Cura/cura/LayerPolygon.py
2019-07-18 11:49:18 +02:00

252 lines
12 KiB
Python

# Copyright (c) 2019 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
from UM.Application import Application
from typing import Any, Optional
import numpy
from UM.Logger import Logger
class LayerPolygon:
NoneType = 0
Inset0Type = 1
InsetXType = 2
SkinType = 3
SupportType = 4
SkirtType = 5
InfillType = 6
SupportInfillType = 7
MoveCombingType = 8
MoveRetractionType = 9
SupportInterfaceType = 10
PrimeTowerType = 11
__number_of_types = 12
__jump_map = numpy.logical_or(numpy.logical_or(numpy.arange(__number_of_types) == NoneType, numpy.arange(__number_of_types) == MoveCombingType), numpy.arange(__number_of_types) == MoveRetractionType)
## LayerPolygon, used in ProcessSlicedLayersJob
# \param extruder The position of the extruder
# \param line_types array with line_types
# \param data new_points
# \param line_widths array with line widths
# \param line_thicknesses: array with type as index and thickness as value
# \param line_feedrates array with line feedrates
def __init__(self, extruder: int, line_types: numpy.ndarray, data: numpy.ndarray, line_widths: numpy.ndarray, line_thicknesses: numpy.ndarray, line_feedrates: numpy.ndarray) -> None:
self._extruder = extruder
self._types = line_types
for i in range(len(self._types)):
if self._types[i] >= self.__number_of_types: # Got faulty line data from the engine.
Logger.log("w", "Found an unknown line type: %s", i)
self._types[i] = self.NoneType
self._data = data
self._line_widths = line_widths
self._line_thicknesses = line_thicknesses
self._line_feedrates = line_feedrates
self._vertex_begin = 0
self._vertex_end = 0
self._index_begin = 0
self._index_end = 0
self._jump_mask = self.__jump_map[self._types]
self._jump_count = numpy.sum(self._jump_mask)
self._mesh_line_count = len(self._types) - self._jump_count
self._vertex_count = self._mesh_line_count + numpy.sum(self._types[1:] == self._types[:-1])
# Buffering the colors shouldn't be necessary as it is not
# re-used and can save alot of memory usage.
self._color_map = LayerPolygon.getColorMap()
self._colors = self._color_map[self._types] # type: numpy.ndarray
# When type is used as index returns true if type == LayerPolygon.InfillType or type == LayerPolygon.SkinType or type == LayerPolygon.SupportInfillType
# Should be generated in better way, not hardcoded.
self._isInfillOrSkinTypeMap = numpy.array([0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1], dtype = numpy.bool)
self._build_cache_line_mesh_mask = None # type: Optional[numpy.ndarray]
self._build_cache_needed_points = None # type: Optional[numpy.ndarray]
def buildCache(self) -> None:
# For the line mesh we do not draw Infill or Jumps. Therefore those lines are filtered out.
self._build_cache_line_mesh_mask = numpy.ones(self._jump_mask.shape, dtype = bool)
mesh_line_count = numpy.sum(self._build_cache_line_mesh_mask)
self._index_begin = 0
self._index_end = mesh_line_count
self._build_cache_needed_points = numpy.ones((len(self._types), 2), dtype = numpy.bool)
# Only if the type of line segment changes do we need to add an extra vertex to change colors
self._build_cache_needed_points[1:, 0][:, numpy.newaxis] = self._types[1:] != self._types[:-1]
# Mark points as unneeded if they are of types we don't want in the line mesh according to the calculated mask
numpy.logical_and(self._build_cache_needed_points, self._build_cache_line_mesh_mask, self._build_cache_needed_points )
self._vertex_begin = 0
self._vertex_end = numpy.sum( self._build_cache_needed_points )
## Set all the arrays provided by the function caller, representing the LayerPolygon
# The arrays are either by vertex or by indices.
#
# \param vertex_offset : determines where to start and end filling the arrays
# \param index_offset : determines where to start and end filling the arrays
# \param vertices : vertex numpy array to be filled
# \param colors : vertex numpy array to be filled
# \param line_dimensions : vertex numpy array to be filled
# \param feedrates : vertex numpy array to be filled
# \param extruders : vertex numpy array to be filled
# \param line_types : vertex numpy array to be filled
# \param indices : index numpy array to be filled
def build(self, vertex_offset: int, index_offset: int, vertices: numpy.ndarray, colors: numpy.ndarray, line_dimensions: numpy.ndarray, feedrates: numpy.ndarray, extruders: numpy.ndarray, line_types: numpy.ndarray, indices: numpy.ndarray) -> None:
if self._build_cache_line_mesh_mask is None or self._build_cache_needed_points is None:
self.buildCache()
if self._build_cache_line_mesh_mask is None or self._build_cache_needed_points is None:
Logger.log("w", "Failed to build cache for layer polygon")
return
line_mesh_mask = self._build_cache_line_mesh_mask
needed_points_list = self._build_cache_needed_points
# Index to the points we need to represent the line mesh. This is constructed by generating simple
# start and end points for each line. For line segment n these are points n and n+1. Row n reads [n n+1]
# Then then the indices for the points we don't need are thrown away based on the pre-calculated list.
index_list = ( numpy.arange(len(self._types)).reshape((-1, 1)) + numpy.array([[0, 1]]) ).reshape((-1, 1))[needed_points_list.reshape((-1, 1))]
# The relative values of begin and end indices have already been set in buildCache, so we only need to offset them to the parents offset.
self._vertex_begin += vertex_offset
self._vertex_end += vertex_offset
# Points are picked based on the index list to get the vertices needed.
vertices[self._vertex_begin:self._vertex_end, :] = self._data[index_list, :]
# Create an array with colors for each vertex and remove the color data for the points that has been thrown away.
colors[self._vertex_begin:self._vertex_end, :] = numpy.tile(self._colors, (1, 2)).reshape((-1, 4))[needed_points_list.ravel()]
# Create an array with line widths and thicknesses for each vertex.
line_dimensions[self._vertex_begin:self._vertex_end, 0] = numpy.tile(self._line_widths, (1, 2)).reshape((-1, 1))[needed_points_list.ravel()][:, 0]
line_dimensions[self._vertex_begin:self._vertex_end, 1] = numpy.tile(self._line_thicknesses, (1, 2)).reshape((-1, 1))[needed_points_list.ravel()][:, 0]
# Create an array with feedrates for each line
feedrates[self._vertex_begin:self._vertex_end] = numpy.tile(self._line_feedrates, (1, 2)).reshape((-1, 1))[needed_points_list.ravel()][:, 0]
extruders[self._vertex_begin:self._vertex_end] = self._extruder
# Convert type per vertex to type per line
line_types[self._vertex_begin:self._vertex_end] = numpy.tile(self._types, (1, 2)).reshape((-1, 1))[needed_points_list.ravel()][:, 0]
# The relative values of begin and end indices have already been set in buildCache, so we only need to offset them to the parents offset.
self._index_begin += index_offset
self._index_end += index_offset
indices[self._index_begin:self._index_end, :] = numpy.arange(self._index_end-self._index_begin, dtype = numpy.int32).reshape((-1, 1))
# When the line type changes the index needs to be increased by 2.
indices[self._index_begin:self._index_end, :] += numpy.cumsum(needed_points_list[line_mesh_mask.ravel(), 0], dtype = numpy.int32).reshape((-1, 1))
# Each line segment goes from it's starting point p to p+1, offset by the vertex index.
# The -1 is to compensate for the neccecarily True value of needed_points_list[0,0] which causes an unwanted +1 in cumsum above.
indices[self._index_begin:self._index_end, :] += numpy.array([self._vertex_begin - 1, self._vertex_begin])
self._build_cache_line_mesh_mask = None
self._build_cache_needed_points = None
def getColors(self):
return self._colors
def mapLineTypeToColor(self, line_types):
return self._color_map[line_types]
def isInfillOrSkinType(self, line_types):
return self._isInfillOrSkinTypeMap[line_types]
def lineMeshVertexCount(self):
return (self._vertex_end - self._vertex_begin)
def lineMeshElementCount(self):
return (self._index_end - self._index_begin)
@property
def extruder(self):
return self._extruder
@property
def types(self):
return self._types
@property
def data(self):
return self._data
@property
def elementCount(self):
return (self._index_end - self._index_begin) * 2 # The range of vertices multiplied by 2 since each vertex is used twice
@property
def lineWidths(self):
return self._line_widths
@property
def lineThicknesses(self):
return self._line_thicknesses
@property
def lineFeedrates(self):
return self._line_feedrates
@property
def jumpMask(self):
return self._jump_mask
@property
def meshLineCount(self):
return self._mesh_line_count
@property
def jumpCount(self):
return self._jump_count
# Calculate normals for the entire polygon using numpy.
def getNormals(self):
normals = numpy.copy(self._data)
normals[:, 1] = 0.0 # We are only interested in 2D normals
# Calculate the edges between points.
# The call to numpy.roll shifts the entire array by one so that
# we end up subtracting each next point from the current, wrapping
# around. This gives us the edges from the next point to the current
# point.
normals = numpy.diff(normals, 1, 0)
# Calculate the length of each edge using standard Pythagoras
lengths = numpy.sqrt(normals[:, 0] ** 2 + normals[:, 2] ** 2)
# The normal of a 2D vector is equal to its x and y coordinates swapped
# and then x inverted. This code does that.
normals[:, [0, 2]] = normals[:, [2, 0]]
normals[:, 0] *= -1
# Normalize the normals.
normals[:, 0] /= lengths
normals[:, 2] /= lengths
return normals
__color_map = None # type: numpy.ndarray[Any]
## Gets the instance of the VersionUpgradeManager, or creates one.
@classmethod
def getColorMap(cls):
if cls.__color_map is None:
theme = Application.getInstance().getTheme()
cls.__color_map = numpy.array([
theme.getColor("layerview_none").getRgbF(), # NoneType
theme.getColor("layerview_inset_0").getRgbF(), # Inset0Type
theme.getColor("layerview_inset_x").getRgbF(), # InsetXType
theme.getColor("layerview_skin").getRgbF(), # SkinType
theme.getColor("layerview_support").getRgbF(), # SupportType
theme.getColor("layerview_skirt").getRgbF(), # SkirtType
theme.getColor("layerview_infill").getRgbF(), # InfillType
theme.getColor("layerview_support_infill").getRgbF(), # SupportInfillType
theme.getColor("layerview_move_combing").getRgbF(), # MoveCombingType
theme.getColor("layerview_move_retraction").getRgbF(), # MoveRetractionType
theme.getColor("layerview_support_interface").getRgbF(), # SupportInterfaceType
theme.getColor("layerview_prime_tower").getRgbF() # PrimeTowerType
])
return cls.__color_map