mirror of
https://git.mirrors.martin98.com/https://github.com/Ultimaker/Cura
synced 2025-05-07 20:39:00 +08:00
168 lines
7.2 KiB
Python
Executable File
168 lines
7.2 KiB
Python
Executable File
import numpy as np
|
|
|
|
## Some polygon converted to an array
|
|
class ShapeArray:
|
|
def __init__(self, arr, offset_x, offset_y, scale = 1):
|
|
self.arr = arr
|
|
self.offset_x = offset_x
|
|
self.offset_y = offset_y
|
|
self.scale = scale
|
|
|
|
@classmethod
|
|
def from_polygon(cls, vertices, scale = 1):
|
|
# scale
|
|
vertices = vertices * scale
|
|
# flip y, x -> x, y
|
|
flip_vertices = np.zeros((vertices.shape))
|
|
flip_vertices[:, 0] = vertices[:, 1]
|
|
flip_vertices[:, 1] = vertices[:, 0]
|
|
flip_vertices = flip_vertices[::-1]
|
|
# offset, we want that all coordinates have positive values
|
|
offset_y = int(np.amin(flip_vertices[:, 0]))
|
|
offset_x = int(np.amin(flip_vertices[:, 1]))
|
|
flip_vertices[:, 0] = np.add(flip_vertices[:, 0], -offset_y)
|
|
flip_vertices[:, 1] = np.add(flip_vertices[:, 1], -offset_x)
|
|
shape = [int(np.amax(flip_vertices[:, 0])), int(np.amax(flip_vertices[:, 1]))]
|
|
arr = cls.array_from_polygon(shape, flip_vertices)
|
|
return cls(arr, offset_x, offset_y)
|
|
|
|
# Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
|
|
@classmethod
|
|
def array_from_polygon(cls, shape, vertices):
|
|
"""
|
|
Creates np.array with dimensions defined by shape
|
|
Fills polygon defined by vertices with ones, all other values zero
|
|
|
|
Only works correctly for convex hull vertices
|
|
"""
|
|
base_array = np.zeros(shape, dtype=float) # Initialize your array of zeros
|
|
|
|
fill = np.ones(base_array.shape) * True # Initialize boolean array defining shape fill
|
|
|
|
# Create check array for each edge segment, combine into fill array
|
|
for k in range(vertices.shape[0]):
|
|
fill = np.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0)
|
|
|
|
# Set all values inside polygon to one
|
|
base_array[fill] = 1
|
|
|
|
return base_array
|
|
|
|
## Return indices that mark one side of the line, used by array_from_polygon
|
|
# Uses the line defined by p1 and p2 to check array of
|
|
# input indices against interpolated value
|
|
|
|
# Returns boolean array, with True inside and False outside of shape
|
|
# Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
|
|
@classmethod
|
|
def _check(cls, p1, p2, base_array):
|
|
if p1[0] == p2[0] and p1[1] == p2[1]:
|
|
return
|
|
idxs = np.indices(base_array.shape) # Create 3D array of indices
|
|
|
|
p1 = p1.astype(float)
|
|
p2 = p2.astype(float)
|
|
|
|
if p2[0] == p1[0]:
|
|
sign = np.sign(p2[1] - p1[1])
|
|
return idxs[1] * sign
|
|
|
|
if p2[1] == p1[1]:
|
|
sign = np.sign(p2[0] - p1[0])
|
|
return idxs[1] * sign
|
|
|
|
# Calculate max column idx for each row idx based on interpolated line between two points
|
|
|
|
max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
|
|
sign = np.sign(p2[0] - p1[0])
|
|
return idxs[1] * sign <= max_col_idx * sign
|
|
|
|
|
|
class Arrange:
|
|
def __init__(self, x, y, offset_x, offset_y, scale=1):
|
|
self.shape = (y, x)
|
|
self._priority = np.zeros((x, y), dtype=np.int32)
|
|
self._priority_unique_values = []
|
|
self._occupied = np.zeros((x, y), dtype=np.int32)
|
|
self._scale = scale # convert input coordinates to arrange coordinates
|
|
self._offset_x = offset_x
|
|
self._offset_y = offset_y
|
|
|
|
## Fill priority, take offset as center. lower is better
|
|
def centerFirst(self):
|
|
# Distance x + distance y
|
|
#self._priority = np.fromfunction(
|
|
# lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape, dtype=np.int32)
|
|
# Square distance
|
|
# self._priority = np.fromfunction(
|
|
# lambda i, j: abs(self._offset_x-i)**2+abs(self._offset_y-j)**2, self.shape, dtype=np.int32)
|
|
self._priority = np.fromfunction(
|
|
lambda i, j: abs(self._offset_x-i)**3+abs(self._offset_y-j)**3, self.shape, dtype=np.int32)
|
|
# self._priority = np.fromfunction(
|
|
# lambda i, j: max(abs(self._offset_x-i), abs(self._offset_y-j)), self.shape, dtype=np.int32)
|
|
self._priority_unique_values = np.unique(self._priority)
|
|
self._priority_unique_values.sort()
|
|
|
|
## Return the amount of "penalty points" for polygon, which is the sum of priority
|
|
# 999999 if occupied
|
|
def check_shape(self, x, y, shape_arr):
|
|
x = int(self._scale * x)
|
|
y = int(self._scale * y)
|
|
offset_x = x + self._offset_x + shape_arr.offset_x
|
|
offset_y = y + self._offset_y + shape_arr.offset_y
|
|
occupied_slice = self._occupied[
|
|
offset_y:offset_y + shape_arr.arr.shape[0],
|
|
offset_x:offset_x + shape_arr.arr.shape[1]]
|
|
try:
|
|
if np.any(occupied_slice[np.where(shape_arr.arr == 1)]):
|
|
return 999999
|
|
except IndexError: # out of bounds if you try to place an object outside
|
|
return 999999
|
|
prio_slice = self._priority[
|
|
offset_y:offset_y + shape_arr.arr.shape[0],
|
|
offset_x:offset_x + shape_arr.arr.shape[1]]
|
|
return np.sum(prio_slice[np.where(shape_arr.arr == 1)])
|
|
|
|
## Find "best" spot
|
|
def bestSpot(self, shape_arr, start_prio = 0, step = 1):
|
|
start_idx_list = np.where(self._priority_unique_values == start_prio)
|
|
if start_idx_list:
|
|
start_idx = start_idx_list[0]
|
|
else:
|
|
start_idx = 0
|
|
for prio in self._priority_unique_values[start_idx::step]:
|
|
tryout_idx = np.where(self._priority == prio)
|
|
for idx in range(len(tryout_idx[0])):
|
|
x = tryout_idx[0][idx]
|
|
y = tryout_idx[1][idx]
|
|
projected_x = x - self._offset_x
|
|
projected_y = y - self._offset_y
|
|
|
|
# array to "world" coordinates
|
|
penalty_points = self.check_shape(projected_x, projected_y, shape_arr)
|
|
if penalty_points != 999999:
|
|
return projected_x, projected_y, penalty_points, prio
|
|
return None, None, None, prio # No suitable location found :-(
|
|
|
|
## Place the object
|
|
def place(self, x, y, shape_arr):
|
|
x = int(self._scale * x)
|
|
y = int(self._scale * y)
|
|
offset_x = x + self._offset_x + shape_arr.offset_x
|
|
offset_y = y + self._offset_y + shape_arr.offset_y
|
|
shape_y, shape_x = self._occupied.shape
|
|
|
|
min_x = min(max(offset_x, 0), shape_x - 1)
|
|
min_y = min(max(offset_y, 0), shape_y - 1)
|
|
max_x = min(max(offset_x + shape_arr.arr.shape[1], 0), shape_x - 1)
|
|
max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1)
|
|
occupied_slice = self._occupied[min_y:max_y, min_x:max_x]
|
|
# we use a slice of shape because it can be out of bounds
|
|
occupied_slice[np.where(shape_arr.arr[
|
|
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 1
|
|
|
|
# Set priority to low (= high number), so it won't get picked at trying out.
|
|
prio_slice = self._priority[min_y:max_y, min_x:max_x]
|
|
prio_slice[np.where(shape_arr.arr[
|
|
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 999
|