Cura/cura/Arrange.py
2017-04-05 11:05:48 +02:00

172 lines
7.7 KiB
Python
Executable File

from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
from UM.Logger import Logger
from cura.ShapeArray import ShapeArray
from collections import namedtuple
import numpy
import copy
## Return object for bestSpot
LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points", "priority"])
## The Arrange classed is used together with ShapeArray. Use it to find
# good locations for objects that you try to put on a build place.
# Different priority schemes can be defined so it alters the behavior while using
# the same logic.
class Arrange:
def __init__(self, x, y, offset_x, offset_y, scale=1):
self.shape = (y, x)
self._priority = numpy.zeros((x, y), dtype=numpy.int32)
self._priority_unique_values = []
self._occupied = numpy.zeros((x, y), dtype=numpy.int32)
self._scale = scale # convert input coordinates to arrange coordinates
self._offset_x = offset_x
self._offset_y = offset_y
## Helper to create an Arranger instance
#
# Either fill in scene_root and create will find all sliceable nodes by itself,
# or use fixed_nodes to provide the nodes yourself.
# \param scene_root Root for finding all scene nodes
# \param fixed_nodes Scene nodes to be placed
@classmethod
def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5):
arranger = Arrange(220, 220, 110, 110, scale = scale)
arranger.centerFirst()
if fixed_nodes is None:
fixed_nodes = []
for node_ in DepthFirstIterator(scene_root):
# Only count sliceable objects
if node_.callDecoration("isSliceable"):
fixed_nodes.append(node_)
# place all objects fixed nodes
for fixed_node in fixed_nodes:
vertices = fixed_node.callDecoration("getConvexHull")
points = copy.deepcopy(vertices._points)
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
arranger.place(0, 0, shape_arr)
return arranger
## Find placement for a node (using offset shape) and place it (using hull shape)
# return the nodes that should be placed
# \param node
# \param offset_shape_arr ShapeArray with offset, used to find location
# \param hull_shape_arr ShapeArray without offset, for placing the shape
# \param count Number of objects
def findNodePlacements(self, node, offset_shape_arr, hull_shape_arr, count = 1, step = 1):
nodes = []
start_prio = 0
for i in range(count):
new_node = copy.deepcopy(node)
best_spot = self.bestSpot(
offset_shape_arr, start_prio = start_prio, step = step)
x, y = best_spot.x, best_spot.y
start_prio = best_spot.priority
transformation = new_node._transformation
if x is not None: # We could find a place
transformation._data[0][3] = x
transformation._data[2][3] = y
self.place(x, y, hull_shape_arr) # take place before the next one
else:
Logger.log("d", "Could not find spot!")
transformation._data[0][3] = 200
transformation._data[2][3] = 100 + i * 20
nodes.append(new_node)
return nodes
## Fill priority, center is best. Lower value is better
# This is a strategy for the arranger.
def centerFirst(self):
# Square distance: creates a more round shape
self._priority = numpy.fromfunction(
lambda i, j: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self.shape, dtype=numpy.int32)
self._priority_unique_values = numpy.unique(self._priority)
self._priority_unique_values.sort()
## Fill priority, back is best. Lower value is better
# This is a strategy for the arranger.
def backFirst(self):
self._priority = numpy.fromfunction(
lambda i, j: 10 * j + abs(self._offset_x - i), self.shape, dtype=numpy.int32)
self._priority_unique_values = numpy.unique(self._priority)
self._priority_unique_values.sort()
## Return the amount of "penalty points" for polygon, which is the sum of priority
# 999999 if occupied
# \param x x-coordinate to check shape
# \param y y-coordinate
# \param shape_arr the ShapeArray object to place
def checkShape(self, x, y, shape_arr):
x = int(self._scale * x)
y = int(self._scale * y)
offset_x = x + self._offset_x + shape_arr.offset_x
offset_y = y + self._offset_y + shape_arr.offset_y
occupied_slice = self._occupied[
offset_y:offset_y + shape_arr.arr.shape[0],
offset_x:offset_x + shape_arr.arr.shape[1]]
try:
if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]):
return 999999
except IndexError: # out of bounds if you try to place an object outside
return 999999
prio_slice = self._priority[
offset_y:offset_y + shape_arr.arr.shape[0],
offset_x:offset_x + shape_arr.arr.shape[1]]
return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
## Find "best" spot for ShapeArray
# Return namedtuple with properties x, y, penalty_points, priority
# \param shape_arr ShapeArray
# \param start_prio Start with this priority value (and skip the ones before)
# \param step Slicing value, higher = more skips = faster but less accurate
def bestSpot(self, shape_arr, start_prio = 0, step = 1):
start_idx_list = numpy.where(self._priority_unique_values == start_prio)
if start_idx_list:
start_idx = start_idx_list[0][0]
else:
start_idx = 0
for prio in self._priority_unique_values[start_idx::step]:
tryout_idx = numpy.where(self._priority == prio)
for idx in range(len(tryout_idx[0])):
x = tryout_idx[0][idx]
y = tryout_idx[1][idx]
projected_x = x - self._offset_x
projected_y = y - self._offset_y
# array to "world" coordinates
penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
if penalty_points != 999999:
return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = prio)
return LocationSuggestion(x = None, y = None, penalty_points = None, priority = prio) # No suitable location found :-(
## Place the object.
# Marks the locations in self._occupied and self._priority
# \param x x-coordinate
# \param y y-coordinate
# \param shape_arr ShapeArray object
def place(self, x, y, shape_arr):
x = int(self._scale * x)
y = int(self._scale * y)
offset_x = x + self._offset_x + shape_arr.offset_x
offset_y = y + self._offset_y + shape_arr.offset_y
shape_y, shape_x = self._occupied.shape
min_x = min(max(offset_x, 0), shape_x - 1)
min_y = min(max(offset_y, 0), shape_y - 1)
max_x = min(max(offset_x + shape_arr.arr.shape[1], 0), shape_x - 1)
max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1)
occupied_slice = self._occupied[min_y:max_y, min_x:max_x]
# we use a slice of shape because it can be out of bounds
occupied_slice[numpy.where(shape_arr.arr[
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 1
# Set priority to low (= high number), so it won't get picked at trying out.
prio_slice = self._priority[min_y:max_y, min_x:max_x]
prio_slice[numpy.where(shape_arr.arr[
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 999