Cura/cura/Arrange.py

155 lines
6.3 KiB
Python
Executable File

import numpy as np
## Some polygon converted to an array
class ShapeArray:
def __init__(self, arr, offset_x, offset_y, scale = 1):
self.arr = arr
self.offset_x = offset_x
self.offset_y = offset_y
self.scale = scale
@classmethod
def from_polygon(cls, vertices, scale = 1):
# scale
vertices = vertices * scale
# offset
offset_y = int(np.amin(vertices[:, 0]))
offset_x = int(np.amin(vertices[:, 1]))
# normalize to 0
vertices[:, 0] = np.add(vertices[:, 0], -offset_y)
vertices[:, 1] = np.add(vertices[:, 1], -offset_x)
shape = [int(np.amax(vertices[:, 0])), int(np.amax(vertices[:, 1]))]
arr = cls.array_from_polygon(shape, vertices)
return cls(arr, offset_x, offset_y)
## Return indices that mark one side of the line, used by array_from_polygon
# Uses the line defined by p1 and p2 to check array of
# input indices against interpolated value
# Returns boolean array, with True inside and False outside of shape
# Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
@classmethod
def _check(cls, p1, p2, base_array):
"""
"""
if p1[0] == p2[0] and p1[1] == p2[1]:
return
idxs = np.indices(base_array.shape) # Create 3D array of indices
p1 = p1.astype(float)
p2 = p2.astype(float)
if p2[0] == p1[0]:
sign = np.sign(p2[1] - p1[1])
return idxs[1] * sign
if p2[1] == p1[1]:
sign = np.sign(p2[0] - p1[0])
return idxs[1] * sign
# Calculate max column idx for each row idx based on interpolated line between two points
max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
sign = np.sign(p2[0] - p1[0])
return idxs[1] * sign <= max_col_idx * sign
@classmethod
def array_from_polygon(cls, shape, vertices):
"""
Creates np.array with dimensions defined by shape
Fills polygon defined by vertices with ones, all other values zero
Only works correctly for convex hull vertices
"""
base_array = np.zeros(shape, dtype=float) # Initialize your array of zeros
fill = np.ones(base_array.shape) * True # Initialize boolean array defining shape fill
# Create check array for each edge segment, combine into fill array
for k in range(vertices.shape[0]):
fill = np.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0)
# Set all values inside polygon to one
base_array[fill] = 1
return base_array
class Arrange:
def __init__(self, x, y, offset_x, offset_y, scale=1):
self.shape = (y, x)
self._priority = np.zeros((x, y), dtype=np.int32)
self._occupied = np.zeros((x, y), dtype=np.int32)
self._scale = scale # convert input coordinates to arrange coordinates
self._offset_x = offset_x
self._offset_y = offset_y
## Fill priority, take offset as center. lower is better
def centerFirst(self):
self._priority = np.fromfunction(
lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape)
## Return the amount of "penalty points" for polygon, which is the sum of priority
# 999999 if occupied
def check_shape(self, x, y, shape_arr):
x = int(self._scale * x)
y = int(self._scale * y)
offset_x = x + self._offset_x + shape_arr.offset_x
offset_y = y + self._offset_y + shape_arr.offset_y
occupied_slice = self._occupied[
offset_y:offset_y + shape_arr.arr.shape[0],
offset_x:offset_x + shape_arr.arr.shape[1]]
if np.any(occupied_slice[np.where(shape_arr.arr == 1)]):
return 999999
prio_slice = self._priority[
offset_y:offset_y + shape_arr.arr.shape[0],
offset_x:offset_x + shape_arr.arr.shape[1]]
return np.sum(prio_slice[np.where(shape_arr.arr == 1)])
## Slower but better (it tries all possible locations)
def bestSpot2(self, shape_arr):
best_x, best_y, best_points = None, None, None
min_y = max(-shape_arr.offset_y, 0) - self._offset_y
max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
min_x = max(-shape_arr.offset_x, 0) - self._offset_x
max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
for y in range(min_y, max_y):
for x in range(min_x, max_x):
penalty_points = self.check_shape(x, y, shape_arr)
if best_points is None or penalty_points < best_points:
best_points = penalty_points
best_x, best_y = x, y
return best_x, best_y, best_points
## Faster
def bestSpot(self, shape_arr):
min_y = max(-shape_arr.offset_y, 0) - self._offset_y
max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
min_x = max(-shape_arr.offset_x, 0) - self._offset_x
max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
for prio in range(200):
tryout_idx = np.where(self._priority == prio)
for idx in range(len(tryout_idx[0])):
x = tryout_idx[0][idx]
y = tryout_idx[1][idx]
projected_x = x - self._offset_x
projected_y = y - self._offset_y
if projected_x < min_x or projected_x > max_x or projected_y < min_y or projected_y > max_y:
continue
# array to "world" coordinates
penalty_points = self.check_shape(projected_x, projected_y, shape_arr)
if penalty_points != 999999:
return projected_x, projected_y, penalty_points
return None, None, None # No suitable location found :-(
def place(self, x, y, shape_arr):
x = int(self._scale * x)
y = int(self._scale * y)
offset_x = x + self._offset_x + shape_arr.offset_x
offset_y = y + self._offset_y + shape_arr.offset_y
occupied_slice = self._occupied[
offset_y:offset_y + shape_arr.arr.shape[0],
offset_x:offset_x + shape_arr.arr.shape[1]]
occupied_slice[np.where(shape_arr.arr == 1)] = 1