Luc 93312ff8b5
Idf 5.1.4/Arduino 3.0.4 porting for esp32 (#1046)
* Update WebSocket library
* Update SSDP library
* Update TFT_eSPI library
* Update EspLuaEngine library
* Update SDFat library
* Change to pioarduino
* Make ESP3DMessageFIFO and ESP3DMessage  more thread safe
* Fix sanity checks for BT
* Add some C6 support
* Refactor ethernet code
* Split Ethernet Sta / WiFi sta ESP Commands  and settings
* Simplify wait and wdtFeed code
* Set C3 with 4MB by default in platformio.ini
* Apply Disable brown out only on ESP32 to avoid crash e.g:ESP32S3
* Add missing entries in platformio.ini
2024-09-05 16:27:47 +08:00

220 lines
5.8 KiB
C++

// Simple performance test for Teensy 3.5/3.6 4.0 SDHC.
// Demonstrates yield() efficiency for SDIO modes.
#include "SdFat.h"
// Use built-in SD for SPI modes on Teensy 3.5/3.6.
// Teensy 4.0 use first SPI port.
// SDCARD_SS_PIN is defined for the built-in SD on some boards.
#ifndef SDCARD_SS_PIN
const uint8_t SD_CS_PIN = SS;
#else // SDCARD_SS_PIN
// Assume built-in SD is used.
const uint8_t SD_CS_PIN = SDCARD_SS_PIN;
#endif // SDCARD_SS_PIN
// SD_FAT_TYPE = 0 for SdFat/File as defined in SdFatConfig.h,
// 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT.
#define SD_FAT_TYPE 3
// 32 KiB buffer.
const size_t BUF_DIM = 32768;
// 8 MiB file.
const uint32_t FILE_SIZE = 256UL * BUF_DIM;
#if SD_FAT_TYPE == 0
SdFat sd;
File file;
#elif SD_FAT_TYPE == 1
SdFat32 sd;
File32 file;
#elif SD_FAT_TYPE == 2
SdExFat sd;
ExFile file;
#elif SD_FAT_TYPE == 3
SdFs sd;
FsFile file;
#else // SD_FAT_TYPE
#error Invalid SD_FAT_TYPE
#endif // SD_FAT_TYPE
uint8_t buf[BUF_DIM];
// buffer as uint32_t
uint32_t* buf32 = (uint32_t*)buf;
// Total usec in read/write calls.
uint32_t totalMicros = 0;
// Time in yield() function.
uint32_t yieldMicros = 0;
// Number of yield calls.
uint32_t yieldCalls = 0;
// Max busy time for single yield call.
uint32_t yieldMaxUsec = 0;
//------------------------------------------------------------------------------
void clearSerialInput() {
uint32_t m = micros();
do {
if (Serial.read() >= 0) {
m = micros();
}
} while (micros() - m < 10000);
}
//------------------------------------------------------------------------------
void errorHalt(const char* msg) {
Serial.print("Error: ");
Serial.println(msg);
if (sd.sdErrorCode()) {
if (sd.sdErrorCode() == SD_CARD_ERROR_ACMD41) {
Serial.println("Try power cycling the SD card.");
}
printSdErrorSymbol(&Serial, sd.sdErrorCode());
Serial.print(", ErrorData: 0X");
Serial.println(sd.sdErrorData(), HEX);
}
while (true) {
}
}
bool ready = false;
//------------------------------------------------------------------------------
bool sdBusy() { return ready ? sd.card()->isBusy() : false; }
//------------------------------------------------------------------------------
// Replace "weak" system yield() function.
void yield() {
// Only count cardBusy time.
if (!sdBusy()) {
return;
}
uint32_t m = micros();
yieldCalls++;
while (sdBusy()) {
// Do something here.
}
m = micros() - m;
if (m > yieldMaxUsec) {
yieldMaxUsec = m;
}
yieldMicros += m;
}
//------------------------------------------------------------------------------
void runTest() {
// Zero Stats
totalMicros = 0;
yieldMicros = 0;
yieldCalls = 0;
yieldMaxUsec = 0;
if (!file.open("TeensyDemo.bin", O_RDWR | O_CREAT)) {
errorHalt("open failed");
}
Serial.println("\nsize,write,read");
Serial.println("bytes,KB/sec,KB/sec");
for (size_t nb = 512; nb <= BUF_DIM; nb *= 2) {
uint32_t nRdWr = FILE_SIZE / nb;
if (!file.truncate(0)) {
errorHalt("truncate failed");
}
Serial.print(nb);
Serial.print(',');
uint32_t t = micros();
for (uint32_t n = 0; n < nRdWr; n++) {
// Set start and end of buffer.
buf32[0] = n;
buf32[nb / 4 - 1] = n;
if (nb != file.write(buf, nb)) {
errorHalt("write failed");
}
}
t = micros() - t;
totalMicros += t;
Serial.print(1000.0 * FILE_SIZE / t);
Serial.print(',');
file.rewind();
t = micros();
for (uint32_t n = 0; n < nRdWr; n++) {
if ((int)nb != file.read(buf, nb)) {
errorHalt("read failed");
}
// crude check of data.
if (buf32[0] != n || buf32[nb / 4 - 1] != n) {
errorHalt("data check");
}
}
t = micros() - t;
totalMicros += t;
Serial.println(1000.0 * FILE_SIZE / t);
}
file.close();
Serial.print("\ntotalMicros ");
Serial.println(totalMicros);
Serial.print("yieldMicros ");
Serial.println(yieldMicros);
Serial.print("yieldCalls ");
Serial.println(yieldCalls);
Serial.print("yieldMaxUsec ");
Serial.println(yieldMaxUsec);
// Serial.print("kHzSdClk ");
// Serial.println(kHzSdClk());
Serial.println("Done");
}
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
while (!Serial) {
}
}
//------------------------------------------------------------------------------
void loop() {
static bool warn = true;
if (warn) {
warn = false;
Serial.println(
"SD cards must be power cycled to leave\n"
"SPI mode so do SDIO tests first.\n"
"\nCycle power on the card if an error occurs.");
}
clearSerialInput();
Serial.println(
"\nType '1' for FIFO SDIO"
"\n '2' for DMA SDIO"
"\n '3' for Dedicated SPI"
"\n '4' for Shared SPI");
while (!Serial.available()) {
}
char c = Serial.read();
if (c == '1') {
if (!sd.begin(SdioConfig(FIFO_SDIO))) {
errorHalt("begin failed");
}
Serial.println("\nFIFO SDIO mode.");
} else if (c == '2') {
if (!sd.begin(SdioConfig(DMA_SDIO))) {
errorHalt("begin failed");
}
Serial.println("\nDMA SDIO mode - slow for small transfers.");
} else if (c == '3') {
#if ENABLE_DEDICATED_SPI
if (!sd.begin(SdSpiConfig(SD_CS_PIN, DEDICATED_SPI, SD_SCK_MHZ(50)))) {
errorHalt("begin failed");
}
Serial.println("\nDedicated SPI mode.");
#else // ENABLE_DEDICATED_SPI
Serial.println("ENABLE_DEDICATED_SPI must be non-zero.");
return;
#endif // ENABLE_DEDICATED_SPI
} else if (c == '4') {
if (!sd.begin(SdSpiConfig(SD_CS_PIN, SHARED_SPI, SD_SCK_MHZ(50)))) {
errorHalt("begin failed");
}
Serial.println("\nShared SPI mode - slow for small transfers.");
} else {
Serial.println("Invalid input");
return;
}
ready = true;
runTest();
ready = false;
}