Cura/cura/ConvexHullDecorator.py
Simon Edwards 4cc0026af3 Minor rework in response to code review.
Contributes to CURA-1504
2016-06-15 16:22:48 +02:00

198 lines
9.2 KiB
Python

from UM.Scene.SceneNodeDecorator import SceneNodeDecorator
from UM.Application import Application
from UM.Math.Polygon import Polygon
from . import ConvexHullNode
import numpy
## The convex hull decorator is a scene node decorator that adds the convex hull functionality to a scene node.
# If a scene node has a convex hull decorator, it will have a shadow in which other objects can not be printed.
class ConvexHullDecorator(SceneNodeDecorator):
def __init__(self):
super().__init__()
self._convex_hull_node = None
self._init2DConvexHullCache()
self._profile = None
Application.getInstance().getMachineManager().activeProfileChanged.connect(self._onActiveProfileChanged)
Application.getInstance().getMachineManager().activeMachineInstanceChanged.connect(self._onActiveMachineInstanceChanged)
self._onActiveProfileChanged()
## Force that a new (empty) object is created upon copy.
def __deepcopy__(self, memo):
return ConvexHullDecorator()
## Get the unmodified 2D projected convex hull of the node
def getConvexHull(self):
hull = self._compute2DConvexHull()
profile = Application.getInstance().getMachineManager().getWorkingProfile()
if profile:
if profile.getSettingValue("print_sequence") == "one_at_a_time" and not self._node.getParent().callDecoration("isGroup"):
hull = hull.getMinkowskiHull(Polygon(numpy.array(profile.getSettingValue("machine_head_polygon"), numpy.float32)))
return hull
## Get the convex hull of the node with the full head size
def getConvexHullHeadFull(self):
return self._compute2DConvexHeadFull()
## Get convex hull of the object + head size
# In case of printing all at once this is the same as the convex hull.
# For one at the time this is area with intersection of mirrored head
def getConvexHullHead(self):
profile = Application.getInstance().getMachineManager().getWorkingProfile()
if profile:
if profile.getSettingValue("print_sequence") == "one_at_a_time" and not self._node.getParent().callDecoration(
"isGroup"):
return self._compute2DConvexHeadMin()
return None
## Get convex hull of the node
# In case of printing all at once this is the same as the convex hull.
# For one at the time this is the area without the head.
def getConvexHullBoundary(self):
profile = Application.getInstance().getMachineManager().getWorkingProfile()
if profile:
if profile.getSettingValue("print_sequence") == "one_at_a_time" and not self._node.getParent().callDecoration(
"isGroup"):
# Printing one at a time and it's not an object in a group
return self._compute2DConvexHull()
return None
def recomputeConvexHull(self):
convex_hull = self.getConvexHull()
if self._convex_hull_node:
if self._convex_hull_node.getHull() == convex_hull:
return
self._convex_hull_node.setParent(None)
hull_node = ConvexHullNode.ConvexHullNode(self._node, convex_hull,
Application.getInstance().getController().getScene().getRoot())
self._convex_hull_node = hull_node
def _onActiveProfileChanged(self):
if self._profile:
self._profile.settingValueChanged.disconnect(self._onSettingValueChanged)
self._profile = Application.getInstance().getMachineManager().getWorkingProfile()
if self._profile:
self._profile.settingValueChanged.connect(self._onSettingValueChanged)
def _onActiveMachineInstanceChanged(self):
if self._convex_hull_node:
self._convex_hull_node.setParent(None)
self._convex_hull_node = None
def _onSettingValueChanged(self, setting):
if setting == "print_sequence":
self.recomputeConvexHull()
def _init2DConvexHullCache(self):
# Cache for the group code path in _compute2DConvexHull()
self._2d_convex_hull_group_child_polygon = None
self._2d_convex_hull_group_result = None
# Cache for the mesh code path in _compute2DConvexHull()
self._2d_convex_hull_mesh = None
self._2d_convex_hull_mesh_world_transform = None
self._2d_convex_hull_mesh_result = None
def _compute2DConvexHull(self):
if self._node.callDecoration("isGroup"):
points = numpy.zeros((0, 2), dtype=numpy.int32)
for child in self._node.getChildren():
child_hull = child.callDecoration("_compute2DConvexHull")
if child_hull:
points = numpy.append(points, child_hull.getPoints(), axis = 0)
if points.size < 3:
return None
child_polygon = Polygon(points)
# Check the cache
if child_polygon == self._2d_convex_hull_group_child_polygon:
return self._2d_convex_hull_group_result
# First, calculate the normal convex hull around the points
convex_hull = child_polygon.getConvexHull()
# Then, do a Minkowski hull with a simple 1x1 quad to outset and round the normal convex hull.
# This is done because of rounding errors.
rounded_hull = self._roundHull(convex_hull)
# Store the result in the cache
self._2d_convex_hull_group_child_polygon = child_polygon
self._2d_convex_hull_group_result = rounded_hull
return rounded_hull
else:
rounded_hull = None
if self._node.getMeshData():
mesh = self._node.getMeshData()
world_transform = self._node.getWorldTransformation()
# Check the cache
if mesh is self._2d_convex_hull_mesh and world_transform == self._2d_convex_hull_mesh_world_transform:
return self._2d_convex_hull_mesh_result
vertex_data = mesh.getConvexHullTransformedVertices(world_transform)
# Don't use data below 0.
# TODO; We need a better check for this as this gives poor results for meshes with long edges.
vertex_data = vertex_data[vertex_data[:,1] >= 0]
if len(vertex_data) >= 4:
# Round the vertex data to 1/10th of a mm, then remove all duplicate vertices
# This is done to greatly speed up further convex hull calculations as the convex hull
# becomes much less complex when dealing with highly detailed models.
vertex_data = numpy.round(vertex_data, 1)
vertex_data = vertex_data[:, [0, 2]] # Drop the Y components to project to 2D.
# Grab the set of unique points.
#
# This basically finds the unique rows in the array by treating them as opaque groups of bytes
# which are as long as the 2 float64s in each row, and giving this view to numpy.unique() to munch.
# See http://stackoverflow.com/questions/16970982/find-unique-rows-in-numpy-array
vertex_byte_view = numpy.ascontiguousarray(vertex_data).view(
numpy.dtype((numpy.void, vertex_data.dtype.itemsize * vertex_data.shape[1])))
_, idx = numpy.unique(vertex_byte_view, return_index=True)
vertex_data = vertex_data[idx] # Select the unique rows by index.
hull = Polygon(vertex_data)
if len(vertex_data) >= 4:
# First, calculate the normal convex hull around the points
convex_hull = hull.getConvexHull()
# Then, do a Minkowski hull with a simple 1x1 quad to outset and round the normal convex hull.
# This is done because of rounding errors.
rounded_hull = convex_hull.getMinkowskiHull(Polygon(numpy.array([[-0.5, -0.5], [-0.5, 0.5], [0.5, 0.5], [0.5, -0.5]], numpy.float32)))
# Store the result in the cache
self._2d_convex_hull_mesh = mesh
self._2d_convex_hull_mesh_world_transform = world_transform
self._2d_convex_hull_mesh_result = rounded_hull
return rounded_hull
def _getHeadAndFans(self):
profile = Application.getInstance().getMachineManager().getWorkingProfile()
return Polygon(numpy.array(profile.getSettingValue("machine_head_with_fans_polygon"), numpy.float32))
def _compute2DConvexHeadFull(self):
return self._compute2DConvexHull().getMinkowskiHull(self._getHeadAndFans())
def _compute2DConvexHeadMin(self):
headAndFans = self._getHeadAndFans()
mirrored = headAndFans.mirror([0, 0], [0, 1]).mirror([0, 0], [1, 0]) # Mirror horizontally & vertically.
head_and_fans = self._getHeadAndFans().intersectionConvexHulls(mirrored)
# Min head hull is used for the push free
min_head_hull = self._compute2DConvexHull().getMinkowskiHull(head_and_fans)
return min_head_hull
def _roundHull(self, convex_hull):
return convex_hull.getMinkowskiHull(Polygon(numpy.array([[-0.5, -0.5], [-0.5, 0.5], [0.5, 0.5], [0.5, -0.5]], numpy.float32)))