Cura/cura/Arranging/ShapeArray.py
2020-05-29 14:30:33 +02:00

162 lines
7.1 KiB
Python

# Copyright (c) 2019 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
import numpy
import copy
from typing import Optional, Tuple, TYPE_CHECKING
from UM.Math.Polygon import Polygon
if TYPE_CHECKING:
from UM.Scene.SceneNode import SceneNode
class ShapeArray:
"""Polygon representation as an array for use with :py:class:`cura.Arranging.Arrange.Arrange`"""
def __init__(self, arr: numpy.array, offset_x: float, offset_y: float, scale: float = 1) -> None:
self.arr = arr
self.offset_x = offset_x
self.offset_y = offset_y
self.scale = scale
@classmethod
def fromPolygon(cls, vertices: numpy.array, scale: float = 1) -> "ShapeArray":
"""Instantiate from a bunch of vertices
:param vertices:
:param scale: scale the coordinates
:return: a shape array instantiated from a bunch of vertices
"""
# scale
vertices = vertices * scale
# flip y, x -> x, y
flip_vertices = numpy.zeros((vertices.shape))
flip_vertices[:, 0] = vertices[:, 1]
flip_vertices[:, 1] = vertices[:, 0]
flip_vertices = flip_vertices[::-1]
# offset, we want that all coordinates have positive values
offset_y = int(numpy.amin(flip_vertices[:, 0]))
offset_x = int(numpy.amin(flip_vertices[:, 1]))
flip_vertices[:, 0] = numpy.add(flip_vertices[:, 0], -offset_y)
flip_vertices[:, 1] = numpy.add(flip_vertices[:, 1], -offset_x)
shape = numpy.array([int(numpy.amax(flip_vertices[:, 0])), int(numpy.amax(flip_vertices[:, 1]))])
shape[numpy.where(shape == 0)] = 1
arr = cls.arrayFromPolygon(shape, flip_vertices)
if not numpy.ndarray.any(arr):
# set at least 1 pixel
arr[0][0] = 1
return cls(arr, offset_x, offset_y)
@classmethod
def fromNode(cls, node: "SceneNode", min_offset: float, scale: float = 0.5, include_children: bool = False) -> Tuple[Optional["ShapeArray"], Optional["ShapeArray"]]:
"""Instantiate an offset and hull ShapeArray from a scene node.
:param node: source node where the convex hull must be present
:param min_offset: offset for the offset ShapeArray
:param scale: scale the coordinates
:return: A tuple containing an offset and hull shape array
"""
transform = node._transformation
transform_x = transform._data[0][3]
transform_y = transform._data[2][3]
hull_verts = node.callDecoration("getConvexHull")
# If a model is too small then it will not contain any points
if hull_verts is None or not hull_verts.getPoints().any():
return None, None
# For one_at_a_time printing you need the convex hull head.
hull_head_verts = node.callDecoration("getConvexHullHead") or hull_verts
if hull_head_verts is None:
hull_head_verts = Polygon()
# If the child-nodes are included, adjust convex hulls as well:
if include_children:
children = node.getAllChildren()
if not children is None:
for child in children:
# 'Inefficient' combination of convex hulls through known code rather than mess it up:
child_hull = child.callDecoration("getConvexHull")
if not child_hull is None:
hull_verts = hull_verts.unionConvexHulls(child_hull)
child_hull_head = child.callDecoration("getConvexHullHead") or child_hull
if not child_hull_head is None:
hull_head_verts = hull_head_verts.unionConvexHulls(child_hull_head)
offset_verts = hull_head_verts.getMinkowskiHull(Polygon.approximatedCircle(min_offset))
offset_points = copy.deepcopy(offset_verts._points) # x, y
offset_points[:, 0] = numpy.add(offset_points[:, 0], -transform_x)
offset_points[:, 1] = numpy.add(offset_points[:, 1], -transform_y)
offset_shape_arr = ShapeArray.fromPolygon(offset_points, scale = scale)
hull_points = copy.deepcopy(hull_verts._points)
hull_points[:, 0] = numpy.add(hull_points[:, 0], -transform_x)
hull_points[:, 1] = numpy.add(hull_points[:, 1], -transform_y)
hull_shape_arr = ShapeArray.fromPolygon(hull_points, scale = scale) # x, y
return offset_shape_arr, hull_shape_arr
@classmethod
def arrayFromPolygon(cls, shape: Tuple[int, int], vertices: numpy.array) -> numpy.array:
"""Create :py:class:`numpy.ndarray` with dimensions defined by shape
Fills polygon defined by vertices with ones, all other values zero
Only works correctly for convex hull vertices
Originally from: `Stackoverflow - generating a filled polygon inside a numpy array <https://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array>`_
:param shape: numpy format shape, [x-size, y-size]
:param vertices:
:return: numpy array with dimensions defined by shape
"""
base_array = numpy.zeros(shape, dtype = numpy.int32) # Initialize your array of zeros
fill = numpy.ones(base_array.shape) * True # Initialize boolean array defining shape fill
# Create check array for each edge segment, combine into fill array
for k in range(vertices.shape[0]):
check_array = cls._check(vertices[k - 1], vertices[k], base_array)
if check_array is not None:
fill = numpy.all([fill, check_array], axis=0)
# Set all values inside polygon to one
base_array[fill] = 1
return base_array
@classmethod
def _check(cls, p1: numpy.array, p2: numpy.array, base_array: numpy.array) -> Optional[numpy.array]:
"""Return indices that mark one side of the line, used by arrayFromPolygon
Uses the line defined by p1 and p2 to check array of
input indices against interpolated value
Returns boolean array, with True inside and False outside of shape
Originally from: `Stackoverflow - generating a filled polygon inside a numpy array <https://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array>`_
:param p1: 2-tuple with x, y for point 1
:param p2: 2-tuple with x, y for point 2
:param base_array: boolean array to project the line on
:return: A numpy array with indices that mark one side of the line
"""
if p1[0] == p2[0] and p1[1] == p2[1]:
return None
idxs = numpy.indices(base_array.shape) # Create 3D array of indices
p1 = p1.astype(float)
p2 = p2.astype(float)
if p2[0] == p1[0]:
sign = numpy.sign(p2[1] - p1[1])
return idxs[1] * sign
if p2[1] == p1[1]:
sign = numpy.sign(p2[0] - p1[0])
return idxs[1] * sign
# Calculate max column idx for each row idx based on interpolated line between two points
max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
sign = numpy.sign(p2[0] - p1[0])
return idxs[1] * sign <= max_col_idx * sign