Cura/cura/OneAtATimeIterator.py
2020-01-14 21:56:06 +01:00

128 lines
5.7 KiB
Python

# Copyright (c) 2019 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
from typing import List
from UM.Scene.Iterator import Iterator
from UM.Scene.SceneNode import SceneNode
from functools import cmp_to_key
## Iterator that returns a list of nodes in the order that they need to be printed
# If there is no solution an empty list is returned.
# Take note that the list of nodes can have children (that may or may not contain mesh data)
class OneAtATimeIterator(Iterator.Iterator):
def __init__(self, scene_node) -> None:
super().__init__(scene_node) # Call super to make multiple inheritance work.
self._hit_map = [[]] # type: List[List[bool]] # For each node, which other nodes this hits. A grid of booleans on which nodes hit which.
self._original_node_list = [] # type: List[SceneNode] # The nodes that need to be checked for collisions.
## Fills the ``_node_stack`` with a list of scene nodes that need to be
# printed in order.
def _fillStack(self) -> None:
node_list = []
for node in self._scene_node.getChildren():
if not issubclass(type(node), SceneNode):
continue
if node.callDecoration("getConvexHull"):
node_list.append(node)
if len(node_list) < 2:
self._node_stack = node_list[:]
return
# Copy the list
self._original_node_list = node_list[:]
## Initialise the hit map (pre-compute all hits between all objects)
self._hit_map = [[self._checkHit(i,j) for i in node_list] for j in node_list]
# Check if we have to files that block each other. If this is the case, there is no solution!
for a in range(0, len(node_list)):
for b in range(0, len(node_list)):
if a != b and self._hit_map[a][b] and self._hit_map[b][a]:
return
# Sort the original list so that items that block the most other objects are at the beginning.
# This does not decrease the worst case running time, but should improve it in most cases.
sorted(node_list, key = cmp_to_key(self._calculateScore))
todo_node_list = [_ObjectOrder([], node_list)]
while len(todo_node_list) > 0:
current = todo_node_list.pop()
for node in current.todo:
# Check if the object can be placed with what we have and still allows for a solution in the future
if not self._checkHitMultiple(node, current.order) and not self._checkBlockMultiple(node, current.todo):
# We found a possible result. Create new todo & order list.
new_todo_list = current.todo[:]
new_todo_list.remove(node)
new_order = current.order[:] + [node]
if len(new_todo_list) == 0:
# We have no more nodes to check, so quit looking.
self._node_stack = new_order
return
todo_node_list.append(_ObjectOrder(new_order, new_todo_list))
self._node_stack = [] #No result found!
# Check if first object can be printed before the provided list (using the hit map)
def _checkHitMultiple(self, node: SceneNode, other_nodes: List[SceneNode]) -> bool:
node_index = self._original_node_list.index(node)
for other_node in other_nodes:
other_node_index = self._original_node_list.index(other_node)
if self._hit_map[node_index][other_node_index]:
return True
return False
## Check for a node whether it hits any of the other nodes.
# \param node The node to check whether it collides with the other nodes.
# \param other_nodes The nodes to check for collisions.
def _checkBlockMultiple(self, node: SceneNode, other_nodes: List[SceneNode]) -> bool:
node_index = self._original_node_list.index(node)
for other_node in other_nodes:
other_node_index = self._original_node_list.index(other_node)
if self._hit_map[other_node_index][node_index] and node_index != other_node_index:
return True
return False
## Calculate score simply sums the number of other objects it 'blocks'
def _calculateScore(self, a: SceneNode, b: SceneNode) -> int:
score_a = sum(self._hit_map[self._original_node_list.index(a)])
score_b = sum(self._hit_map[self._original_node_list.index(b)])
return score_a - score_b
## Checks if A can be printed before B
def _checkHit(self, a: SceneNode, b: SceneNode) -> bool:
if a == b:
return False
a_hit_hull = a.callDecoration("getConvexHullBoundary")
b_hit_hull = b.callDecoration("getConvexHullHeadFull")
overlap = a_hit_hull.intersectsPolygon(b_hit_hull)
if overlap:
return True
# Adhesion areas must never overlap, regardless of printing order
# This would cause over-extrusion
a_hit_hull = a.callDecoration("getAdhesionArea")
b_hit_hull = b.callDecoration("getAdhesionArea")
overlap = a_hit_hull.intersectsPolygon(b_hit_hull)
if overlap:
return True
else:
return False
## Internal object used to keep track of a possible order in which to print objects.
class _ObjectOrder:
## Creates the _ObjectOrder instance.
# \param order List of indices in which to print objects, ordered by printing
# order.
# \param todo: List of indices which are not yet inserted into the order list.
def __init__(self, order: List[SceneNode], todo: List[SceneNode]) -> None:
self.order = order
self.todo = todo