Cura/cura/Arranging/Arrange.py
Kostas Karmas c54605a134 Transfer deprecated decorator on __init__ of Arrange
As it cannot decorate a class.

Also, the deprecated decorator has to be applied before the @classmethod.

CURA-7440
2020-10-13 18:06:44 +02:00

259 lines
11 KiB
Python

# Copyright (c) 2020 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
from typing import Optional
from UM.Decorators import deprecated
from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
from UM.Logger import Logger
from UM.Math.Polygon import Polygon
from UM.Math.Vector import Vector
from UM.Scene.SceneNode import SceneNode
from cura.Arranging.ShapeArray import ShapeArray
from cura.BuildVolume import BuildVolume
from cura.Scene import ZOffsetDecorator
from collections import namedtuple
import numpy
import copy
LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points", "priority"])
"""Return object for bestSpot"""
class Arrange:
"""
The Arrange classed is used together with :py:class:`cura.Arranging.ShapeArray.ShapeArray`. Use it to find good locations for objects that you try to put
on a build place. Different priority schemes can be defined so it alters the behavior while using the same logic.
.. note::
Make sure the scale is the same between :py:class:`cura.Arranging.ShapeArray.ShapeArray` objects and the :py:class:`cura.Arranging.Arrange.Arrange` instance.
"""
build_volume = None # type: Optional[BuildVolume]
@deprecated("Use the functions in Nest2dArrange instead", "4.8")
def __init__(self, x, y, offset_x, offset_y, scale = 0.5):
self._scale = scale # convert input coordinates to arrange coordinates
world_x, world_y = int(x * self._scale), int(y * self._scale)
self._shape = (world_y, world_x)
self._priority = numpy.zeros((world_y, world_x), dtype=numpy.int32) # beware: these are indexed (y, x)
self._priority_unique_values = []
self._occupied = numpy.zeros((world_y, world_x), dtype=numpy.int32) # beware: these are indexed (y, x)
self._offset_x = int(offset_x * self._scale)
self._offset_y = int(offset_y * self._scale)
self._last_priority = 0
self._is_empty = True
@classmethod
@deprecated("Use the functions in Nest2dArrange instead", "4.8")
def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5, x = 350, y = 250, min_offset = 8) -> "Arrange":
"""Helper to create an :py:class:`cura.Arranging.Arrange.Arrange` instance
Either fill in scene_root and create will find all sliceable nodes by itself, or use fixed_nodes to provide the
nodes yourself.
:param scene_root: Root for finding all scene nodes default = None
:param fixed_nodes: Scene nodes to be placed default = None
:param scale: default = 0.5
:param x: default = 350
:param y: default = 250
:param min_offset: default = 8
"""
arranger = Arrange(x, y, x // 2, y // 2, scale = scale)
arranger.centerFirst()
if fixed_nodes is None:
fixed_nodes = []
for node_ in DepthFirstIterator(scene_root):
# Only count sliceable objects
if node_.callDecoration("isSliceable"):
fixed_nodes.append(node_)
# Place all objects fixed nodes
for fixed_node in fixed_nodes:
vertices = fixed_node.callDecoration("getConvexHullHead") or fixed_node.callDecoration("getConvexHull")
if not vertices:
continue
vertices = vertices.getMinkowskiHull(Polygon.approximatedCircle(min_offset))
points = copy.deepcopy(vertices._points)
# After scaling (like up to 0.1 mm) the node might not have points
if not points.size:
continue
try:
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
except ValueError:
Logger.logException("w", "Unable to create polygon")
continue
arranger.place(0, 0, shape_arr)
# If a build volume was set, add the disallowed areas
if Arrange.build_volume:
disallowed_areas = Arrange.build_volume.getDisallowedAreasNoBrim()
for area in disallowed_areas:
points = copy.deepcopy(area._points)
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
arranger.place(0, 0, shape_arr, update_empty = False)
return arranger
def resetLastPriority(self):
"""This resets the optimization for finding location based on size"""
self._last_priority = 0
@deprecated("Use the functions in Nest2dArrange instead", "4.8")
def findNodePlacement(self, node: SceneNode, offset_shape_arr: ShapeArray, hull_shape_arr: ShapeArray, step = 1) -> bool:
"""Find placement for a node (using offset shape) and place it (using hull shape)
:param node: The node to be placed
:param offset_shape_arr: shape array with offset, for placing the shape
:param hull_shape_arr: shape array without offset, used to find location
:param step: default = 1
:return: the nodes that should be placed
"""
best_spot = self.bestSpot(
hull_shape_arr, start_prio = self._last_priority, step = step)
x, y = best_spot.x, best_spot.y
# Save the last priority.
self._last_priority = best_spot.priority
# Ensure that the object is above the build platform
node.removeDecorator(ZOffsetDecorator.ZOffsetDecorator)
bbox = node.getBoundingBox()
if bbox:
center_y = node.getWorldPosition().y - bbox.bottom
else:
center_y = 0
if x is not None: # We could find a place
node.setPosition(Vector(x, center_y, y))
found_spot = True
self.place(x, y, offset_shape_arr) # place the object in arranger
else:
Logger.log("d", "Could not find spot!")
found_spot = False
node.setPosition(Vector(200, center_y, 100))
return found_spot
def centerFirst(self):
"""Fill priority, center is best. Lower value is better. """
# Square distance: creates a more round shape
self._priority = numpy.fromfunction(
lambda j, i: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self._shape, dtype=numpy.int32)
self._priority_unique_values = numpy.unique(self._priority)
self._priority_unique_values.sort()
def backFirst(self):
"""Fill priority, back is best. Lower value is better """
self._priority = numpy.fromfunction(
lambda j, i: 10 * j + abs(self._offset_x - i), self._shape, dtype=numpy.int32)
self._priority_unique_values = numpy.unique(self._priority)
self._priority_unique_values.sort()
def checkShape(self, x, y, shape_arr) -> Optional[numpy.ndarray]:
"""Return the amount of "penalty points" for polygon, which is the sum of priority
:param x: x-coordinate to check shape
:param y: y-coordinate to check shape
:param shape_arr: the shape array object to place
:return: None if occupied
"""
x = int(self._scale * x)
y = int(self._scale * y)
offset_x = x + self._offset_x + shape_arr.offset_x
offset_y = y + self._offset_y + shape_arr.offset_y
if offset_x < 0 or offset_y < 0:
return None # out of bounds in self._occupied
occupied_x_max = offset_x + shape_arr.arr.shape[1]
occupied_y_max = offset_y + shape_arr.arr.shape[0]
if occupied_x_max > self._occupied.shape[1] + 1 or occupied_y_max > self._occupied.shape[0] + 1:
return None # out of bounds in self._occupied
occupied_slice = self._occupied[
offset_y:occupied_y_max,
offset_x:occupied_x_max]
try:
if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]):
return None
except IndexError: # out of bounds if you try to place an object outside
return None
prio_slice = self._priority[
offset_y:offset_y + shape_arr.arr.shape[0],
offset_x:offset_x + shape_arr.arr.shape[1]]
return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
def bestSpot(self, shape_arr, start_prio = 0, step = 1) -> LocationSuggestion:
"""Find "best" spot for ShapeArray
:param shape_arr: shape array
:param start_prio: Start with this priority value (and skip the ones before)
:param step: Slicing value, higher = more skips = faster but less accurate
:return: namedtuple with properties x, y, penalty_points, priority.
"""
start_idx_list = numpy.where(self._priority_unique_values == start_prio)
if start_idx_list:
try:
start_idx = start_idx_list[0][0]
except IndexError:
start_idx = 0
else:
start_idx = 0
priority = 0
for priority in self._priority_unique_values[start_idx::step]:
tryout_idx = numpy.where(self._priority == priority)
for idx in range(len(tryout_idx[0])):
x = tryout_idx[1][idx]
y = tryout_idx[0][idx]
projected_x = int((x - self._offset_x) / self._scale)
projected_y = int((y - self._offset_y) / self._scale)
penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
if penalty_points is not None:
return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = priority)
return LocationSuggestion(x = None, y = None, penalty_points = None, priority = priority) # No suitable location found :-(
def place(self, x, y, shape_arr, update_empty = True):
"""Place the object.
Marks the locations in self._occupied and self._priority
:param x:
:param y:
:param shape_arr:
:param update_empty: updates the _is_empty, used when adding disallowed areas
"""
x = int(self._scale * x)
y = int(self._scale * y)
offset_x = x + self._offset_x + shape_arr.offset_x
offset_y = y + self._offset_y + shape_arr.offset_y
shape_y, shape_x = self._occupied.shape
min_x = min(max(offset_x, 0), shape_x - 1)
min_y = min(max(offset_y, 0), shape_y - 1)
max_x = min(max(offset_x + shape_arr.arr.shape[1], 0), shape_x - 1)
max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1)
occupied_slice = self._occupied[min_y:max_y, min_x:max_x]
# we use a slice of shape because it can be out of bounds
new_occupied = numpy.where(shape_arr.arr[
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)
if update_empty and new_occupied:
self._is_empty = False
occupied_slice[new_occupied] = 1
# Set priority to low (= high number), so it won't get picked at trying out.
prio_slice = self._priority[min_y:max_y, min_x:max_x]
prio_slice[new_occupied] = 999
@property
def isEmpty(self):
return self._is_empty