number of objects loaded at the moment.
self._number_of_objects = 0
self._change_timer = QTimer()
self._change_timer.setInterval(100)
self._change_timer.setSingleShot(True)
self._change_timer.timeout.connect(self._onChangeTimerFinished)
self._build_volume_message = Message(catalog.i18nc("@info:status",
"The build volume height has been reduced due to the value of the"
" \"Print Sequence\" setting to prevent the gantry from colliding"
" with printed models."))
# Must be after setting _build_volume_message, apparently that is used in getMachineManager.
# activeQualityChanged is always emitted after setActiveVariant, setActiveMaterial and setActiveQuality.
# Therefore this works.
Application.getInstance().getMachineManager().activeQualityChanged.connect(self._onStackChanged)
# This should also ways work, and it is semantically more correct,
# but it does not update the disallowed areas after material change
Application.getInstance().getMachineManager().activeStackChanged.connect(self._onStackChanged)
def _onSceneChanged(self, source):
if self._global_container_stack:
self._change_timer.start()
def _onChangeTimerFinished(self):
root = Application.getInstance().getController().getScene().getRoot()
new_number_of_objects = len([node for node in BreadthFirstIterator(root) if node.getMeshData() and type(node) is SceneNode])
if new_number_of_objects != self._number_of_objects:
recalculate = False
if self._global_container_stack.getProperty("print_sequence", "value") == "one_at_a_time":
recalculate = (new_number_of_objects < 2 and self._number_of_objects > 1) or (new_number_of_objects > 1 and self._number_of_objects < 2)
self._number_of_objects = new_number_of_objects
if recalculate:
self._onSettingPropertyChanged("print_sequence", "value") # Create fake event, so right settings are triggered.
def setWidth(self, width):
if width: self._width = width
def setHeight(self, height):
if height: self._height = height
def setDepth(self, depth):
if depth: self._depth = depth
def getDisallowedAreas(self):
return self._disallowed_areas
def setDisallowedAreas(self, areas):
self._disallowed_areas = areas
def render(self, renderer):
if not self.getMeshData():
return True
if not self._shader:
self._shader = OpenGL.getInstance().createShaderProgram(Resources.getPath(Resources.Shaders, "default.shader"))
self._grid_shader = OpenGL.getInstance().createShaderProgram(Resources.getPath(Resources.Shaders, "grid.shader"))
renderer.queueNode(self, mode = RenderBatch.RenderMode.Lines)
renderer.queueNode(self, mesh = self._origin_mesh)
renderer.queueNode(self, mesh = self._grid_mesh, shader = self._grid_shader, backface_cull = True)
if self._disallowed_area_mesh:
renderer.queueNode(self, mesh = self._disallowed_area_mesh, shader = self._shader, transparent = True, backface_cull = True, sort = -9)
if self._error_mesh:
renderer.queueNode(self, mesh=self._error_mesh, shader=self._shader, transparent=True,
backface_cull=True, sort=-8)
return True
## Recalculates the build volume & disallowed areas.
def rebuild(self):
if not self._width or not self._height or not self._depth:
return
min_w = -self._width / 2
max_w = self._width / 2
min_h = 0.0
max_h = self._height
min_d = -self._depth / 2
max_d = self._depth / 2
mb = MeshBuilder()
# Outline 'cube' of the build volume
mb.addLine(Vector(min_w, min_h, min_d), Vector(max_w, min_h, min_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(min_w, min_h, min_d), Vector(min_w, max_h, min_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(min_w, max_h, min_d), Vector(max_w, max_h, min_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(max_w, min_h, min_d), Vector(max_w, max_h, min_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(min_w, min_h, max_d), Vector(max_w, min_h, max_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(min_w, min_h, max_d), Vector(min_w, max_h, max_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(min_w, max_h, max_d), Vector(max_w, max_h, max_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(max_w, min_h, max_d), Vector(max_w, max_h, max_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(min_w, min_h, min_d), Vector(min_w, min_h, max_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(max_w, min_h, min_d), Vector(max_w, min_h, max_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(min_w, max_h, min_d), Vector(min_w, max_h, max_d), color = self.VolumeOutlineColor)
mb.addLine(Vector(max_w, max_h, min_d), Vector(max_w, max_h, max_d), color = self.VolumeOutlineColor)
self.setMeshData(mb.build())
mb = MeshBuilder()
# Indication of the machine origin
if self._global_container_stack.getProperty("machine_center_is_zero", "value"):
origin = (Vector(min_w, min_h, min_d) + Vector(max_w, min_h, max_d)) / 2
else:
origin = Vector(min_w, min_h, max_d)
mb.addCube(
width = self._origin_line_length,
height = self._origin_line_width,
depth = self._origin_line_width,
center = origin + Vector(self._origin_line_length / 2, 0, 0),
color = self.XAxisColor
)
mb.addCube(
width = self._origin_line_width,
height = self._origin_line_length,
depth = self._origin_line_width,
center = origin + Vector(0, self._origin_line_length / 2, 0),
color = self.YAxisColor
)
mb.addCube(
width = self._origin_line_width,
height = self._origin_line_width,
depth = self._origin_line_length,
center = origin - Vector(0, 0, self._origin_line_length / 2),
color = self.ZAxisColor
)
self._origin_mesh = mb.build()
mb = MeshBuilder()
mb.addQuad(
Vector(min_w, min_h - 0.2, min_d),
Vector(max_w, min_h - 0.2, min_d),
Vector(max_w, min_h - 0.2, max_d),
Vector(min_w, min_h - 0.2, max_d)
)
for n in range(0, 6):
v = mb.getVertex(n)
mb.setVertexUVCoordinates(n, v[0], v[2])
self._grid_mesh = mb.build()
disallowed_area_height = 0.1
disallowed_area_size = 0
if self._disallowed_areas:
mb = MeshBuilder()
color = Color(0.0, 0.0, 0.0, 0.15)
for polygon in self._disallowed_areas:
points = polygon.getPoints()
first = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d))
previous_point = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d))
for point in points:
new_point = Vector(self._clamp(point[0], min_w, max_w), disallowed_area_height, self._clamp(point[1], min_d, max_d))
mb.addFace(first, previous_point, new_point, color = color)
previous_point = new_point
# Find the largest disallowed area to exclude it from the maximum scale bounds.
# This is a very nasty hack. This pretty much only works for UM machines.
# This disallowed area_size needs a -lot- of rework at some point in the future: TODO
if numpy.min(points[:, 1]) >= 0: # This filters out all areas that have points to the left of the centre. This is done to filter the skirt area.
size = abs(numpy.max(points[:, 1]) - numpy.min(points[:, 1]))
else:
size = 0
disallowed_area_size = max(size, disallowed_area_size)
self._disallowed_area_mesh = mb.build()
else:
self._disallowed_area_mesh = None
if self._error_areas:
mb = MeshBuilder()
for error_area in self._error_areas:
color = Color(1.0, 0.0, 0.0, 0.5)
points = error_area.getPoints()
first = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height,
self._clamp(points[0][1], min_d, max_d))
previous_point = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height,
self._clamp(points[0][1], min_d, max_d))
for point in points:
new_point = Vector(self._clamp(point[0], min_w, max_w), disallowed_area_height,
self._clamp(point[1], min_d, max_d))
mb.addFace(first, previous_point, new_point, color=color)
previous_point = new_point
self._error_mesh = mb.build()
else:
self._error_mesh = None
self._volume_aabb = AxisAlignedBox(
minimum = Vector(min_w, min_h - 1.0, min_d),
maximum = Vector(max_w, max_h - self._raft_thickness, max_d))
bed_adhesion_size = self._getEdgeDisallowedSize()
# As this works better for UM machines, we only add the disallowed_area_size for the z direction.
# This is probably wrong in all other cases. TODO!
# The +1 and -1 is added as there is always a bit of extra room required to work properly.
scale_to_max_bounds = AxisAlignedBox(
minimum = Vector(min_w + bed_adhesion_size + 1, min_h, min_d + disallowed_area_size - bed_adhesion_size + 1),
maximum = Vector(max_w - bed_adhesion_size - 1, max_h - self._raft_thickness, max_d - disallowed_area_size + bed_adhesion_size - 1)
)
Application.getInstance().getController().getScene()._maximum_bounds = scale_to_max_bounds
def getBoundingBox(self):
return self._volume_aabb
def getRaftThickness(self):
return self._raft_thickness
def _updateRaftThickness(self):
old_raft_thickness = self._raft_thickness
self._adhesion_type = self._global_container_stack.getProperty("adhesion_type", "value")
self._raft_thickness = 0.0
if self._adhesion_type == "raft":
self._raft_thickness = (
self._global_container_stack.getProperty("raft_base_thickness", "value") +
self._global_container_stack.getProperty("raft_interface_thickness", "value") +
self._global_container_stack.getProperty("raft_surface_layers", "value") *
self._global_container_stack.getProperty("raft_surface_thickness", "value") +
self._global_container_stack.getProperty("raft_airgap", "value"))
# Rounding errors do not matter, we check if raft_thickness has changed at all
if old_raft_thickness != self._raft_thickness:
self.setPosition(Vector(0, -self._raft_thickness, 0), SceneNode.TransformSpace.World)
self.raftThicknessChanged.emit()
## Update the build volume visualization
def _onStackChanged(self):
if self._global_container_stack:
self._global_container_stack.propertyChanged.disconnect(self._onSettingPropertyChanged)
extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_container_stack.getId())
for extruder in extruders:
extruder.propertyChanged.disconnect(self._onSettingPropertyChanged)
self._global_container_stack = Application.getInstance().getGlobalContainerStack()
if self._global_container_stack:
self._global_container_stack.propertyChanged.connect(self._onSettingPropertyChanged)
extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_container_stack.getId())
for extruder in extruders:
extruder.propertyChanged.connect(self._onSettingPropertyChanged)
self._width = self._global_container_stack.getProperty("machine_width", "value")
machine_height = self._global_container_stack.getProperty("machine_height", "value")
if self._global_container_stack.getProperty("print_sequence", "value") == "one_at_a_time" and self._number_of_objects > 1:
self._height = min(self._global_container_stack.getProperty("gantry_height", "value"), machine_height)
if self._height < machine_height:
self._build_volume_message.show()
else:
self._build_volume_message.hide()
else:
self._height = self._global_container_stack.getProperty("machine_height", "value")
self._build_volume_message.hide()
self._depth = self._global_container_stack.getProperty("machine_depth", "value")
self._updateDisallowedAreas()
self._updateRaftThickness()
self.rebuild()
def _onSettingPropertyChanged(self, setting_key, property_name):
if property_name != "value":
return
rebuild_me = False
if setting_key == "print_sequence":
machine_height = self._global_container_stack.getProperty("machine_height", "value")
if Application.getInstance().getGlobalContainerStack().getProperty("print_sequence", "value") == "one_at_a_time" and self._number_of_objects > 1:
self._height = min(self._global_container_stack.getProperty("gantry_height", "value"), machine_height)
if self._height < machine_height:
self._build_volume_message.show()
else:
self._build_volume_message.hide()
else:
self._height = self._global_container_stack.getProperty("machine_height", "value")
self._build_volume_message.hide()
rebuild_me = True
if setting_key in self._skirt_settings or setting_key in self._prime_settings or setting_key in self._tower_settings or setting_key == "print_sequence" or setting_key in self._ooze_shield_settings or setting_key in self._distance_settings:
self._updateDisallowedAreas()
rebuild_me = True
if setting_key in self._raft_settings:
self._updateRaftThickness()
rebuild_me = True
if rebuild_me:
self.rebuild()
def hasErrors(self):
return self._has_errors
def _updateDisallowedAreas(self):
if not self._global_container_stack:
return
self._error_areas = []
result_areas = self._computeDisallowedAreasStatic()
machine_width = self._global_container_stack.getProperty("machine_width", "value")
machine_depth = self._global_container_stack.getProperty("machine_depth", "value")
disallowed_polygons = []
# Check if prime positions intersect with disallowed areas
for area in self._global_container_stack.getProperty("machine_disallowed_areas", "value"):
poly = Polygon(numpy.array(area, numpy.float32))
# Minkowski with zero, to ensure that the polygon is correct & watertight.
poly = poly.getMinkowskiHull(Polygon.approximatedCircle(0))
disallowed_polygons.append(poly)
if disallowed_polygons:
extruder_manager = ExtruderManager.getInstance()
extruders = extruder_manager.getMachineExtruders(self._global_container_stack.getId())
prime_polygons = []
# Each extruder has it's own prime location
for extruder in extruders:
prime_x = extruder.getProperty("extruder_prime_pos_x", "value") - machine_width / 2
prime_y = machine_depth / 2 - extruder.getProperty("extruder_prime_pos_y", "value")
prime_polygon = Polygon.approximatedCircle(PRIME_CLEARANCE)
prime_polygon = prime_polygon.translate(prime_x, prime_y)
prime_polygon = prime_polygon.getMinkowskiHull(Polygon.approximatedCircle(0))
collision = False
# Check if prime polygon is intersecting with any of the other disallowed areas.
# Note that we check the prime area without bed adhesion.
for poly in disallowed_polygons:
if prime_polygon.intersectsPolygon(poly) is not None:
collision = True
break
# Also collide with other prime positions
for poly in prime_polygons:
if prime_polygon.intersectsPolygon(poly) is not None:
collision = True
break
if not collision:
# Prime area is valid. Add as normal.
# Once it's added like this, it will recieve a bed adhesion offset, just like the others.
prime_polygons.append(prime_polygon)
else:
self._error_areas.append(prime_polygon)
result_areas.extend(prime_polygons)
# Add prime tower location as disallowed area.
prime_tower_collision = False
prime_tower_areas = self._computeDisallowedAreasPrinted()
for prime_tower_area in prime_tower_areas:
for area in result_areas:
if prime_tower_area.intersectsPolygon(area) is not None:
prime_tower_collision = True
break
if prime_tower_collision: #Already found a collision.
break
if not prime_tower_collision:
result_areas.extend(prime_tower_areas)
else:
self._error_areas.extend(prime_tower_areas)
self._has_errors = len(self._error_areas) > 0
self._disallowed_areas = result_areas
## Computes the disallowed areas for objects that are printed.
#
# These disallowed areas are not offset with the negative of the nozzle
# offset, since the engine already performs the offset for us to make sure
# they are printed in head-coordinates instead of nozzle-coordinates.
#
# \return A list of polygons that represent the disallowed areas.
def _computeDisallowedAreasPrinted(self):
result = []
#Currently, the only normally printed object is the prime tower.
if ExtruderManager.getInstance().getResolveOrValue("prime_tower_enable") == True:
prime_tower_size = self._global_container_stack.getProperty("prime_tower_size", "value")
machine_width = self._global_container_stack.getProperty("machine_width", "value")
machine_depth = self._global_container_stack.getProperty("machine_depth", "value")
prime_tower_x = self._global_container_stack.getProperty("prime_tower_position_x", "value") - machine_width / 2
prime_tower_y = - self._global_container_stack.getProperty("prime_tower_position_y", "value") + machine_depth / 2
prime_tower_area = Polygon([
[prime_tower_x - prime_tower_size, prime_tower_y - prime_tower_size],
[prime_tower_x, prime_tower_y - prime_tower_size],
[prime_tower_x, prime_tower_y],
[prime_tower_x - prime_tower_size, prime_tower_y],
])
prime_tower_area = prime_tower_area.getMinkowskiHull(Polygon.approximatedCircle(0))
result.append(prime_tower_area)
return result
## Computes the disallowed areas that are statically placed in the machine.
#
# These disallowed areas need to be offset with the negative of the nozzle
# offset to check if the disallowed areas are intersected.
#
# \return A list of polygons that represent the disallowed areas. These
# areas are not offset with any nozzle offset yet.
def _computeDisallowedAreasStatic(self):
result = []
if not self._global_container_stack:
return result
disallowed_border_size = self._getEdgeDisallowedSize()
machine_disallowed_areas = copy.deepcopy(self._global_container_stack.getProperty("machine_disallowed_areas", "value"))
if machine_disallowed_areas:
for area in machine_disallowed_areas:
polygon = Polygon(numpy.array(area, numpy.float32))
polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(disallowed_border_size))
result.append(polygon)
#Add the border around the edge of the build volume.
if disallowed_border_size == 0:
return result #No need to add this border.
half_machine_width = self._global_container_stack.getProperty("machine_width", "value") / 2
half_machine_depth = self._global_container_stack.getProperty("machine_depth", "value") / 2
result.append(Polygon(numpy.array([
[-half_machine_width, -half_machine_depth],
[-half_machine_width, half_machine_depth],
[-half_machine_width + disallowed_border_size, half_machine_depth - disallowed_border_size],
[-half_machine_width + disallowed_border_size, -half_machine_depth + disallowed_border_size]
], numpy.float32)))
result.append(Polygon(numpy.array([
[half_machine_width, half_machine_depth],
[half_machine_width, -half_machine_depth],
[half_machine_width - disallowed_border_size, -half_machine_depth + disallowed_border_size],
[half_machine_width - disallowed_border_size, half_machine_depth - disallowed_border_size]
], numpy.float32)))
result.append(Polygon(numpy.array([
[-half_machine_width, half_machine_depth],
[half_machine_width, half_machine_depth],
[half_machine_width - disallowed_border_size, half_machine_depth - disallowed_border_size],
[-half_machine_width + disallowed_border_size, half_machine_depth - disallowed_border_size]
], numpy.float32)))
result.append(Polygon(numpy.array([
[half_machine_width, -half_machine_depth],
[-half_machine_width, -half_machine_depth],
[-half_machine_width + disallowed_border_size, -half_machine_depth + disallowed_border_size],
[half_machine_width - disallowed_border_size, -half_machine_depth + disallowed_border_size]
], numpy.float32)))
return result
## Private convenience function to get a setting from the adhesion
# extruder.
#
# \param setting_key The key of the setting to get.
# \param property The property to get from the setting.
# \return The property of the specified setting in the adhesion extruder.
def _getSettingFromAdhesionExtruder(self, setting_key, property = "value"):
return self._getSettingFromExtruder(setting_key, "adhesion_extruder_nr", property)
## Private convenience function to get a setting from every extruder.
#
# For single extrusion machines, this gets the setting from the global
# stack.
#
# \return A sequence of setting values, one for each extruder.
def _getSettingFromAllExtruders(self, setting_key, property = "value"):
return ExtruderManager.getInstance().getAllExtruderSettings(setting_key, property)
## Private convenience function to get a setting from the support infill
# extruder.
#
# \param setting_key The key of the setting to get.
# \param property The property to get from the setting.
# \return The property of the specified setting in the support infill
# extruder.
def _getSettingFromSupportInfillExtruder(self, setting_key, property = "value"):
return self._getSettingFromExtruder(setting_key, "support_infill_extruder_nr", property)
## Helper function to get a setting from an extruder specified in another
# setting.
#
# \param setting_key The key of the setting to get.
# \param extruder_setting_key The key of the setting that specifies from
# which extruder to get the setting, if there are multiple extruders.
# \param property The property to get from the setting.
# \return The property of the specified setting in the specified extruder.
def _getSettingFromExtruder(self, setting_key, extruder_setting_key, property = "value"):
multi_extrusion = self._global_container_stack.getProperty("machine_extruder_count", "value") > 1
if not multi_extrusion:
return self._global_container_stack.getProperty(setting_key, property)
extruder_index = self._global_container_stack.getProperty(extruder_setting_key, "value")
if extruder_index == "-1": # If extruder index is -1 use global instead
return self._global_container_stack.getProperty(setting_key, property)
extruder_stack_id = ExtruderManager.getInstance().extruderIds[str(extruder_index)]
stack = UM.Settings.ContainerRegistry.getInstance().findContainerStacks(id = extruder_stack_id)[0]
return stack.getProperty(setting_key, property)
## Convenience function to calculate the disallowed radius around the edge.
#
# This disallowed radius is to allow for space around the models that is
# not part of the collision radius, such as bed adhesion (skirt/brim/raft)
# and travel avoid distance.
def _getEdgeDisallowedSize(self):
if not self._global_container_stack:
return 0
container_stack = self._global_container_stack
# If we are printing one at a time, we need to add the bed adhesion size to the disallowed areas of the objects
if container_stack.getProperty("print_sequence", "value") == "one_at_a_time":
return 0.1 # Return a very small value, so we do draw disallowed area's near the edges.
adhesion_type = container_stack.getProperty("adhesion_type", "value")
if adhesion_type == "skirt":
skirt_distance = self._getSettingFromAdhesionExtruder("skirt_gap")
skirt_line_count = self._getSettingFromAdhesionExtruder("skirt_line_count")
bed_adhesion_size = skirt_distance + (skirt_line_count * self._getSettingFromAdhesionExtruder("skirt_brim_line_width"))
if self._global_container_stack.getProperty("machine_extruder_count", "value") > 1:
adhesion_extruder_nr = int(self._global_container_stack.getProperty("adhesion_extruder_nr", "value"))
extruder_values = ExtruderManager.getInstance().getAllExtruderValues("skirt_brim_line_width")
del extruder_values[adhesion_extruder_nr] # Remove the value of the adhesion extruder nr.
for value in extruder_values:
bed_adhesion_size += value
elif adhesion_type == "brim":
bed_adhesion_size = self._getSettingFromAdhesionExtruder("brim_line_count") * self._getSettingFromAdhesionExtruder("skirt_brim_line_width")
if self._global_container_stack.getProperty("machine_extruder_count", "value") > 1:
adhesion_extruder_nr = int(self._global_container_stack.getProperty("adhesion_extruder_nr", "value"))
extruder_values = ExtruderManager.getInstance().getAllExtruderValues("skirt_brim_line_width")
del extruder_values[adhesion_extruder_nr] # Remove the value of the adhesion extruder nr.
for value in extruder_values:
bed_adhesion_size += value
elif adhesion_type == "raft":
bed_adhesion_size = self._getSettingFromAdhesionExtruder("raft_margin")
else:
raise Exception("Unknown bed adhesion type. Did you forget to update the build volume calculations for your new bed adhesion type?")
support_expansion = 0
if self._getSettingFromSupportInfillExtruder("support_offset") and self._global_container_stack.getProperty("support_enable", "value"):
support_expansion += self._getSettingFromSupportInfillExtruder("support_offset")
farthest_shield_distance = 0
if container_stack.getProperty("draft_shield_enabled", "value"):
farthest_shield_distance = max(farthest_shield_distance, container_stack.getProperty("draft_shield_dist", "value"))
if container_stack.getProperty("ooze_shield_enabled", "value"):
farthest_shield_distance = max(farthest_shield_distance, container_stack.getProperty("ooze_shield_dist", "value"))
move_from_wall_radius = 0 # Moves that start from outer wall.
move_from_wall_radius = max(move_from_wall_radius, max(self._getSettingFromAllExtruders("infill_wipe_dist")))
avoid_enabled_per_extruder = self._getSettingFromAllExtruders(("travel_avoid_other_parts"))
avoid_distance_per_extruder = self._getSettingFromAllExtruders("travel_avoid_distance")
for index, avoid_other_parts_enabled in enumerate(avoid_enabled_per_extruder): #For each extruder (or just global).
if avoid_other_parts_enabled:
move_from_wall_radius = max(move_from_wall_radius, avoid_distance_per_extruder[index]) #Index of the same extruder.
#Now combine our different pieces of data to get the final border size.
#Support expansion is added to the bed adhesion, since the bed adhesion goes around support.
#Support expansion is added to farthest shield distance, since the shields go around support.
border_size = max(move_from_wall_radius, support_expansion + farthest_shield_distance, support_expansion + bed_adhesion_size)
return border_size
def _clamp(self, value, min_value, max_value):
return max(min(value, max_value), min_value)
_skirt_settings = ["adhesion_type", "skirt_gap", "skirt_line_count", "skirt_brim_line_width", "brim_width", "brim_line_count", "raft_margin", "draft_shield_enabled", "draft_shield_dist"]
_raft_settings = ["adhesion_type", "raft_base_thickness", "raft_interface_thickness", "raft_surface_layers", "raft_surface_thickness", "raft_airgap"]
_prime_settings = ["extruder_prime_pos_x", "extruder_prime_pos_y", "extruder_prime_pos_z"]
_tower_settings = ["prime_tower_enable", "prime_tower_size", "prime_tower_position_x", "prime_tower_position_y"]
_ooze_shield_settings = ["ooze_shield_enabled", "ooze_shield_dist"]
_distance_settings = ["infill_wipe_dist", "travel_avoid_distance", "support_offset", "support_enable", "travel_avoid_other_parts"]