ESP3D/esp3d/src/modules/filesystem/sd/sd_native_esp8266.cpp
Luc c706f44229 Implement FTP Server feature
rewrite the file time access
fix some debug error
add rename function in file systems when available
2019-10-31 22:29:38 +01:00

814 lines
25 KiB
C++

/*
sd_native_esp8266.cpp - ESP3D sd support class
Copyright (c) 2014 Luc Lebosse. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "../../../include/esp3d_config.h"
#if defined (ARDUINO_ARCH_ESP8266) && defined(SD_DEVICE)
#if (SD_DEVICE == ESP_SD_NATIVE) || (SD_DEVICE == ESP_SDFAT)
#define FS_NO_GLOBALS
#include "../esp_sd.h"
#include "../../../core/genLinkedList.h"
#include "../../../core/settings_esp3d.h"
#define NO_GLOBAL_SD
#include "SdFat.h"
extern sdfat::File tSDFile_handle[ESP_MAX_SD_OPENHANDLE];
using namespace sdfat;
SdFat SD;
void dateTime (uint16_t* date, uint16_t* dtime)
{
struct tm tmstruct;
time_t now;
time (&now);
localtime_r (&now, &tmstruct);
*date = FAT_DATE ( (tmstruct.tm_year) + 1900, ( tmstruct.tm_mon) + 1, tmstruct.tm_mday);
*dtime = FAT_TIME (tmstruct.tm_hour, tmstruct.tm_min, tmstruct.tm_sec);
}
time_t getDateTimeFile(File & filehandle)
{
static time_t dt = 0;
struct tm timefile;
dir_t d;
if(filehandle) {
if (filehandle.dirEntry(&d)) {
timefile.tm_year = FAT_YEAR(d.lastWriteDate) - 1900;
timefile.tm_mon = FAT_MONTH(d.lastWriteDate) - 1;
timefile.tm_mday = FAT_DAY(d.lastWriteDate);
timefile.tm_hour = FAT_HOUR(d.lastWriteTime);
timefile.tm_min = FAT_MINUTE(d.lastWriteTime);
timefile.tm_sec = FAT_SECOND(d.lastWriteTime);
timefile.tm_isdst = -1;
dt = mktime(&timefile);
if (dt == -1) {
log_esp3d("mktime failed");
}
} else {
log_esp3d("stat file failed");
}
} else {
log_esp3d("check file for stat failed");
}
return dt;
}
uint8_t ESP_SD::getState(bool refresh)
{
#if defined(ESP_SD_DETECT_PIN) && ESP_SD_DETECT_PIN != -1
//no need to go further if SD detect is not correct
if (!((digitalRead (ESP_SD_DETECT_PIN) == ESP_SD_DETECT_VALUE) ? true : false)) {
_state = ESP_SDCARD_NOT_PRESENT;
return _state;
}
#endif //ESP_SD_DETECT_PIN
//if busy doing something return state
if (!((_state == ESP_SDCARD_NOT_PRESENT) || _state == ESP_SDCARD_IDLE)) {
return _state;
}
if (!refresh) {
return _state; //to avoid refresh=true + busy to reset SD and waste time
}
//SD is idle or not detected, let see if still the case
_state = ESP_SDCARD_NOT_PRESENT;
//refresh content if card was removed
if (SD.begin((ESP_SD_CS_PIN == -1)?SS:ESP_SD_CS_PIN, SD_SCK_HZ(F_CPU/_spi_speed_divider))) {
if (SD.card()->cardSize() > 0 ) {
_state = ESP_SDCARD_IDLE;
}
}
return _state;
}
bool ESP_SD::begin()
{
_started = true;
_state = ESP_SDCARD_NOT_PRESENT;
_spi_speed_divider = Settings_ESP3D::read_byte(ESP_SD_SPEED_DIV);
//sanity check
if (_spi_speed_divider <= 0) {
_spi_speed_divider = 1;
}
#ifdef SD_TIMESTAMP_FEATURE
//set callback to get time on files on SD
SdFile::dateTimeCallback (dateTime);
#endif //SD_TIMESTAMP_FEATURE
if (getState(true) == ESP_SDCARD_IDLE) {
freeBytes();
}
return _started;
}
void ESP_SD::end()
{
_state = ESP_SDCARD_NOT_PRESENT;
_started = false;
}
uint64_t ESP_SD::totalBytes()
{
uint64_t volTotal = SD.vol()->clusterCount();
uint8_t blocks = SD.vol()->blocksPerCluster();
return volTotal * blocks * 512;
}
uint64_t ESP_SD::usedBytes()
{
return totalBytes() - freeBytes();
}
uint64_t ESP_SD::freeBytes()
{
static uint64_t volFree;
if (_sizechanged) {
volFree = SD.vol()->freeClusterCount();
_sizechanged = false;
}
uint8_t blocks = SD.vol()->blocksPerCluster();
return volFree * blocks * 512;
}
bool ESP_SD::rename(const char *oldpath, const char *newpath)
{
return SD.rename(oldpath,newpath);
}
// strings needed in file system structures
#define noName "NO NAME "
#define fat16str "FAT16 "
#define fat32str "FAT32 "
// constants for file system structure
#define BU16 128
#define BU32 8192
#define ERASE_SIZE 262144L;
//------------------------------------------------------------------------------
// write cached block to the card
uint8_t writeCache(uint32_t lbn, Sd2Card & card, cache_t & cache)
{
return card.writeBlock(lbn, cache.data);
}
//------------------------------------------------------------------------------
// initialize appropriate sizes for SD capacity
bool initSizes(uint32_t cardCapacityMB, uint8_t & sectorsPerCluster, uint8_t & numberOfHeads, uint8_t & sectorsPerTrack)
{
if (cardCapacityMB <= 6) {
return false;
} else if (cardCapacityMB <= 16) {
sectorsPerCluster = 2;
} else if (cardCapacityMB <= 32) {
sectorsPerCluster = 4;
} else if (cardCapacityMB <= 64) {
sectorsPerCluster = 8;
} else if (cardCapacityMB <= 128) {
sectorsPerCluster = 16;
} else if (cardCapacityMB <= 1024) {
sectorsPerCluster = 32;
} else if (cardCapacityMB <= 32768) {
sectorsPerCluster = 64;
} else {
// SDXC cards
sectorsPerCluster = 128;
}
// set fake disk geometry
sectorsPerTrack = cardCapacityMB <= 256 ? 32 : 63;
if (cardCapacityMB <= 16) {
numberOfHeads = 2;
} else if (cardCapacityMB <= 32) {
numberOfHeads = 4;
} else if (cardCapacityMB <= 128) {
numberOfHeads = 8;
} else if (cardCapacityMB <= 504) {
numberOfHeads = 16;
} else if (cardCapacityMB <= 1008) {
numberOfHeads = 32;
} else if (cardCapacityMB <= 2016) {
numberOfHeads = 64;
} else if (cardCapacityMB <= 4032) {
numberOfHeads = 128;
} else {
numberOfHeads = 255;
}
return true;
}
//------------------------------------------------------------------------------
// zero cache and optionally set the sector signature
void clearCache(uint8_t addSig, cache_t & cache)
{
memset(&cache, 0, sizeof(cache));
if (addSig) {
cache.mbr.mbrSig0 = BOOTSIG0;
cache.mbr.mbrSig1 = BOOTSIG1;
}
}
//------------------------------------------------------------------------------
// zero FAT and root dir area on SD
bool clearFatDir(uint32_t bgn, uint32_t count, Sd2Card & card, cache_t & cache, ESP3DOutput * output)
{
clearCache(false, cache);
if (!card.writeStart(bgn, count)) {
return false;
}
for (uint32_t i = 0; i < count; i++) {
if ((i & 0XFF) == 0) {
if (output) {
output->print(".");
}
}
if (!card.writeData(cache.data)) {
return false;
}
}
if (!card.writeStop()) {
return false;
}
return true;
}
//------------------------------------------------------------------------------
// return cylinder number for a logical block number
uint16_t lbnToCylinder(uint32_t lbn, uint8_t numberOfHeads, uint8_t sectorsPerTrack)
{
return lbn / (numberOfHeads * sectorsPerTrack);
}
//------------------------------------------------------------------------------
// return head number for a logical block number
uint8_t lbnToHead(uint32_t lbn, uint8_t numberOfHeads, uint8_t sectorsPerTrack)
{
return (lbn % (numberOfHeads * sectorsPerTrack)) / sectorsPerTrack;
}
//------------------------------------------------------------------------------
// return sector number for a logical block number
uint8_t lbnToSector(uint32_t lbn, uint8_t sectorsPerTrack)
{
return (lbn % sectorsPerTrack) + 1;
}
//------------------------------------------------------------------------------
// format and write the Master Boot Record
bool writeMbr(Sd2Card & card, cache_t & cache, uint8_t partType, uint32_t relSector, uint32_t partSize, uint8_t numberOfHeads, uint8_t sectorsPerTrack)
{
clearCache(true, cache);
part_t* p = cache.mbr.part;
p->boot = 0;
uint16_t c = lbnToCylinder(relSector, numberOfHeads, sectorsPerTrack);
if (c > 1023) {
return false;
}
p->beginCylinderHigh = c >> 8;
p->beginCylinderLow = c & 0XFF;
p->beginHead = lbnToHead(relSector, numberOfHeads, sectorsPerTrack);
p->beginSector = lbnToSector(relSector, sectorsPerTrack);
p->type = partType;
uint32_t endLbn = relSector + partSize - 1;
c = lbnToCylinder(endLbn,numberOfHeads, sectorsPerTrack);
if (c <= 1023) {
p->endCylinderHigh = c >> 8;
p->endCylinderLow = c & 0XFF;
p->endHead = lbnToHead(endLbn, numberOfHeads, sectorsPerTrack);
p->endSector = lbnToSector(endLbn, sectorsPerTrack);
} else {
// Too big flag, c = 1023, h = 254, s = 63
p->endCylinderHigh = 3;
p->endCylinderLow = 255;
p->endHead = 254;
p->endSector = 63;
}
p->firstSector = relSector;
p->totalSectors = partSize;
if (!writeCache(0, card, cache)) {
return false;
}
return true;
}
//------------------------------------------------------------------------------
// generate serial number from card size and micros since boot
uint32_t volSerialNumber(uint32_t cardSizeBlocks)
{
return (cardSizeBlocks << 8) + micros();
}
// format the SD as FAT16
bool makeFat16(uint32_t & dataStart, Sd2Card & card, cache_t & cache, uint8_t numberOfHeads, uint8_t sectorsPerTrack, uint32_t cardSizeBlocks, uint8_t sectorsPerCluster, uint32_t &relSector, uint32_t partSize, uint8_t & partType, uint32_t &fatSize, uint32_t &fatStart, uint16_t reservedSectors, ESP3DOutput * output)
{
uint32_t nc;
for (dataStart = 2 * BU16;; dataStart += BU16) {
nc = (cardSizeBlocks - dataStart)/sectorsPerCluster;
fatSize = (nc + 2 + 255)/256;
uint32_t r = BU16 + 1 + 2 * fatSize + 32;
if (dataStart < r) {
continue;
}
relSector = dataStart - r + BU16;
break;
}
// check valid cluster count for FAT16 volume
if (nc < 4085 || nc >= 65525) {
return false;
}
reservedSectors = 1;
fatStart = relSector + reservedSectors;
partSize = nc * sectorsPerCluster + 2 * fatSize + reservedSectors + 32;
if (partSize < 32680) {
partType = 0X01;
} else if (partSize < 65536) {
partType = 0X04;
} else {
partType = 0X06;
}
// write MBR
if (!writeMbr(card, cache, partType, relSector, partSize, numberOfHeads, sectorsPerTrack)) {
return false;
}
clearCache(true, cache);
fat_boot_t* pb = &cache.fbs;
pb->jump[0] = 0XEB;
pb->jump[1] = 0X00;
pb->jump[2] = 0X90;
for (uint8_t i = 0; i < sizeof(pb->oemId); i++) {
pb->oemId[i] = ' ';
}
pb->bytesPerSector = 512;
pb->sectorsPerCluster = sectorsPerCluster;
pb->reservedSectorCount = reservedSectors;
pb->fatCount = 2;
pb->rootDirEntryCount = 512;
pb->mediaType = 0XF8;
pb->sectorsPerFat16 = fatSize;
pb->sectorsPerTrack = sectorsPerTrack;
pb->headCount = numberOfHeads;
pb->hidddenSectors = relSector;
pb->totalSectors32 = partSize;
pb->driveNumber = 0X80;
pb->bootSignature = EXTENDED_BOOT_SIG;
pb->volumeSerialNumber = volSerialNumber(cardSizeBlocks);
memcpy(pb->volumeLabel, noName, sizeof(pb->volumeLabel));
memcpy(pb->fileSystemType, fat16str, sizeof(pb->fileSystemType));
// write partition boot sector
if (!writeCache(relSector, card, cache)) {
return false;
}
// clear FAT and root directory
clearFatDir(fatStart, dataStart - fatStart, card, cache, output);
clearCache(false, cache);
cache.fat16[0] = 0XFFF8;
cache.fat16[1] = 0XFFFF;
// write first block of FAT and backup for reserved clusters
if (!writeCache(fatStart, card, cache)
|| !writeCache(fatStart + fatSize, card, cache)) {
return false;
}
return true;
}
// format the SD as FAT32
bool makeFat32(uint32_t & dataStart, Sd2Card & card, cache_t & cache, uint8_t numberOfHeads, uint8_t sectorsPerTrack, uint32_t cardSizeBlocks, uint8_t sectorsPerCluster, uint32_t &relSector, uint32_t partSize, uint8_t & partType, uint32_t &fatSize, uint32_t &fatStart, uint16_t reservedSectors, ESP3DOutput * output)
{
uint32_t nc;
relSector = BU32;
for (dataStart = 2 * BU32;; dataStart += BU32) {
nc = (cardSizeBlocks - dataStart)/sectorsPerCluster;
fatSize = (nc + 2 + 127)/128;
uint32_t r = relSector + 9 + 2 * fatSize;
if (dataStart >= r) {
break;
}
}
// error if too few clusters in FAT32 volume
if (nc < 65525) {
return false;
}
reservedSectors = dataStart - relSector - 2 * fatSize;
fatStart = relSector + reservedSectors;
partSize = nc * sectorsPerCluster + dataStart - relSector;
// type depends on address of end sector
// max CHS has lbn = 16450560 = 1024*255*63
if ((relSector + partSize) <= 16450560) {
// FAT32
partType = 0X0B;
} else {
// FAT32 with INT 13
partType = 0X0C;
}
if (!writeMbr(card, cache, partType, relSector, partSize, numberOfHeads, sectorsPerTrack)) {
return false;
}
clearCache(true, cache);
fat32_boot_t* pb = &cache.fbs32;
pb->jump[0] = 0XEB;
pb->jump[1] = 0X00;
pb->jump[2] = 0X90;
for (uint8_t i = 0; i < sizeof(pb->oemId); i++) {
pb->oemId[i] = ' ';
}
pb->bytesPerSector = 512;
pb->sectorsPerCluster = sectorsPerCluster;
pb->reservedSectorCount = reservedSectors;
pb->fatCount = 2;
pb->mediaType = 0XF8;
pb->sectorsPerTrack = sectorsPerTrack;
pb->headCount = numberOfHeads;
pb->hidddenSectors = relSector;
pb->totalSectors32 = partSize;
pb->sectorsPerFat32 = fatSize;
pb->fat32RootCluster = 2;
pb->fat32FSInfo = 1;
pb->fat32BackBootBlock = 6;
pb->driveNumber = 0X80;
pb->bootSignature = EXTENDED_BOOT_SIG;
pb->volumeSerialNumber = volSerialNumber(cardSizeBlocks);
memcpy(pb->volumeLabel, noName, sizeof(pb->volumeLabel));
memcpy(pb->fileSystemType, fat32str, sizeof(pb->fileSystemType));
// write partition boot sector and backup
if (!writeCache(relSector, card, cache)
|| !writeCache(relSector + 6, card, cache)) {
return false;
}
clearCache(true, cache);
// write extra boot area and backup
if (!writeCache(relSector + 2, card, cache)
|| !writeCache(relSector + 8, card, cache)) {
return false;
}
fat32_fsinfo_t* pf = &cache.fsinfo;
pf->leadSignature = FSINFO_LEAD_SIG;
pf->structSignature = FSINFO_STRUCT_SIG;
pf->freeCount = 0XFFFFFFFF;
pf->nextFree = 0XFFFFFFFF;
// write FSINFO sector and backup
if (!writeCache(relSector + 1, card, cache)
|| !writeCache(relSector + 7, card, cache)) {
return false;
}
clearFatDir(fatStart, 2 * fatSize + sectorsPerCluster, card, cache, output);
clearCache(false, cache);
cache.fat32[0] = 0x0FFFFFF8;
cache.fat32[1] = 0x0FFFFFFF;
cache.fat32[2] = 0x0FFFFFFF;
// write first block of FAT and backup for reserved clusters
if (!writeCache(fatStart, card, cache)
|| !writeCache(fatStart + fatSize, card, cache)) {
return false;
}
return true;
}
bool eraseCard(Sd2Card & card, cache_t & cache, uint32_t cardSizeBlocks, ESP3DOutput * output)
{
uint32_t firstBlock = 0;
uint32_t lastBlock;
uint16_t n = 0;
if (output) {
output->printMSG("Erasing ", false);
}
do {
lastBlock = firstBlock + ERASE_SIZE - 1;
if (lastBlock >= cardSizeBlocks) {
lastBlock = cardSizeBlocks - 1;
}
if (!card.erase(firstBlock, lastBlock)) {
return false;
}
if (output) {
output->print(".");
}
firstBlock += ERASE_SIZE;
} while (firstBlock < cardSizeBlocks);
if (!card.readBlock(0, cache.data)) {
return false;
}
if (output) {
output->printLN("");
}
return true;
}
bool formatCard(uint32_t & dataStart, Sd2Card & card,
cache_t & cache, uint8_t numberOfHeads,
uint8_t sectorsPerTrack, uint32_t cardSizeBlocks,
uint8_t sectorsPerCluster, uint32_t &relSector,
uint32_t partSize, uint8_t & partType,
uint32_t &fatSize, uint32_t &fatStart,
uint32_t cardCapacityMB, uint16_t reservedSectors, ESP3DOutput * output)
{
initSizes(cardCapacityMB, sectorsPerCluster, numberOfHeads, sectorsPerTrack);
if (card.type() != SD_CARD_TYPE_SDHC) {
if (output) {
output->printMSG("Formating FAT16 ");
}
if(!makeFat16(dataStart, card, cache, numberOfHeads, sectorsPerTrack, cardSizeBlocks, sectorsPerCluster, relSector, partSize, partType, fatSize, fatStart, reservedSectors, output)) {
return false;
}
} else {
if (output) {
output->printMSG("Formating FAT32 ", false);
}
if(!makeFat32(dataStart, card, cache, numberOfHeads, sectorsPerTrack, cardSizeBlocks, sectorsPerCluster, relSector, partSize, partType, fatSize, fatStart, reservedSectors, output)) {
return false;
}
}
if (output) {
output->printLN("");
}
return true;
}
bool ESP_SD::format(ESP3DOutput * output)
{
if (ESP_SD::getState(true) == ESP_SDCARD_IDLE) {
Sd2Card card;
uint32_t cardSizeBlocks;
uint32_t cardCapacityMB;
// cache for SD block
cache_t cache;
// MBR information
uint8_t partType;
uint32_t relSector;
uint32_t partSize;
// Fake disk geometry
uint8_t numberOfHeads;
uint8_t sectorsPerTrack;
// FAT parameters
uint16_t reservedSectors;
uint8_t sectorsPerCluster;
uint32_t fatStart;
uint32_t fatSize;
uint32_t dataStart;
if (!card.begin((ESP_SD_CS_PIN == -1)?SS:ESP_SD_CS_PIN, SD_SCK_HZ(F_CPU/_spi_speed_divider))) {
return false;
}
cardSizeBlocks = card.cardSize();
if (cardSizeBlocks == 0) {
return false;
}
cardCapacityMB = (cardSizeBlocks + 2047)/2048;
if (output) {
String s = "Capacity detected :" + String((1.048576*cardCapacityMB)/1024) + "GB";
output->printMSG(s.c_str());
}
if (!eraseCard(card, cache, cardSizeBlocks, output)) {
return false;
}
if (!formatCard(dataStart, card, cache, numberOfHeads,
sectorsPerTrack, cardSizeBlocks,
sectorsPerCluster, relSector, partSize, partType,
fatSize, fatStart, cardCapacityMB, reservedSectors,output)) {
return false;
}
return true;
}
return false;
}
ESP_SDFile ESP_SD::open(const char* path, uint8_t mode)
{
//do some check
if(((strcmp(path,"/") == 0) && ((mode == ESP_FILE_WRITE) || (mode == ESP_FILE_APPEND))) || (strlen(path) == 0)) {
_sizechanged = true;
return ESP_SDFile();
}
// path must start by '/'
if (path[0] != '/') {
return ESP_SDFile();
}
if (mode != ESP_FILE_READ) {
//check container exists
String p = path;
p.remove(p.lastIndexOf('/') +1);
if (!exists(p.c_str())) {
log_esp3d("Error opening: %s", path);
return ESP_SDFile();
}
}
sdfat::File tmp = SD.open(path, (mode == ESP_FILE_READ)?FILE_READ:(mode == ESP_FILE_WRITE)?FILE_WRITE:FILE_WRITE);
ESP_SDFile esptmp(&tmp, tmp.isDir(),(mode == ESP_FILE_READ)?false:true, path);
return esptmp;
}
bool ESP_SD::exists(const char* path)
{
bool res = false;
//root should always be there if started
if (strcmp(path, "/") == 0) {
return _started;
}
res = SD.exists(path);
if (!res) {
ESP_SDFile root = ESP_SD::open(path, ESP_FILE_READ);
if (root) {
res = root.isDirectory();
}
}
return res;
}
bool ESP_SD::remove(const char *path)
{
_sizechanged = true;
return SD.remove(path);
}
bool ESP_SD::mkdir(const char *path)
{
return SD.mkdir(path);
}
bool ESP_SD::rmdir(const char *path)
{
if (!exists(path)) {
return false;
}
bool res = true;
GenLinkedList<String > pathlist;
String p = path;
pathlist.push(p);
while (pathlist.count() > 0) {
sdfat::File dir = SD.open(pathlist.getLast().c_str());
dir.rewindDirectory();
sdfat::File f = dir.openNextFile();
bool candelete = true;
while (f) {
if (f.isDir()) {
candelete = false;
String newdir;
char tmp[255];
f.getName(tmp,254);
newdir = tmp;
pathlist.push(newdir);
f.close();
f = sdfat::File();
} else {
char tmp[255];
f.getName(tmp,254);
_sizechanged = true;
SD.remove(tmp);
f.close();
f = dir.openNextFile();
}
}
if (candelete) {
if (pathlist.getLast() !="/") {
res = SD.rmdir(pathlist.getLast().c_str());
}
pathlist.pop();
}
dir.close();
}
p = String();
log_esp3d("count %d", pathlist.count());
return res;
}
void ESP_SD::closeAll()
{
for (uint8_t i = 0; i < ESP_MAX_SD_OPENHANDLE; i++) {
tSDFile_handle[i].close();
tSDFile_handle[i] = sdfat::File();
}
}
ESP_SDFile::ESP_SDFile(void* handle, bool isdir, bool iswritemode, const char * path)
{
_isdir = isdir;
_dirlist = "";
_index = -1;
_filename = "";
_name = "";
_lastwrite = 0;
_iswritemode = iswritemode;
_size = 0;
if (!handle) {
return ;
}
bool set =false;
for (uint8_t i=0; (i < ESP_MAX_SD_OPENHANDLE) && !set; i++) {
if (!tSDFile_handle[i]) {
tSDFile_handle[i] = *((sdfat::File*)handle);
//filename
char tmp[255];
tSDFile_handle[i].getName(tmp,254);
_filename = path;
//name
_name = tmp;
if (_name.endsWith("/")) {
_name.remove( _name.length() - 1,1);
_isdir = true;
}
if (_name[0] == '/') {
_name.remove( 0, 1);
}
int pos = _name.lastIndexOf('/');
if (pos != -1) {
_name.remove( 0, pos+1);
}
if (_name.length() == 0) {
_name = "/";
}
//size
_size = tSDFile_handle[i].size();
//time
if (!_isdir) {
_lastwrite = getDateTimeFile(tSDFile_handle[i]);
} else {
//no need date time for directory
_lastwrite = 0;
}
_index = i;
//log_esp3d("Opening File at index %d",_index);
set = true;
}
}
}
//todo need also to add short filename
const char* ESP_SDFile::shortname() const
{
static char sname[13];
sdfat::File ftmp = SD.open(_filename.c_str());
if (ftmp) {
ftmp.getSFN(sname);
ftmp.close();
return sname;
} else {
return _name.c_str();
}
}
void ESP_SDFile::close()
{
if (_index != -1) {
//log_esp3d("Closing File at index %d", _index);
tSDFile_handle[_index].close();
//reopen if mode = write
//udate size + date
if (_iswritemode && !_isdir) {
sdfat::File ftmp = SD.open(_filename.c_str());
if (ftmp) {
_size = ftmp.size();
_lastwrite = getDateTimeFile(ftmp);
ftmp.close();
}
}
tSDFile_handle[_index] = sdfat::File();
//log_esp3d("Closing File at index %d",_index);
_index = -1;
}
}
ESP_SDFile ESP_SDFile::openNextFile()
{
if ((_index == -1) || !_isdir) {
log_esp3d("openNextFile failed");
return ESP_SDFile();
}
sdfat::File tmp = tSDFile_handle[_index].openNextFile();
if (tmp) {
char tmps[255];
tmp.getName(tmps,254);
log_esp3d("tmp name :%s %s", tmps, (tmp.isDir())?"isDir":"isFile");
String s = _filename ;
if (s!="/") {
s+="/";
}
s += tmps;
ESP_SDFile esptmp(&tmp, tmp.isDir(),false, s.c_str());
esptmp.close();
return esptmp;
}
return ESP_SDFile();
}
const char * ESP_SD::FilesystemName()
{
return "SDFat";
}
#endif //SD_DEVICE == ESP_SD_NATIVE
#endif //ARCH_ESP32 && SD_DEVICE