#include "BoundingBox.hpp" #include "Polygon.hpp" #include "PrintConfig.hpp" #include "libslic3r.h" #include "I18N.hpp" #include "GCode.hpp" #include "Exception.hpp" #include "ExtrusionEntity.hpp" #include "EdgeGrid.hpp" #include "Geometry/ConvexHull.hpp" #include "GCode/PrintExtents.hpp" #include "GCode/Thumbnails.hpp" #include "GCode/WipeTower.hpp" #include "ShortestPath.hpp" #include "Print.hpp" #include "Utils.hpp" #include "ClipperUtils.hpp" #include "libslic3r.h" #include "LocalesUtils.hpp" #include "libslic3r/format.hpp" #include "Time.hpp" #include "GCode/ExtrusionProcessor.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "SVG.hpp" #include #include "calib.hpp" // Intel redesigned some TBB interface considerably when merging TBB with their oneAPI set of libraries, see GH #7332. // We are using quite an old TBB 2017 U7. Before we update our build servers, let's use the old API, which is deprecated in up to date TBB. #if ! defined(TBB_VERSION_MAJOR) #include #endif #if ! defined(TBB_VERSION_MAJOR) static_assert(false, "TBB_VERSION_MAJOR not defined"); #endif #if TBB_VERSION_MAJOR >= 2021 #include using slic3r_tbb_filtermode = tbb::filter_mode; #else #include using slic3r_tbb_filtermode = tbb::filter; #endif #include #include "miniz_extension.hpp" using namespace std::literals::string_view_literals; #if 0 // Enable debugging and asserts, even in the release build. #define DEBUG #define _DEBUG #undef NDEBUG #endif #include namespace Slic3r { //! macro used to mark string used at localization, //! return same string #define L(s) (s) #define _(s) Slic3r::I18N::translate(s) static const float g_min_purge_volume = 100.f; static const float g_purge_volume_one_time = 135.f; static const int g_max_flush_count = 4; // static const size_t g_max_label_object = 64; Vec2d travel_point_1; Vec2d travel_point_2; Vec2d travel_point_3; static std::vector get_path_of_change_filament(const Print& print) { // give safe value in case there is no start_end_points in config std::vector out_points; out_points.emplace_back(Vec2d(54, 0)); out_points.emplace_back(Vec2d(54, 0)); out_points.emplace_back(Vec2d(54, 245)); // get the start_end_points from config (20, -3) (54, 245) Pointfs points = print.config().start_end_points.values; if (points.size() != 2) return out_points; Vec2d start_point = points[0]; Vec2d end_point = points[1]; // the cutter area size(18, 28) Pointfs excluse_area = print.config().bed_exclude_area.values; if (excluse_area.size() != 4) return out_points; double cutter_area_x = excluse_area[2].x() + 2; double cutter_area_y = excluse_area[2].y() + 2; double start_x_position = start_point.x(); double end_x_position = end_point.x(); double end_y_position = end_point.y(); bool can_travel_form_left = true; // step 1: get the x-range intervals of all objects std::vector> object_intervals; for (PrintObject *print_object : print.objects()) { const PrintInstances &print_instances = print_object->instances(); BoundingBoxf3 bounding_box = print_instances[0].model_instance->get_object()->bounding_box(); if (bounding_box.min.x() < start_x_position && bounding_box.min.y() < cutter_area_y) can_travel_form_left = false; std::pair object_scope = std::make_pair(bounding_box.min.x() - 2, bounding_box.max.x() + 2); if (object_intervals.empty()) object_intervals.push_back(object_scope); else { std::vector> new_object_intervals; bool intervals_intersect = false; std::pair new_merged_scope; for (auto object_interval : object_intervals) { if (object_interval.second >= object_scope.first && object_interval.first <= object_scope.second) { if (intervals_intersect) { new_merged_scope = std::make_pair(std::min(object_interval.first, new_merged_scope.first), std::max(object_interval.second, new_merged_scope.second)); } else { // it is the first intersection new_merged_scope = std::make_pair(std::min(object_interval.first, object_scope.first), std::max(object_interval.second, object_scope.second)); } intervals_intersect = true; } else { new_object_intervals.push_back(object_interval); } } if (intervals_intersect) { new_object_intervals.push_back(new_merged_scope); object_intervals = new_object_intervals; } else object_intervals.push_back(object_scope); } } // step 2: get the available x-range std::sort(object_intervals.begin(), object_intervals.end(), [](const std::pair &left, const std::pair &right) { return left.first < right.first; }); std::vector> available_intervals; double start_position = 0; for (auto object_interval : object_intervals) { if (object_interval.first > start_position) available_intervals.push_back(std::make_pair(start_position, object_interval.first)); start_position = object_interval.second; } available_intervals.push_back(std::make_pair(start_position, 255)); // step 3: get the nearest path double new_path = 255; for (auto available_interval : available_intervals) { if (available_interval.first > end_x_position) { double distance = available_interval.first - end_x_position; new_path = abs(end_x_position - new_path) < distance ? new_path : available_interval.first; break; } else { if (available_interval.second >= end_x_position) { new_path = end_x_position; break; } else if (!can_travel_form_left && available_interval.second < start_x_position) { continue; } else { new_path = available_interval.second; } } } // step 4: generate path points (new_path == start_x_position means not need to change path) Vec2d out_point_1; Vec2d out_point_2; Vec2d out_point_3; if (new_path < start_x_position) { out_point_1 = Vec2d(start_x_position, cutter_area_y); out_point_2 = Vec2d(new_path, cutter_area_y); out_point_3 = Vec2d(new_path, end_y_position); } else { out_point_1 = Vec2d(new_path, 0); out_point_2 = Vec2d(new_path, 0); out_point_3 = Vec2d(new_path, end_y_position); } out_points.clear(); out_points.emplace_back(out_point_1); out_points.emplace_back(out_point_2); out_points.emplace_back(out_point_3); return out_points; } // Only add a newline in case the current G-code does not end with a newline. static inline void check_add_eol(std::string& gcode) { if (!gcode.empty() && gcode.back() != '\n') gcode += '\n'; } // Return true if tch_prefix is found in custom_gcode static bool custom_gcode_changes_tool(const std::string& custom_gcode, const std::string& tch_prefix, unsigned next_extruder) { bool ok = false; size_t from_pos = 0; size_t pos = 0; while ((pos = custom_gcode.find(tch_prefix, from_pos)) != std::string::npos) { if (pos + 1 == custom_gcode.size()) break; from_pos = pos + 1; // only whitespace is allowed before the command while (--pos < custom_gcode.size() && custom_gcode[pos] != '\n') { if (!std::isspace(custom_gcode[pos])) goto NEXT; } { // we should also check that the extruder changes to what was expected std::istringstream ss(custom_gcode.substr(from_pos, std::string::npos)); unsigned num = 0; if (ss >> num) ok = (num == next_extruder); } NEXT:; } return ok; } std::string OozePrevention::pre_toolchange(GCode& gcodegen) { std::string gcode; // move to the nearest standby point if (!this->standby_points.empty()) { // get current position in print coordinates Vec3d writer_pos = gcodegen.writer().get_position(); Point pos = Point::new_scale(writer_pos(0), writer_pos(1)); // find standby point Point standby_point; pos.nearest_point(this->standby_points, &standby_point); /* We don't call gcodegen.travel_to() because we don't need retraction (it was already triggered by the caller) nor reduce_crossing_wall and also because the coordinates of the destination point must not be transformed by origin nor current extruder offset. */ gcode += gcodegen.writer().travel_to_xy(unscale(standby_point), "move to standby position"); } if (gcodegen.config().standby_temperature_delta.value != 0) { // we assume that heating is always slower than cooling, so no need to block gcode += gcodegen.writer().set_temperature (this->_get_temp(gcodegen) + gcodegen.config().standby_temperature_delta.value, false, gcodegen.writer().extruder()->id()); } return gcode; } std::string OozePrevention::post_toolchange(GCode& gcodegen) { return (gcodegen.config().standby_temperature_delta.value != 0) ? gcodegen.writer().set_temperature(this->_get_temp(gcodegen), true, gcodegen.writer().extruder()->id()) : std::string(); } int OozePrevention::_get_temp(GCode& gcodegen) { return (gcodegen.layer() != NULL && gcodegen.layer()->id() == 0) ? gcodegen.config().nozzle_temperature_initial_layer.get_at(gcodegen.writer().extruder()->id()) : gcodegen.config().nozzle_temperature.get_at(gcodegen.writer().extruder()->id()); } std::string Wipe::wipe(GCode& gcodegen, bool toolchange, bool is_last) { std::string gcode; /* Reduce feedrate a bit; travel speed is often too high to move on existing material. Too fast = ripping of existing material; too slow = short wipe path, thus more blob. */ double _wipe_speed = gcodegen.config().get_abs_value("wipe_speed");// gcodegen.writer().config.travel_speed.value * 0.8; if(gcodegen.config().role_based_wipe_speed) _wipe_speed = gcodegen.writer().get_current_speed() / 60.0; if(_wipe_speed < 10) _wipe_speed = 10; // get the retraction length double length = toolchange ? gcodegen.writer().extruder()->retract_length_toolchange() : gcodegen.writer().extruder()->retraction_length(); // Shorten the retraction length by the amount already retracted before wipe. length *= (1. - gcodegen.writer().extruder()->retract_before_wipe()); //SoftFever: allow 100% retract before wipe if (length >= 0) { /* Calculate how long we need to travel in order to consume the required amount of retraction. In other words, how far do we move in XY at wipe_speed for the time needed to consume retraction_length at retraction_speed? */ // BBS double wipe_dist = scale_(gcodegen.config().wipe_distance.get_at(gcodegen.writer().extruder()->id())); /* Take the stored wipe path and replace first point with the current actual position (they might be different, for example, in case of loop clipping). */ Polyline wipe_path; wipe_path.append(gcodegen.last_pos()); wipe_path.append( this->path.points.begin() + 1, this->path.points.end() ); wipe_path.clip_end(wipe_path.length() - wipe_dist); // subdivide the retraction in segments if (!wipe_path.empty()) { // BBS. Handle short path case. if (wipe_path.length() < wipe_dist) { wipe_dist = wipe_path.length(); //BBS: avoid to divide 0 wipe_dist = wipe_dist < EPSILON ? EPSILON : wipe_dist; } // add tag for processor gcode += ";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Start) + "\n"; //BBS: don't need to enable cooling makers when this is the last wipe. Because no more cooling layer will clean this "_WIPE" //Softfever: std::string cooling_mark = ""; if (gcodegen.enable_cooling_markers() && !is_last) cooling_mark = /*gcodegen.config().role_based_wipe_speed ? ";_EXTERNAL_PERIMETER" : */";_WIPE"; gcode += gcodegen.writer().set_speed(_wipe_speed * 60, "", cooling_mark); for (const Line& line : wipe_path.lines()) { double segment_length = line.length(); double dE = length * (segment_length / wipe_dist); //BBS: fix this FIXME //FIXME one shall not generate the unnecessary G1 Fxxx commands, here wipe_speed is a constant inside this cycle. // Is it here for the cooling markers? Or should it be outside of the cycle? //gcode += gcodegen.writer().set_speed(wipe_speed * 60, "", gcodegen.enable_cooling_markers() ? ";_WIPE" : ""); gcode += gcodegen.writer().extrude_to_xy( gcodegen.point_to_gcode(line.b), -dE, "wipe and retract" ); } // add tag for processor gcode += ";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_End) + "\n"; gcodegen.set_last_pos(wipe_path.points.back()); } // prevent wiping again on same path this->reset_path(); } return gcode; } static inline Point wipe_tower_point_to_object_point(GCode& gcodegen, const Vec2f& wipe_tower_pt) { return Point(scale_(wipe_tower_pt.x() - gcodegen.origin()(0)), scale_(wipe_tower_pt.y() - gcodegen.origin()(1))); } std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id, double z) const { if (new_extruder_id != -1 && new_extruder_id != tcr.new_tool) throw Slic3r::InvalidArgument("Error: WipeTowerIntegration::append_tcr was asked to do a toolchange it didn't expect."); std::string gcode; // Toolchangeresult.gcode assumes the wipe tower corner is at the origin (except for priming lines) // We want to rotate and shift all extrusions (gcode postprocessing) and starting and ending position float alpha = m_wipe_tower_rotation / 180.f * float(M_PI); auto transform_wt_pt = [&alpha, this](const Vec2f &pt) -> Vec2f { Vec2f out = Eigen::Rotation2Df(alpha) * pt; out += m_wipe_tower_pos; return out; }; Vec2f start_pos = tcr.start_pos; Vec2f end_pos = tcr.end_pos; if (!tcr.priming) { start_pos = transform_wt_pt(start_pos); end_pos = transform_wt_pt(end_pos); } Vec2f wipe_tower_offset = tcr.priming ? Vec2f::Zero() : m_wipe_tower_pos; float wipe_tower_rotation = tcr.priming ? 0.f : alpha; std::string tcr_rotated_gcode = post_process_wipe_tower_moves(tcr, wipe_tower_offset, wipe_tower_rotation); // BBS: add partplate logic Vec2f plate_origin_2d(m_plate_origin(0), m_plate_origin(1)); // BBS: toolchange gcode will move to start_pos, // so only perform movement when printing sparse partition to support upper layer. // start_pos is the position in plate coordinate. if (!tcr.priming && tcr.is_finish_first) { // Move over the wipe tower. gcode += gcodegen.retract(); gcodegen.m_avoid_crossing_perimeters.use_external_mp_once(); gcode += gcodegen.travel_to(wipe_tower_point_to_object_point(gcodegen, start_pos + plate_origin_2d), erMixed, "Travel to a Wipe Tower"); gcode += gcodegen.unretract(); } // BBS: if needed, write the gcode_label_objects_end then priming tower, if the retract, didn't did it. gcodegen.m_writer.add_object_end_labels(gcode); double current_z = gcodegen.writer().get_position().z(); if (z == -1.) // in case no specific z was provided, print at current_z pos z = current_z; if (!is_approx(z, current_z)) { gcode += gcodegen.writer().retract(); gcode += gcodegen.writer().travel_to_z(z, "Travel down to the last wipe tower layer."); gcode += gcodegen.writer().unretract(); } // Process the end filament gcode. std::string end_filament_gcode_str; if (gcodegen.writer().extruder() != nullptr) { // Process the custom filament_end_gcode in case of single_extruder_multi_material. unsigned int old_extruder_id = gcodegen.writer().extruder()->id(); const std::string &filament_end_gcode = gcodegen.config().filament_end_gcode.get_at(old_extruder_id); if (gcodegen.writer().extruder() != nullptr && !filament_end_gcode.empty()) { end_filament_gcode_str = gcodegen.placeholder_parser_process("filament_end_gcode", filament_end_gcode, old_extruder_id); check_add_eol(end_filament_gcode_str); } } // BBS: increase toolchange count gcodegen.m_toolchange_count++; // BBS: should be placed before toolchange parsing std::string toolchange_retract_str = gcodegen.retract(true, false); check_add_eol(toolchange_retract_str); // Process the custom change_filament_gcode. If it is empty, provide a simple Tn command to change the filament. // Otherwise, leave control to the user completely. std::string toolchange_gcode_str; const std::string &change_filament_gcode = gcodegen.config().change_filament_gcode.value; // m_max_layer_z = std::max(m_max_layer_z, tcr.print_z); if (!change_filament_gcode.empty()) { DynamicConfig config; int previous_extruder_id = gcodegen.writer().extruder() ? (int) gcodegen.writer().extruder()->id() : -1; config.set_key_value("previous_extruder", new ConfigOptionInt(previous_extruder_id)); config.set_key_value("next_extruder", new ConfigOptionInt((int) new_extruder_id)); config.set_key_value("layer_num", new ConfigOptionInt(gcodegen.m_layer_index)); config.set_key_value("layer_z", new ConfigOptionFloat(tcr.print_z)); config.set_key_value("toolchange_z", new ConfigOptionFloat(z)); // config.set_key_value("max_layer_z", new ConfigOptionFloat(m_max_layer_z)); // BBS { GCodeWriter &gcode_writer = gcodegen.m_writer; FullPrintConfig &full_config = gcodegen.m_config; float old_retract_length = gcode_writer.extruder() != nullptr ? full_config.retraction_length.get_at(previous_extruder_id) : 0; float new_retract_length = full_config.retraction_length.get_at(new_extruder_id); float old_retract_length_toolchange = gcode_writer.extruder() != nullptr ? full_config.retract_length_toolchange.get_at(previous_extruder_id) : 0; float new_retract_length_toolchange = full_config.retract_length_toolchange.get_at(new_extruder_id); int old_filament_temp = gcode_writer.extruder() != nullptr ? (gcodegen.on_first_layer() ? full_config.nozzle_temperature_initial_layer.get_at(previous_extruder_id) : full_config.nozzle_temperature.get_at(previous_extruder_id)) : 210; int new_filament_temp = gcodegen.on_first_layer() ? full_config.nozzle_temperature_initial_layer.get_at(new_extruder_id) : full_config.nozzle_temperature.get_at(new_extruder_id); Vec3d nozzle_pos = gcode_writer.get_position(); float purge_volume = tcr.purge_volume < EPSILON ? 0 : std::max(tcr.purge_volume, g_min_purge_volume); float filament_area = float((M_PI / 4.f) * pow(full_config.filament_diameter.get_at(new_extruder_id), 2)); float purge_length = purge_volume / filament_area; int old_filament_e_feedrate = gcode_writer.extruder() != nullptr ? (int) (60.0 * full_config.filament_max_volumetric_speed.get_at(previous_extruder_id) / filament_area) : 200; old_filament_e_feedrate = old_filament_e_feedrate == 0 ? 100 : old_filament_e_feedrate; int new_filament_e_feedrate = (int) (60.0 * full_config.filament_max_volumetric_speed.get_at(new_extruder_id) / filament_area); new_filament_e_feedrate = new_filament_e_feedrate == 0 ? 100 : new_filament_e_feedrate; config.set_key_value("max_layer_z", new ConfigOptionFloat(gcodegen.m_max_layer_z)); config.set_key_value("relative_e_axis", new ConfigOptionBool(full_config.use_relative_e_distances)); config.set_key_value("toolchange_count", new ConfigOptionInt((int) gcodegen.m_toolchange_count)); // BBS: fan speed is useless placeholer now, but we don't remove it to avoid // slicing error in old change_filament_gcode in old 3MF config.set_key_value("fan_speed", new ConfigOptionInt((int) 0)); config.set_key_value("old_retract_length", new ConfigOptionFloat(old_retract_length)); config.set_key_value("new_retract_length", new ConfigOptionFloat(new_retract_length)); config.set_key_value("old_retract_length_toolchange", new ConfigOptionFloat(old_retract_length_toolchange)); config.set_key_value("new_retract_length_toolchange", new ConfigOptionFloat(new_retract_length_toolchange)); config.set_key_value("old_filament_temp", new ConfigOptionInt(old_filament_temp)); config.set_key_value("new_filament_temp", new ConfigOptionInt(new_filament_temp)); config.set_key_value("x_after_toolchange", new ConfigOptionFloat(start_pos(0))); config.set_key_value("y_after_toolchange", new ConfigOptionFloat(start_pos(1))); config.set_key_value("z_after_toolchange", new ConfigOptionFloat(nozzle_pos(2))); config.set_key_value("first_flush_volume", new ConfigOptionFloat(purge_length / 2.f)); config.set_key_value("second_flush_volume", new ConfigOptionFloat(purge_length / 2.f)); config.set_key_value("old_filament_e_feedrate", new ConfigOptionInt(old_filament_e_feedrate)); config.set_key_value("new_filament_e_feedrate", new ConfigOptionInt(new_filament_e_feedrate)); config.set_key_value("travel_point_1_x", new ConfigOptionFloat(float(travel_point_1.x()))); config.set_key_value("travel_point_1_y", new ConfigOptionFloat(float(travel_point_1.y()))); config.set_key_value("travel_point_2_x", new ConfigOptionFloat(float(travel_point_2.x()))); config.set_key_value("travel_point_2_y", new ConfigOptionFloat(float(travel_point_2.y()))); config.set_key_value("travel_point_3_x", new ConfigOptionFloat(float(travel_point_3.x()))); config.set_key_value("travel_point_3_y", new ConfigOptionFloat(float(travel_point_3.y()))); int flush_count = std::min(g_max_flush_count, (int) std::round(purge_volume / g_purge_volume_one_time)); float flush_unit = purge_length / flush_count; int flush_idx = 0; for (; flush_idx < flush_count; flush_idx++) { char key_value[64] = {0}; snprintf(key_value, sizeof(key_value), "flush_length_%d", flush_idx + 1); config.set_key_value(key_value, new ConfigOptionFloat(flush_unit)); } for (; flush_idx < g_max_flush_count; flush_idx++) { char key_value[64] = {0}; snprintf(key_value, sizeof(key_value), "flush_length_%d", flush_idx + 1); config.set_key_value(key_value, new ConfigOptionFloat(0.f)); } } toolchange_gcode_str = gcodegen.placeholder_parser_process("change_filament_gcode", change_filament_gcode, new_extruder_id, &config); check_add_eol(toolchange_gcode_str); // retract before toolchange toolchange_gcode_str = toolchange_retract_str + toolchange_gcode_str; // BBS { // BBS: current position and fan_speed is unclear after interting change_filament_gcode check_add_eol(toolchange_gcode_str); toolchange_gcode_str += ";_FORCE_RESUME_FAN_SPEED\n"; gcodegen.writer().set_current_position_clear(false); // BBS: check whether custom gcode changes the z position. Update if changed double temp_z_after_tool_change; if (GCodeProcessor::get_last_z_from_gcode(toolchange_gcode_str, temp_z_after_tool_change)) { Vec3d pos = gcodegen.writer().get_position(); pos(2) = temp_z_after_tool_change; gcodegen.writer().set_position(pos); } } // move to start_pos for wiping after toolchange std::string start_pos_str; start_pos_str = gcodegen.travel_to(wipe_tower_point_to_object_point(gcodegen, start_pos + plate_origin_2d), erMixed, "Move to start pos"); check_add_eol(start_pos_str); toolchange_gcode_str += start_pos_str; // unretract before wiping toolchange_gcode_str += gcodegen.unretract(); check_add_eol(toolchange_gcode_str); } std::string toolchange_command; if (tcr.priming || (new_extruder_id >= 0 && gcodegen.writer().need_toolchange(new_extruder_id))) toolchange_command = gcodegen.writer().toolchange(new_extruder_id); if (!custom_gcode_changes_tool(toolchange_gcode_str, gcodegen.writer().toolchange_prefix(), new_extruder_id)) toolchange_gcode_str += toolchange_command; else { // We have informed the m_writer about the current extruder_id, we can ignore the generated G-code. } gcodegen.placeholder_parser().set("current_extruder", new_extruder_id); // Process the start filament gcode. std::string start_filament_gcode_str; const std::string &filament_start_gcode = gcodegen.config().filament_start_gcode.get_at(new_extruder_id); if (!filament_start_gcode.empty()) { // Process the filament_start_gcode for the active filament only. DynamicConfig config; config.set_key_value("filament_extruder_id", new ConfigOptionInt(new_extruder_id)); start_filament_gcode_str = gcodegen.placeholder_parser_process("filament_start_gcode", filament_start_gcode, new_extruder_id, &config); check_add_eol(start_filament_gcode_str); } // Insert the end filament, toolchange, and start filament gcode into the generated gcode. DynamicConfig config; config.set_key_value("filament_end_gcode", new ConfigOptionString(end_filament_gcode_str)); config.set_key_value("change_filament_gcode", new ConfigOptionString(toolchange_gcode_str)); config.set_key_value("filament_start_gcode", new ConfigOptionString(start_filament_gcode_str)); std::string tcr_gcode, tcr_escaped_gcode = gcodegen.placeholder_parser_process("tcr_rotated_gcode", tcr_rotated_gcode, new_extruder_id, &config); unescape_string_cstyle(tcr_escaped_gcode, tcr_gcode); gcode += tcr_gcode; check_add_eol(toolchange_gcode_str); // SoftFever: set new PA for new filament if (gcodegen.config().enable_pressure_advance.get_at(new_extruder_id)) { gcode += gcodegen.writer().set_pressure_advance(gcodegen.config().pressure_advance.get_at(new_extruder_id)); } // A phony move to the end position at the wipe tower. gcodegen.writer().travel_to_xy((end_pos + plate_origin_2d).cast()); gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, end_pos + plate_origin_2d)); if (!is_approx(z, current_z)) { gcode += gcodegen.writer().retract(); gcode += gcodegen.writer().travel_to_z(current_z, "Travel back up to the topmost object layer."); gcode += gcodegen.writer().unretract(); } else { // Prepare a future wipe. gcodegen.m_wipe.reset_path(); for (const Vec2f &wipe_pt : tcr.wipe_path) gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, transform_wt_pt(wipe_pt))); } // Let the planner know we are traveling between objects. gcodegen.m_avoid_crossing_perimeters.use_external_mp_once(); return gcode; } std::string WipeTowerIntegration::append_tcr2(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id, double z) const { if (new_extruder_id != -1 && new_extruder_id != tcr.new_tool) throw Slic3r::InvalidArgument("Error: WipeTowerIntegration::append_tcr was asked to do a toolchange it didn't expect."); std::string gcode; // Toolchangeresult.gcode assumes the wipe tower corner is at the origin (except for priming lines) // We want to rotate and shift all extrusions (gcode postprocessing) and starting and ending position float alpha = m_wipe_tower_rotation / 180.f * float(M_PI); auto transform_wt_pt = [&alpha, this](const Vec2f &pt) -> Vec2f { Vec2f out = Eigen::Rotation2Df(alpha) * pt; out += m_wipe_tower_pos; return out; }; Vec2f start_pos = tcr.start_pos; Vec2f end_pos = tcr.end_pos; if (!tcr.priming) { start_pos = transform_wt_pt(start_pos); end_pos = transform_wt_pt(end_pos); } Vec2f wipe_tower_offset = tcr.priming ? Vec2f::Zero() : m_wipe_tower_pos; float wipe_tower_rotation = tcr.priming ? 0.f : alpha; Vec2f plate_origin_2d(m_plate_origin(0), m_plate_origin(1)); std::string tcr_rotated_gcode = post_process_wipe_tower_moves(tcr, wipe_tower_offset, wipe_tower_rotation); gcode += gcodegen.writer().unlift(); // Make sure there is no z-hop (in most cases, there isn't). double current_z = gcodegen.writer().get_position().z(); if (z == -1.) // in case no specific z was provided, print at current_z pos z = current_z; const bool needs_toolchange = gcodegen.writer().need_toolchange(new_extruder_id); const bool will_go_down = !is_approx(z, current_z); const bool is_ramming = (gcodegen.config().single_extruder_multi_material) || (!gcodegen.config().single_extruder_multi_material && gcodegen.config().filament_multitool_ramming.get_at(tcr.initial_tool)); const bool should_travel_to_tower = !tcr.priming && (tcr.force_travel // wipe tower says so || !needs_toolchange // this is just finishing the tower with no toolchange || is_ramming); if (should_travel_to_tower) { // FIXME: It would be better if the wipe tower set the force_travel flag for all toolchanges, // then we could simplify the condition and make it more readable. gcode += gcodegen.retract(); gcodegen.m_avoid_crossing_perimeters.use_external_mp_once(); gcode += gcodegen.travel_to(wipe_tower_point_to_object_point(gcodegen, start_pos + plate_origin_2d), erMixed, "Travel to a Wipe Tower"); gcode += gcodegen.unretract(); } else { // When this is multiextruder printer without any ramming, we can just change // the tool without travelling to the tower. } if (will_go_down) { gcode += gcodegen.writer().retract(); gcode += gcodegen.writer().travel_to_z(z, "Travel down to the last wipe tower layer."); gcode += gcodegen.writer().unretract(); } std::string toolchange_gcode_str; std::string deretraction_str; if (tcr.priming || (new_extruder_id >= 0 && needs_toolchange)) { if (is_ramming) gcodegen.m_wipe.reset_path(); // We don't want wiping on the ramming lines. toolchange_gcode_str = gcodegen.set_extruder(new_extruder_id, tcr.print_z); // TODO: toolchange_z vs print_z if (gcodegen.config().has_prime_tower) deretraction_str = gcodegen.unretract(); } // Insert the toolchange and deretraction gcode into the generated gcode. DynamicConfig config; config.set_key_value("change_filament_gcode", new ConfigOptionString(toolchange_gcode_str)); config.set_key_value("deretraction_from_wipe_tower_generator", new ConfigOptionString(deretraction_str)); int previous_extruder_id = gcodegen.writer().extruder() ? (int) gcodegen.writer().extruder()->id() : -1; config.set_key_value("previous_extruder", new ConfigOptionInt(previous_extruder_id)); config.set_key_value("next_extruder", new ConfigOptionInt((int) new_extruder_id)); config.set_key_value("layer_num", new ConfigOptionInt(gcodegen.m_layer_index)); config.set_key_value("layer_z", new ConfigOptionFloat(tcr.print_z)); config.set_key_value("toolchange_z", new ConfigOptionFloat(z)); GCodeWriter &gcode_writer = gcodegen.m_writer; FullPrintConfig &full_config = gcodegen.m_config; float old_retract_length = gcode_writer.extruder() != nullptr ? full_config.retraction_length.get_at(previous_extruder_id) : 0; float new_retract_length = full_config.retraction_length.get_at(new_extruder_id); float old_retract_length_toolchange = gcode_writer.extruder() != nullptr ? full_config.retract_length_toolchange.get_at(previous_extruder_id) : 0; float new_retract_length_toolchange = full_config.retract_length_toolchange.get_at(new_extruder_id); int old_filament_temp = gcode_writer.extruder() != nullptr ? (gcodegen.on_first_layer() ? full_config.nozzle_temperature_initial_layer.get_at(previous_extruder_id) : full_config.nozzle_temperature.get_at(previous_extruder_id)) : 210; int new_filament_temp = gcodegen.on_first_layer() ? full_config.nozzle_temperature_initial_layer.get_at(new_extruder_id) : full_config.nozzle_temperature.get_at(new_extruder_id); Vec3d nozzle_pos = gcode_writer.get_position(); float purge_volume = tcr.purge_volume < EPSILON ? 0 : std::max(tcr.purge_volume, g_min_purge_volume); float filament_area = float((M_PI / 4.f) * pow(full_config.filament_diameter.get_at(new_extruder_id), 2)); float purge_length = purge_volume / filament_area; int old_filament_e_feedrate = gcode_writer.extruder() != nullptr ? (int) (60.0 * full_config.filament_max_volumetric_speed.get_at(previous_extruder_id) / filament_area) : 200; old_filament_e_feedrate = old_filament_e_feedrate == 0 ? 100 : old_filament_e_feedrate; int new_filament_e_feedrate = (int) (60.0 * full_config.filament_max_volumetric_speed.get_at(new_extruder_id) / filament_area); new_filament_e_feedrate = new_filament_e_feedrate == 0 ? 100 : new_filament_e_feedrate; config.set_key_value("max_layer_z", new ConfigOptionFloat(gcodegen.m_max_layer_z)); config.set_key_value("relative_e_axis", new ConfigOptionBool(full_config.use_relative_e_distances)); config.set_key_value("toolchange_count", new ConfigOptionInt((int) gcodegen.m_toolchange_count)); config.set_key_value("fan_speed", new ConfigOptionInt((int) 0)); config.set_key_value("old_retract_length", new ConfigOptionFloat(old_retract_length)); config.set_key_value("new_retract_length", new ConfigOptionFloat(new_retract_length)); config.set_key_value("old_retract_length_toolchange", new ConfigOptionFloat(old_retract_length_toolchange)); config.set_key_value("new_retract_length_toolchange", new ConfigOptionFloat(new_retract_length_toolchange)); config.set_key_value("old_filament_temp", new ConfigOptionInt(old_filament_temp)); config.set_key_value("new_filament_temp", new ConfigOptionInt(new_filament_temp)); config.set_key_value("x_after_toolchange", new ConfigOptionFloat(start_pos(0))); config.set_key_value("y_after_toolchange", new ConfigOptionFloat(start_pos(1))); config.set_key_value("z_after_toolchange", new ConfigOptionFloat(nozzle_pos(2))); config.set_key_value("first_flush_volume", new ConfigOptionFloat(purge_length / 2.f)); config.set_key_value("second_flush_volume", new ConfigOptionFloat(purge_length / 2.f)); config.set_key_value("old_filament_e_feedrate", new ConfigOptionInt(old_filament_e_feedrate)); config.set_key_value("new_filament_e_feedrate", new ConfigOptionInt(new_filament_e_feedrate)); config.set_key_value("travel_point_1_x", new ConfigOptionFloat(float(travel_point_1.x()))); config.set_key_value("travel_point_1_y", new ConfigOptionFloat(float(travel_point_1.y()))); config.set_key_value("travel_point_2_x", new ConfigOptionFloat(float(travel_point_2.x()))); config.set_key_value("travel_point_2_y", new ConfigOptionFloat(float(travel_point_2.y()))); config.set_key_value("travel_point_3_x", new ConfigOptionFloat(float(travel_point_3.x()))); config.set_key_value("travel_point_3_y", new ConfigOptionFloat(float(travel_point_3.y()))); int flush_count = std::min(g_max_flush_count, (int) std::round(purge_volume / g_purge_volume_one_time)); float flush_unit = purge_length / flush_count; int flush_idx = 0; for (; flush_idx < flush_count; flush_idx++) { char key_value[64] = {0}; snprintf(key_value, sizeof(key_value), "flush_length_%d", flush_idx + 1); config.set_key_value(key_value, new ConfigOptionFloat(flush_unit)); } for (; flush_idx < g_max_flush_count; flush_idx++) { char key_value[64] = {0}; snprintf(key_value, sizeof(key_value), "flush_length_%d", flush_idx + 1); config.set_key_value(key_value, new ConfigOptionFloat(0.f)); } std::string tcr_gcode, tcr_escaped_gcode = gcodegen.placeholder_parser_process("tcr_rotated_gcode", tcr_rotated_gcode, new_extruder_id, &config); unescape_string_cstyle(tcr_escaped_gcode, tcr_gcode); gcode += tcr_gcode; check_add_eol(toolchange_gcode_str); // SoftFever: set new PA for new filament if (new_extruder_id != -1 && gcodegen.config().enable_pressure_advance.get_at(new_extruder_id)) { gcode += gcodegen.writer().set_pressure_advance(gcodegen.config().pressure_advance.get_at(new_extruder_id)); } // A phony move to the end position at the wipe tower. gcodegen.writer().travel_to_xy((end_pos + plate_origin_2d).cast()); gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, end_pos + plate_origin_2d)); if (!is_approx(z, current_z)) { gcode += gcodegen.writer().retract(); gcode += gcodegen.writer().travel_to_z(current_z, "Travel back up to the topmost object layer."); gcode += gcodegen.writer().unretract(); } else { // Prepare a future wipe. gcodegen.m_wipe.reset_path(); for (const Vec2f &wipe_pt : tcr.wipe_path) gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, transform_wt_pt(wipe_pt))); } // Let the planner know we are traveling between objects. gcodegen.m_avoid_crossing_perimeters.use_external_mp_once(); return gcode; } // This function postprocesses gcode_original, rotates and moves all G1 extrusions and returns resulting gcode // Starting position has to be supplied explicitely (otherwise it would fail in case first G1 command only contained one coordinate) std::string WipeTowerIntegration::post_process_wipe_tower_moves(const WipeTower::ToolChangeResult& tcr, const Vec2f& translation, float angle) const { Vec2f extruder_offset; if (m_single_extruder_multi_material) extruder_offset = m_extruder_offsets[0].cast(); else extruder_offset = m_extruder_offsets[tcr.initial_tool].cast(); std::istringstream gcode_str(tcr.gcode); std::string gcode_out; std::string line; Vec2f pos = tcr.start_pos; Vec2f transformed_pos = pos; Vec2f old_pos(-1000.1f, -1000.1f); while (gcode_str) { std::getline(gcode_str, line); // we read the gcode line by line // All G1 commands should be translated and rotated. X and Y coords are // only pushed to the output when they differ from last time. // WT generator can override this by appending the never_skip_tag if (line.find("G1 ") == 0) { bool never_skip = false; auto it = line.find(WipeTower::never_skip_tag()); if (it != std::string::npos) { // remove the tag and remember we saw it never_skip = true; line.erase(it, it + WipeTower::never_skip_tag().size()); } std::ostringstream line_out; std::istringstream line_str(line); line_str >> std::noskipws; // don't skip whitespace char ch = 0; while (line_str >> ch) { if (ch == 'X' || ch == 'Y') line_str >> (ch == 'X' ? pos.x() : pos.y()); else line_out << ch; } transformed_pos = Eigen::Rotation2Df(angle) * pos + translation; if (transformed_pos != old_pos || never_skip) { line = line_out.str(); std::ostringstream oss; oss << std::fixed << std::setprecision(3) << "G1 "; if (transformed_pos.x() != old_pos.x() || never_skip) oss << " X" << transformed_pos.x() - extruder_offset.x(); if (transformed_pos.y() != old_pos.y() || never_skip) oss << " Y" << transformed_pos.y() - extruder_offset.y(); oss << " "; line.replace(line.find("G1 "), 3, oss.str()); old_pos = transformed_pos; } } gcode_out += line + "\n"; // If this was a toolchange command, we should change current extruder offset if (line == "[change_filament_gcode]") { // BBS if (!m_single_extruder_multi_material) { extruder_offset = m_extruder_offsets[tcr.new_tool].cast(); // If the extruder offset changed, add an extra move so everything is continuous if (extruder_offset != m_extruder_offsets[tcr.initial_tool].cast()) { std::ostringstream oss; oss << std::fixed << std::setprecision(3) << "G1 X" << transformed_pos.x() - extruder_offset.x() << " Y" << transformed_pos.y() - extruder_offset.y() << "\n"; gcode_out += oss.str(); } } } } return gcode_out; } std::string WipeTowerIntegration::prime(GCode &gcodegen) { std::string gcode; if (!gcodegen.is_BBL_Printer()) { for (const WipeTower::ToolChangeResult &tcr : m_priming) { if (!tcr.extrusions.empty()) gcode += append_tcr2(gcodegen, tcr, tcr.new_tool); } } return gcode; } std::string WipeTowerIntegration::tool_change(GCode &gcodegen, int extruder_id, bool finish_layer) { std::string gcode; assert(m_layer_idx >= 0); if (m_layer_idx >= (int) m_tool_changes.size()) return gcode; if (gcodegen.config().purge_in_prime_tower) { if (gcodegen.writer().need_toolchange(extruder_id) || finish_layer) { if (m_layer_idx < (int) m_tool_changes.size()) { if (!(size_t(m_tool_change_idx) < m_tool_changes[m_layer_idx].size())) throw Slic3r::RuntimeError("Wipe tower generation failed, possibly due to empty first layer."); // Calculate where the wipe tower layer will be printed. -1 means that print z will not change, // resulting in a wipe tower with sparse layers. double wipe_tower_z = -1; bool ignore_sparse = false; if (gcodegen.config().wipe_tower_no_sparse_layers.value) { wipe_tower_z = m_last_wipe_tower_print_z; ignore_sparse = (m_tool_changes[m_layer_idx].size() == 1 && m_tool_changes[m_layer_idx].front().initial_tool == m_tool_changes[m_layer_idx].front().new_tool && m_layer_idx != 0); if (m_tool_change_idx == 0 && !ignore_sparse) wipe_tower_z = m_last_wipe_tower_print_z + m_tool_changes[m_layer_idx].front().layer_height; } if (!ignore_sparse) { gcode += append_tcr2(gcodegen, m_tool_changes[m_layer_idx][m_tool_change_idx++], extruder_id, wipe_tower_z); m_last_wipe_tower_print_z = wipe_tower_z; } } } } else { // Calculate where the wipe tower layer will be printed. -1 means that print z will not change, // resulting in a wipe tower with sparse layers. double wipe_tower_z = -1; bool ignore_sparse = false; if (gcodegen.config().wipe_tower_no_sparse_layers.value) { wipe_tower_z = m_last_wipe_tower_print_z; ignore_sparse = (m_tool_changes[m_layer_idx].size() == 1 && m_tool_changes[m_layer_idx].front().initial_tool == m_tool_changes[m_layer_idx].front().new_tool); if (m_tool_change_idx == 0 && !ignore_sparse) wipe_tower_z = m_last_wipe_tower_print_z + m_tool_changes[m_layer_idx].front().layer_height; } if (m_enable_timelapse_print && m_is_first_print) { gcode += append_tcr(gcodegen, m_tool_changes[m_layer_idx][0], m_tool_changes[m_layer_idx][0].new_tool, wipe_tower_z); m_tool_change_idx++; m_is_first_print = false; } if (gcodegen.writer().need_toolchange(extruder_id) || finish_layer) { if (!(size_t(m_tool_change_idx) < m_tool_changes[m_layer_idx].size())) throw Slic3r::RuntimeError("Wipe tower generation failed, possibly due to empty first layer."); if (!ignore_sparse) { gcode += append_tcr(gcodegen, m_tool_changes[m_layer_idx][m_tool_change_idx++], extruder_id, wipe_tower_z); m_last_wipe_tower_print_z = wipe_tower_z; } } } return gcode; } bool WipeTowerIntegration::is_empty_wipe_tower_gcode(GCode &gcodegen, int extruder_id, bool finish_layer) { assert(m_layer_idx >= 0); if (m_layer_idx >= (int) m_tool_changes.size()) return true; bool ignore_sparse = false; if (gcodegen.config().wipe_tower_no_sparse_layers.value) { ignore_sparse = (m_tool_changes[m_layer_idx].size() == 1 && m_tool_changes[m_layer_idx].front().initial_tool == m_tool_changes[m_layer_idx].front().new_tool); } if (m_enable_timelapse_print && m_is_first_print) { return false; } if (gcodegen.writer().need_toolchange(extruder_id) || finish_layer) { if (!(size_t(m_tool_change_idx) < m_tool_changes[m_layer_idx].size())) throw Slic3r::RuntimeError("Wipe tower generation failed, possibly due to empty first layer."); if (!ignore_sparse) { return false; } } return true; } // Print is finished. Now it remains to unload the filament safely with ramming over the wipe tower. std::string WipeTowerIntegration::finalize(GCode &gcodegen) { std::string gcode; if (!gcodegen.is_BBL_Printer()) { if (std::abs(gcodegen.writer().get_position().z() - m_final_purge.print_z) > EPSILON) gcode += gcodegen.change_layer(m_final_purge.print_z); gcode += append_tcr2(gcodegen, m_final_purge, -1); } return gcode; } const std::vector ColorPrintColors::Colors = { "#C0392B", "#E67E22", "#F1C40F", "#27AE60", "#1ABC9C", "#2980B9", "#9B59B6" }; #define EXTRUDER_CONFIG(OPT) m_config.OPT.get_at(m_writer.extruder()->id()) void GCode::PlaceholderParserIntegration::reset() { this->failed_templates.clear(); this->output_config.clear(); this->opt_position = nullptr; this->opt_zhop = nullptr; this->opt_e_position = nullptr; this->opt_e_retracted = nullptr; this->opt_e_restart_extra = nullptr; this->opt_extruded_volume = nullptr; this->opt_extruded_weight = nullptr; this->opt_extruded_volume_total = nullptr; this->opt_extruded_weight_total = nullptr; this->num_extruders = 0; this->position.clear(); this->e_position.clear(); this->e_retracted.clear(); this->e_restart_extra.clear(); } void GCode::PlaceholderParserIntegration::init(const GCodeWriter &writer) { this->reset(); const std::vector &extruders = writer.extruders(); if (! extruders.empty()) { this->num_extruders = extruders.back().id() + 1; this->e_retracted.assign(num_extruders, 0); this->e_restart_extra.assign(num_extruders, 0); this->opt_e_retracted = new ConfigOptionFloats(e_retracted); this->opt_e_restart_extra = new ConfigOptionFloats(e_restart_extra); this->output_config.set_key_value("e_retracted", this->opt_e_retracted); this->output_config.set_key_value("e_restart_extra", this->opt_e_restart_extra); if (! writer.config.use_relative_e_distances) { e_position.assign(num_extruders, 0); opt_e_position = new ConfigOptionFloats(e_position); this->output_config.set_key_value("e_position", opt_e_position); } } this->opt_extruded_volume = new ConfigOptionFloats(this->num_extruders, 0.f); this->opt_extruded_weight = new ConfigOptionFloats(this->num_extruders, 0.f); this->opt_extruded_volume_total = new ConfigOptionFloat(0.f); this->opt_extruded_weight_total = new ConfigOptionFloat(0.f); this->parser.set("extruded_volume", this->opt_extruded_volume); this->parser.set("extruded_weight", this->opt_extruded_weight); this->parser.set("extruded_volume_total", this->opt_extruded_volume_total); this->parser.set("extruded_weight_total", this->opt_extruded_weight_total); // Reserve buffer for current position. this->position.assign(3, 0); this->opt_position = new ConfigOptionFloats(this->position); this->output_config.set_key_value("position", this->opt_position); // Store zhop variable into the parser itself, it is a read-only variable to the script. this->opt_zhop = new ConfigOptionFloat(writer.get_zhop()); this->parser.set("zhop", this->opt_zhop); } void GCode::PlaceholderParserIntegration::update_from_gcodewriter(const GCodeWriter &writer) { memcpy(this->position.data(), writer.get_position().data(), sizeof(double) * 3); this->opt_position->values = this->position; this->opt_zhop->value = writer.get_zhop(); if (this->num_extruders > 0) { const std::vector &extruders = writer.extruders(); assert(! extruders.empty() && num_extruders == extruders.back().id() + 1); this->e_retracted.assign(num_extruders, 0); this->e_restart_extra.assign(num_extruders, 0); this->opt_extruded_volume->values.assign(num_extruders, 0); this->opt_extruded_weight->values.assign(num_extruders, 0); double total_volume = 0.; double total_weight = 0.; for (const Extruder &e : extruders) { this->e_retracted[e.id()] = e.retracted(); this->e_restart_extra[e.id()] = e.restart_extra(); double v = e.extruded_volume(); double w = v * e.filament_density() * 0.001; this->opt_extruded_volume->values[e.id()] = v; this->opt_extruded_weight->values[e.id()] = w; total_volume += v; total_weight += w; } opt_extruded_volume_total->value = total_volume; opt_extruded_weight_total->value = total_weight; opt_e_retracted->values = this->e_retracted; opt_e_restart_extra->values = this->e_restart_extra; if (! writer.config.use_relative_e_distances) { this->e_position.assign(num_extruders, 0); for (const Extruder &e : extruders) this->e_position[e.id()] = e.position(); this->opt_e_position->values = this->e_position; } } } // Throw if any of the output vector variables were resized by the script. void GCode::PlaceholderParserIntegration::validate_output_vector_variables() { if (this->opt_position->values.size() != 3) throw Slic3r::RuntimeError("\"position\" output variable must not be resized by the script."); if (this->num_extruders > 0) { if (this->opt_e_position && this->opt_e_position->values.size() != this->num_extruders) throw Slic3r::RuntimeError("\"e_position\" output variable must not be resized by the script."); if (this->opt_e_retracted->values.size() != this->num_extruders) throw Slic3r::RuntimeError("\"e_retracted\" output variable must not be resized by the script."); if (this->opt_e_restart_extra->values.size() != this->num_extruders) throw Slic3r::RuntimeError("\"e_restart_extra\" output variable must not be resized by the script."); } } // Collect pairs of object_layer + support_layer sorted by print_z. // object_layer & support_layer are considered to be on the same print_z, if they are not further than EPSILON. std::vector GCode::collect_layers_to_print(const PrintObject& object) { std::vector layers_to_print; layers_to_print.reserve(object.layers().size() + object.support_layers().size()); /* // Calculate a minimum support layer height as a minimum over all extruders, but not smaller than 10um. // This is the same logic as in support generator. //FIXME should we use the printing extruders instead? double gap_over_supports = object.config().support_top_z_distance; // FIXME should we test object.config().support_material_synchronize_layers ? Currently the support layers are synchronized with object layers iff soluble supports. assert(!object.has_support() || gap_over_supports != 0. || object.config().support_material_synchronize_layers); if (gap_over_supports != 0.) { gap_over_supports = std::max(0., gap_over_supports); // Not a soluble support, double support_layer_height_min = 1000000.; for (auto lh : object.print()->config().min_layer_height.values) support_layer_height_min = std::min(support_layer_height_min, std::max(0.01, lh)); gap_over_supports += support_layer_height_min; }*/ std::vector> warning_ranges; // Pair the object layers with the support layers by z. size_t idx_object_layer = 0; size_t idx_support_layer = 0; const LayerToPrint* last_extrusion_layer = nullptr; while (idx_object_layer < object.layers().size() || idx_support_layer < object.support_layers().size()) { LayerToPrint layer_to_print; double print_z_min = std::numeric_limits::max(); if (idx_object_layer < object.layers().size()) { layer_to_print.object_layer = object.layers()[idx_object_layer++]; print_z_min = std::min(print_z_min, layer_to_print.object_layer->print_z); } if (idx_support_layer < object.support_layers().size()) { layer_to_print.support_layer = object.support_layers()[idx_support_layer++]; print_z_min = std::min(print_z_min, layer_to_print.support_layer->print_z); } if (layer_to_print.object_layer && layer_to_print.object_layer->print_z > print_z_min + EPSILON) { layer_to_print.object_layer = nullptr; --idx_object_layer; } if (layer_to_print.support_layer && layer_to_print.support_layer->print_z > print_z_min + EPSILON) { layer_to_print.support_layer = nullptr; --idx_support_layer; } layer_to_print.original_object = &object; layers_to_print.push_back(layer_to_print); bool has_extrusions = (layer_to_print.object_layer && layer_to_print.object_layer->has_extrusions()) || (layer_to_print.support_layer && layer_to_print.support_layer->has_extrusions()); // Check that there are extrusions on the very first layer. The case with empty // first layer may result in skirt/brim in the air and maybe other issues. if (layers_to_print.size() == 1u) { if (!has_extrusions) throw Slic3r::SlicingError(_(L("One object has empty initial layer and can't be printed. Please Cut the bottom or enable supports.")), object.id().id); } // In case there are extrusions on this layer, check there is a layer to lay it on. if ((layer_to_print.object_layer && layer_to_print.object_layer->has_extrusions()) // Allow empty support layers, as the support generator may produce no extrusions for non-empty support regions. || (layer_to_print.support_layer /* && layer_to_print.support_layer->has_extrusions() */)) { double top_cd = object.config().support_top_z_distance; //double bottom_cd = object.config().support_bottom_z_distance == 0. ? top_cd : object.config().support_bottom_z_distance; double bottom_cd = top_cd; double extra_gap = (layer_to_print.support_layer ? bottom_cd : top_cd); // raft contact distance should not trigger any warning if(last_extrusion_layer && last_extrusion_layer->support_layer) extra_gap = std::max(extra_gap, object.config().raft_contact_distance.value); double maximal_print_z = (last_extrusion_layer ? last_extrusion_layer->print_z() : 0.) + layer_to_print.layer()->height + std::max(0., extra_gap); // Negative support_contact_z is not taken into account, it can result in false positives in cases if (has_extrusions && layer_to_print.print_z() > maximal_print_z + 2. * EPSILON) warning_ranges.emplace_back(std::make_pair((last_extrusion_layer ? last_extrusion_layer->print_z() : 0.), layers_to_print.back().print_z())); } // Remember last layer with extrusions. if (has_extrusions) last_extrusion_layer = &layers_to_print.back(); } if (! warning_ranges.empty()) { std::string warning; size_t i = 0; for (i = 0; i < std::min(warning_ranges.size(), size_t(5)); ++i) warning += Slic3r::format(_(L("Object can't be printed for empty layer between %1% and %2%.")), warning_ranges[i].first, warning_ranges[i].second) + "\n"; warning += Slic3r::format(_(L("Object: %1%")), object.model_object()->name) + "\n" + _(L("Maybe parts of the object at these height are too thin, or the object has faulty mesh")); const_cast(object.print())->active_step_add_warning( PrintStateBase::WarningLevel::CRITICAL, warning, PrintStateBase::SlicingEmptyGcodeLayers); } return layers_to_print; } // Prepare for non-sequential printing of multiple objects: Support resp. object layers with nearly identical print_z // will be printed for all objects at once. // Return a list of items. std::vector>> GCode::collect_layers_to_print(const Print& print) { struct OrderingItem { coordf_t print_z; size_t object_idx; size_t layer_idx; }; std::vector> per_object(print.objects().size(), std::vector()); std::vector ordering; std::vector errors; for (size_t i = 0; i < print.objects().size(); ++i) { try { per_object[i] = collect_layers_to_print(*print.objects()[i]); } catch (const Slic3r::SlicingError &e) { errors.push_back(e); continue; } OrderingItem ordering_item; ordering_item.object_idx = i; ordering.reserve(ordering.size() + per_object[i].size()); const LayerToPrint& front = per_object[i].front(); for (const LayerToPrint& ltp : per_object[i]) { ordering_item.print_z = ltp.print_z(); ordering_item.layer_idx = <p - &front; ordering.emplace_back(ordering_item); } } if (!errors.empty()) { throw Slic3r::SlicingErrors(errors); } std::sort(ordering.begin(), ordering.end(), [](const OrderingItem& oi1, const OrderingItem& oi2) { return oi1.print_z < oi2.print_z; }); std::vector>> layers_to_print; // Merge numerically very close Z values. for (size_t i = 0; i < ordering.size();) { // Find the last layer with roughly the same print_z. size_t j = i + 1; coordf_t zmax = ordering[i].print_z + EPSILON; for (; j < ordering.size() && ordering[j].print_z <= zmax; ++j); // Merge into layers_to_print. std::pair> merged; // Assign an average print_z to the set of layers with nearly equal print_z. merged.first = 0.5 * (ordering[i].print_z + ordering[j - 1].print_z); merged.second.assign(print.objects().size(), LayerToPrint()); for (; i < j; ++i) { const OrderingItem& oi = ordering[i]; assert(merged.second[oi.object_idx].layer() == nullptr); merged.second[oi.object_idx] = std::move(per_object[oi.object_idx][oi.layer_idx]); } layers_to_print.emplace_back(std::move(merged)); } return layers_to_print; } // free functions called by GCode::do_export() namespace DoExport { // static void update_print_estimated_times_stats(const GCodeProcessor& processor, PrintStatistics& print_statistics) // { // const GCodeProcessorResult& result = processor.get_result(); // print_statistics.estimated_normal_print_time = get_time_dhms(result.print_statistics.modes[static_cast(PrintEstimatedStatistics::ETimeMode::Normal)].time); // print_statistics.estimated_silent_print_time = processor.is_stealth_time_estimator_enabled() ? // get_time_dhms(result.print_statistics.modes[static_cast(PrintEstimatedStatistics::ETimeMode::Stealth)].time) : "N/A"; // } static void update_print_estimated_stats(const GCodeProcessor& processor, const std::vector& extruders, PrintStatistics& print_statistics, const PrintConfig& config) { const GCodeProcessorResult& result = processor.get_result(); double normal_print_time = result.print_statistics.modes[static_cast(PrintEstimatedStatistics::ETimeMode::Normal)].time; print_statistics.estimated_normal_print_time = get_time_dhms(normal_print_time); print_statistics.estimated_silent_print_time = processor.is_stealth_time_estimator_enabled() ? get_time_dhms(result.print_statistics.modes[static_cast(PrintEstimatedStatistics::ETimeMode::Stealth)].time) : "N/A"; // update filament statictics double total_extruded_volume = 0.0; double total_used_filament = 0.0; double total_weight = 0.0; double total_cost = 0.0; for (auto volume : result.print_statistics.volumes_per_extruder) { total_extruded_volume += volume.second; size_t extruder_id = volume.first; auto extruder = std::find_if(extruders.begin(), extruders.end(), [extruder_id](const Extruder& extr) { return extr.id() == extruder_id; }); if (extruder == extruders.end()) continue; double s = PI * sqr(0.5* extruder->filament_diameter()); double weight = volume.second * extruder->filament_density() * 0.001; total_used_filament += volume.second/s; total_weight += weight; total_cost += weight * extruder->filament_cost() * 0.001; } //BBS: add flush volume for (auto volume : result.print_statistics.flush_per_filament) { total_extruded_volume += volume.second; size_t extruder_id = volume.first; auto extruder = std::find_if(extruders.begin(), extruders.end(), [extruder_id](const Extruder& extr) { return extr.id() == extruder_id; }); if (extruder == extruders.end()) continue; double s = PI * sqr(0.5* extruder->filament_diameter()); double weight = volume.second * extruder->filament_density() * 0.001; total_used_filament += volume.second/s; total_weight += weight; total_cost += weight * extruder->filament_cost() * 0.001; } total_cost += config.time_cost.getFloat() * (normal_print_time/3600.0); print_statistics.total_extruded_volume = total_extruded_volume; print_statistics.total_used_filament = total_used_filament; print_statistics.total_weight = total_weight; print_statistics.total_cost = total_cost; print_statistics.filament_stats = result.print_statistics.volumes_per_extruder; } // if any reserved keyword is found, returns a std::vector containing the first MAX_COUNT keywords found // into pairs containing: // first: source // second: keyword // to be shown in the warning notification // The returned vector is empty if no keyword has been found static std::vector> validate_custom_gcode(const Print& print) { static const unsigned int MAX_TAGS_COUNT = 5; std::vector> ret; auto check = [&ret](const std::string& source, const std::string& gcode) { std::vector tags; if (GCodeProcessor::contains_reserved_tags(gcode, MAX_TAGS_COUNT, tags)) { if (!tags.empty()) { size_t i = 0; while (ret.size() < MAX_TAGS_COUNT && i < tags.size()) { ret.push_back({ source, tags[i] }); ++i; } } } }; const GCodeConfig& config = print.config(); check(_(L("Machine start G-code")), config.machine_start_gcode.value); if (ret.size() < MAX_TAGS_COUNT) check(_(L("Machine end G-code")), config.machine_end_gcode.value); if (ret.size() < MAX_TAGS_COUNT) check(_(L("Before layer change G-code")), config.before_layer_change_gcode.value); if (ret.size() < MAX_TAGS_COUNT) check(_(L("Layer change G-code")), config.layer_change_gcode.value); if (ret.size() < MAX_TAGS_COUNT) check(_(L("Time lapse G-code")), config.time_lapse_gcode.value); if (ret.size() < MAX_TAGS_COUNT) check(_(L("Change filament G-code")), config.change_filament_gcode.value); //BBS //if (ret.size() < MAX_TAGS_COUNT) check(_(L("Printing by object G-code")), config.printing_by_object_gcode.value); //if (ret.size() < MAX_TAGS_COUNT) check(_(L("Color Change G-code")), config.color_change_gcode.value); if (ret.size() < MAX_TAGS_COUNT) check(_(L("Pause G-code")), config.machine_pause_gcode.value); if (ret.size() < MAX_TAGS_COUNT) check(_(L("Template Custom G-code")), config.template_custom_gcode.value); if (ret.size() < MAX_TAGS_COUNT) { for (const std::string& value : config.filament_start_gcode.values) { check(_(L("Filament start G-code")), value); if (ret.size() == MAX_TAGS_COUNT) break; } } if (ret.size() < MAX_TAGS_COUNT) { for (const std::string& value : config.filament_end_gcode.values) { check(_(L("Filament end G-code")), value); if (ret.size() == MAX_TAGS_COUNT) break; } } //BBS: no custom_gcode_per_print_z, don't need to check //if (ret.size() < MAX_TAGS_COUNT) { // const CustomGCode::Info& custom_gcode_per_print_z = print.model().custom_gcode_per_print_z; // for (const auto& gcode : custom_gcode_per_print_z.gcodes) { // check(_(L("Custom G-code")), gcode.extra); // if (ret.size() == MAX_TAGS_COUNT) // break; // } //} return ret; } } // namespace DoExport bool GCode::is_BBL_Printer() { if (m_curr_print) return m_curr_print->is_BBL_printer(); return false; } void GCode::do_export(Print* print, const char* path, GCodeProcessorResult* result, ThumbnailsGeneratorCallback thumbnail_cb) { PROFILE_CLEAR(); // BBS m_curr_print = print; GCodeWriter::full_gcode_comment = print->config().gcode_comments; CNumericLocalesSetter locales_setter; // Does the file exist? If so, we hope that it is still valid. if (print->is_step_done(psGCodeExport) && boost::filesystem::exists(boost::filesystem::path(path))) return; BOOST_LOG_TRIVIAL(info) << boost::format("Will export G-code to %1% soon")%path; GCodeProcessor::s_IsBBLPrinter = print->is_BBL_printer(); print->set_started(psGCodeExport); // check if any custom gcode contains keywords used by the gcode processor to // produce time estimation and gcode toolpaths std::vector> validation_res = DoExport::validate_custom_gcode(*print); if (!validation_res.empty()) { std::string reports; for (const auto& [source, keyword] : validation_res) { reports += source + ": \"" + keyword + "\"\n"; } //print->active_step_add_warning(PrintStateBase::WarningLevel::NON_CRITICAL, // _(L("In the custom G-code were found reserved keywords:")) + "\n" + // reports + // _(L("This may cause problems in g-code visualization and printing time estimation."))); std::string temp = "Dangerous keywords in custom Gcode: " + reports + "\nThis may cause problems in g-code visualization and printing time estimation."; BOOST_LOG_TRIVIAL(warning) << temp; } BOOST_LOG_TRIVIAL(info) << "Exporting G-code..." << log_memory_info(); // Remove the old g-code if it exists. boost::nowide::remove(path); fs::path file_path(path); fs::path folder = file_path.parent_path(); if (!fs::exists(folder)) { fs::create_directory(folder); BOOST_LOG_TRIVIAL(error) << "[WARNING]: the parent path " + folder.string() +" is not there, create it!" << std::endl; } std::string path_tmp(path); path_tmp += ".tmp"; m_processor.initialize(path_tmp); GCodeOutputStream file(boost::nowide::fopen(path_tmp.c_str(), "wb"), m_processor); if (! file.is_open()) { BOOST_LOG_TRIVIAL(error) << std::string("G-code export to ") + path + " failed.\nCannot open the file for writing.\n" << std::endl; if (!fs::exists(folder)) { //fs::create_directory(folder); BOOST_LOG_TRIVIAL(error) << "the parent path " + folder.string() +" is not there!!!" << std::endl; } throw Slic3r::RuntimeError(std::string("G-code export to ") + path + " failed.\nCannot open the file for writing.\n"); } try { this->_do_export(*print, file, thumbnail_cb); file.flush(); if (file.is_error()) { file.close(); boost::nowide::remove(path_tmp.c_str()); throw Slic3r::RuntimeError(std::string("G-code export to ") + path + " failed\nIs the disk full?\n"); } } catch (std::exception & /* ex */) { // Rethrow on any exception. std::runtime_exception and CanceledException are expected to be thrown. // Close and remove the file. file.close(); boost::nowide::remove(path_tmp.c_str()); throw; } file.close(); check_placeholder_parser_failed(); BOOST_LOG_TRIVIAL(debug) << "Start processing gcode, " << log_memory_info(); // Post-process the G-code to update time stamps. m_timelapse_warning_code = 0; if (m_config.printer_structure.value == PrinterStructure::psI3 && m_spiral_vase) { m_timelapse_warning_code += 1; } if (m_config.printer_structure.value == PrinterStructure::psI3 && print->config().print_sequence == PrintSequence::ByObject) { m_timelapse_warning_code += (1 << 1); } m_processor.result().timelapse_warning_code = m_timelapse_warning_code; m_processor.result().support_traditional_timelapse = m_support_traditional_timelapse; m_processor.finalize(true); // DoExport::update_print_estimated_times_stats(m_processor, print->m_print_statistics); DoExport::update_print_estimated_stats(m_processor, m_writer.extruders(), print->m_print_statistics, print->config()); if (result != nullptr) { *result = std::move(m_processor.extract_result()); // set the filename to the correct value result->filename = path; } //BBS: add some log for error output BOOST_LOG_TRIVIAL(debug) << boost::format("Finished processing gcode to %1% ") % path_tmp; std::error_code ret = rename_file(path_tmp, path); if (ret) { throw Slic3r::RuntimeError( std::string("Failed to rename the output G-code file from ") + path_tmp + " to " + path + '\n' + "error code " + ret.message() + '\n' + "Is " + path_tmp + " locked?" + '\n'); } else { BOOST_LOG_TRIVIAL(info) << boost::format("rename_file from %1% to %2% successfully")% path_tmp % path; } BOOST_LOG_TRIVIAL(info) << "Exporting G-code finished" << log_memory_info(); print->set_done(psGCodeExport); if(is_BBL_Printer()) result->label_object_enabled = m_enable_exclude_object; // Write the profiler measurements to file PROFILE_UPDATE(); PROFILE_OUTPUT(debug_out_path("gcode-export-profile.txt").c_str()); } // free functions called by GCode::_do_export() namespace DoExport { static void init_gcode_processor(const PrintConfig& config, GCodeProcessor& processor, bool& silent_time_estimator_enabled) { silent_time_estimator_enabled = (config.gcode_flavor == gcfMarlinLegacy || config.gcode_flavor == gcfMarlinFirmware) && config.silent_mode; processor.reset(); processor.apply_config(config); processor.enable_stealth_time_estimator(silent_time_estimator_enabled); } #if 0 static double autospeed_volumetric_limit(const Print &print) { // get the minimum cross-section used in the print std::vector mm3_per_mm; for (auto object : print.objects()) { for (size_t region_id = 0; region_id < object->num_printing_regions(); ++ region_id) { const PrintRegion ®ion = object->printing_region(region_id); for (auto layer : object->layers()) { const LayerRegion* layerm = layer->regions()[region_id]; if (region.config().get_abs_value("inner_wall_speed") == 0 || // BBS: remove small small_perimeter_speed config, and will absolutely // remove related code if no other issue in the coming release. //region.config().get_abs_value("small_perimeter_speed") == 0 || region.config().outer_wall_speed.value == 0 || region.config().get_abs_value("bridge_speed") == 0) mm3_per_mm.push_back(layerm->perimeters.min_mm3_per_mm()); if (region.config().get_abs_value("sparse_infill_speed") == 0 || region.config().get_abs_value("internal_solid_infill_speed") == 0 || region.config().get_abs_value("top_surface_speed") == 0 || region.config().get_abs_value("bridge_speed") == 0) { // Minimal volumetric flow should not be calculated over ironing extrusions. // Use following lambda instead of the built-it method. auto min_mm3_per_mm_no_ironing = [](const ExtrusionEntityCollection& eec) -> double { double min = std::numeric_limits::max(); for (const ExtrusionEntity* ee : eec.entities) if (ee->role() != erIroning) min = std::min(min, ee->min_mm3_per_mm()); return min; }; mm3_per_mm.push_back(min_mm3_per_mm_no_ironing(layerm->fills)); } } } if (object->config().get_abs_value("support_speed") == 0 || object->config().get_abs_value("support_interface_speed") == 0) for (auto layer : object->support_layers()) mm3_per_mm.push_back(layer->support_fills.min_mm3_per_mm()); } // filter out 0-width segments mm3_per_mm.erase(std::remove_if(mm3_per_mm.begin(), mm3_per_mm.end(), [](double v) { return v < 0.000001; }), mm3_per_mm.end()); double volumetric_speed = 0.; if (! mm3_per_mm.empty()) { // In order to honor max_print_speed we need to find a target volumetric // speed that we can use throughout the print. So we define this target // volumetric speed as the volumetric speed produced by printing the // smallest cross-section at the maximum speed: any larger cross-section // will need slower feedrates. volumetric_speed = *std::min_element(mm3_per_mm.begin(), mm3_per_mm.end()) * print.config().max_print_speed.value; // limit such volumetric speed with max_volumetric_speed if set //BBS //if (print.config().max_volumetric_speed.value > 0) // volumetric_speed = std::min(volumetric_speed, print.config().max_volumetric_speed.value); } return volumetric_speed; } #endif static void init_ooze_prevention(const Print &print, OozePrevention &ooze_prevention) { // Calculate wiping points if needed if (print.config().ooze_prevention.value && ! print.config().single_extruder_multi_material) { Points skirt_points; for (const ExtrusionEntity *ee : print.skirt().entities) for (const ExtrusionPath &path : dynamic_cast(ee)->paths) append(skirt_points, path.polyline.points); if (! skirt_points.empty()) { Polygon outer_skirt = Slic3r::Geometry::convex_hull(skirt_points); Polygons skirts; for (unsigned int extruder_id : print.extruders()) { const Vec2d &extruder_offset = print.config().extruder_offset.get_at(extruder_id); Polygon s(outer_skirt); s.translate(Point::new_scale(-extruder_offset(0), -extruder_offset(1))); skirts.emplace_back(std::move(s)); } ooze_prevention.enable = true; ooze_prevention.standby_points = offset(Slic3r::Geometry::convex_hull(skirts), float(scale_(3.))).front().equally_spaced_points(float(scale_(10.))); #if 0 require "Slic3r/SVG.pm"; Slic3r::SVG::output( "ooze_prevention.svg", red_polygons => \@skirts, polygons => [$outer_skirt], points => $gcodegen->ooze_prevention->standby_points, ); #endif } } } // Fill in print_statistics and return formatted string containing filament statistics to be inserted into G-code comment section. static std::string update_print_stats_and_format_filament_stats( const bool has_wipe_tower, const WipeTowerData &wipe_tower_data, const std::vector &extruders, PrintStatistics &print_statistics) { std::string filament_stats_string_out; print_statistics.clear(); print_statistics.total_toolchanges = std::max(0, wipe_tower_data.number_of_toolchanges); if (! extruders.empty()) { std::pair out_filament_used_mm ("; filament used [mm] = ", 0); std::pair out_filament_used_cm3("; filament used [cm3] = ", 0); std::pair out_filament_used_g ("; filament used [g] = ", 0); std::pair out_filament_cost ("; filament cost = ", 0); for (const Extruder &extruder : extruders) { double used_filament = extruder.used_filament() + (has_wipe_tower ? wipe_tower_data.used_filament[extruder.id()] : 0.f); double extruded_volume = extruder.extruded_volume() + (has_wipe_tower ? wipe_tower_data.used_filament[extruder.id()] * 2.4052f : 0.f); // assumes 1.75mm filament diameter double filament_weight = extruded_volume * extruder.filament_density() * 0.001; double filament_cost = filament_weight * extruder.filament_cost() * 0.001; auto append = [&extruder](std::pair &dst, const char *tmpl, double value) { assert(is_decimal_separator_point()); while (dst.second < extruder.id()) { // Fill in the non-printing extruders with zeros. dst.first += (dst.second > 0) ? ", 0" : "0"; ++ dst.second; } if (dst.second > 0) dst.first += ", "; char buf[64]; sprintf(buf, tmpl, value); dst.first += buf; ++ dst.second; }; append(out_filament_used_mm, "%.2lf", used_filament); append(out_filament_used_cm3, "%.2lf", extruded_volume * 0.001); if (filament_weight > 0.) { print_statistics.total_weight = print_statistics.total_weight + filament_weight; append(out_filament_used_g, "%.2lf", filament_weight); if (filament_cost > 0.) { print_statistics.total_cost = print_statistics.total_cost + filament_cost; append(out_filament_cost, "%.2lf", filament_cost); } } print_statistics.total_used_filament += used_filament; print_statistics.total_extruded_volume += extruded_volume; print_statistics.total_wipe_tower_filament += has_wipe_tower ? used_filament - extruder.used_filament() : 0.; print_statistics.total_wipe_tower_cost += has_wipe_tower ? (extruded_volume - extruder.extruded_volume())* extruder.filament_density() * 0.001 * extruder.filament_cost() * 0.001 : 0.; } filament_stats_string_out += out_filament_used_mm.first; filament_stats_string_out += "\n" + out_filament_used_cm3.first; if (out_filament_used_g.second) filament_stats_string_out += "\n" + out_filament_used_g.first; if (out_filament_cost.second) filament_stats_string_out += "\n" + out_filament_cost.first; } return filament_stats_string_out; } } #if 0 // Sort the PrintObjects by their increasing Z, likely useful for avoiding colisions on Deltas during sequential prints. static inline std::vector sort_object_instances_by_max_z(const Print &print) { std::vector objects(print.objects().begin(), print.objects().end()); std::sort(objects.begin(), objects.end(), [](const PrintObject *po1, const PrintObject *po2) { return po1->height() < po2->height(); }); std::vector instances; instances.reserve(objects.size()); for (const PrintObject *object : objects) for (size_t i = 0; i < object->instances().size(); ++ i) instances.emplace_back(&object->instances()[i]); return instances; } #endif // Produce a vector of PrintObjects in the order of their respective ModelObjects in print.model(). //BBS: add sort logic for seq-print std::vector sort_object_instances_by_model_order(const Print& print, bool init_order) { // Build up map from ModelInstance* to PrintInstance* std::vector> model_instance_to_print_instance; model_instance_to_print_instance.reserve(print.num_object_instances()); for (const PrintObject *print_object : print.objects()) for (const PrintInstance &print_instance : print_object->instances()) { if (init_order) const_cast(print_instance.model_instance)->arrange_order = print_instance.model_instance->id().id; model_instance_to_print_instance.emplace_back(print_instance.model_instance, &print_instance); } std::sort(model_instance_to_print_instance.begin(), model_instance_to_print_instance.end(), [](auto &l, auto &r) { return l.first->arrange_order < r.first->arrange_order; }); std::vector instances; instances.reserve(model_instance_to_print_instance.size()); for (const ModelObject *model_object : print.model().objects) for (const ModelInstance *model_instance : model_object->instances) { auto it = std::lower_bound(model_instance_to_print_instance.begin(), model_instance_to_print_instance.end(), std::make_pair(model_instance, nullptr), [](auto &l, auto &r) { return l.first->arrange_order < r.first->arrange_order; }); if (it != model_instance_to_print_instance.end() && it->first == model_instance) instances.emplace_back(it->second); } std::sort(instances.begin(), instances.end(), [](auto& l, auto& r) { return l->model_instance->arrange_order < r->model_instance->arrange_order; }); return instances; } enum BambuBedType { bbtUnknown = 0, bbtCoolPlate = 1, bbtEngineeringPlate = 2, bbtHighTemperaturePlate = 3, bbtTexturedPEIPlate = 4, }; static BambuBedType to_bambu_bed_type(BedType type) { BambuBedType bambu_bed_type = bbtUnknown; if (type == btPC) bambu_bed_type = bbtCoolPlate; else if (type == btEP) bambu_bed_type = bbtEngineeringPlate; else if (type == btPEI) bambu_bed_type = bbtHighTemperaturePlate; else if (type == btPTE) bambu_bed_type = bbtTexturedPEIPlate; return bambu_bed_type; } void GCode::_do_export(Print& print, GCodeOutputStream &file, ThumbnailsGeneratorCallback thumbnail_cb) { PROFILE_FUNC(); // modifies m_silent_time_estimator_enabled DoExport::init_gcode_processor(print.config(), m_processor, m_silent_time_estimator_enabled); const bool is_bbl_printers = print.is_BBL_printer(); m_calib_config.clear(); // resets analyzer's tracking data m_last_height = 0.f; m_last_layer_z = 0.f; m_max_layer_z = 0.f; m_last_width = 0.f; m_is_overhang_fan_on = false; m_is_supp_interface_fan_on = false; #if ENABLE_GCODE_VIEWER_DATA_CHECKING m_last_mm3_per_mm = 0.; #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING m_fan_mover.release(); m_writer.set_is_bbl_machine(is_bbl_printers); // How many times will be change_layer() called? // change_layer() in turn increments the progress bar status. m_layer_count = 0; if (print.config().print_sequence == PrintSequence::ByObject) { // Add each of the object's layers separately. for (auto object : print.objects()) { std::vector zs; zs.reserve(object->layers().size() + object->support_layers().size()); for (auto layer : object->layers()) zs.push_back(layer->print_z); for (auto layer : object->support_layers()) zs.push_back(layer->print_z); std::sort(zs.begin(), zs.end()); //BBS: merge numerically very close Z values. auto end_it = std::unique(zs.begin(), zs.end()); unsigned int temp_layer_count = (unsigned int)(end_it - zs.begin()); for (auto it = zs.begin(); it != end_it - 1; it++) { if (abs(*it - *(it + 1)) < EPSILON) temp_layer_count--; } m_layer_count += (unsigned int)(object->instances().size() * temp_layer_count); } } else { // Print all objects with the same print_z together. std::vector zs; for (auto object : print.objects()) { zs.reserve(zs.size() + object->layers().size() + object->support_layers().size()); for (auto layer : object->layers()) zs.push_back(layer->print_z); for (auto layer : object->support_layers()) zs.push_back(layer->print_z); } if (!zs.empty()) { std::sort(zs.begin(), zs.end()); //BBS: merge numerically very close Z values. auto end_it = std::unique(zs.begin(), zs.end()); m_layer_count = (unsigned int)(end_it - zs.begin()); for (auto it = zs.begin(); it != end_it - 1; it++) { if (abs(*it - *(it + 1)) < EPSILON) m_layer_count--; } } } print.throw_if_canceled(); m_enable_cooling_markers = true; this->apply_print_config(print.config()); //m_volumetric_speed = DoExport::autospeed_volumetric_limit(print); print.throw_if_canceled(); if (print.config().spiral_mode.value) m_spiral_vase = make_unique(print.config()); if (print.config().max_volumetric_extrusion_rate_slope.value > 0){ m_pressure_equalizer = make_unique(print.config()); m_enable_extrusion_role_markers = (bool)m_pressure_equalizer; } else m_enable_extrusion_role_markers = false; // if thumbnail type of BTT_TFT, insert above header // if not, it is inserted under the header in its normal spot const GCodeThumbnailsFormat m_gcode_thumbnail_format = print.full_print_config().opt_enum("thumbnails_format"); if (m_gcode_thumbnail_format == GCodeThumbnailsFormat::BTT_TFT) GCodeThumbnails::export_thumbnails_to_file( thumbnail_cb, print.get_plate_index(), print.full_print_config().option("thumbnails")->values, m_gcode_thumbnail_format, [&file](const char *sz) { file.write(sz); }, [&print]() { print.throw_if_canceled(); }); file.write_format("; HEADER_BLOCK_START\n"); // Write information on the generator. file.write_format("; generated by %s on %s\n", Slic3r::header_slic3r_generated().c_str(), Slic3r::Utils::local_timestamp().c_str()); if (is_bbl_printers) file.write_format(";%s\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Estimated_Printing_Time_Placeholder).c_str()); //BBS: total layer number file.write_format(";%s\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Total_Layer_Number_Placeholder).c_str()); m_enable_exclude_object = config().exclude_object; //Orca: extra check for bbl printer if (is_bbl_printers) { if (print.calib_params().mode == CalibMode::Calib_None) { // Don't support skipping in cali mode // list all label_object_id with sorted order here m_enable_exclude_object = true; m_label_objects_ids.clear(); m_label_objects_ids.reserve(print.num_object_instances()); for (const PrintObject *print_object : print.objects()) for (const PrintInstance &print_instance : print_object->instances()) m_label_objects_ids.push_back(print_instance.model_instance->get_labeled_id()); std::sort(m_label_objects_ids.begin(), m_label_objects_ids.end()); std::string objects_id_list = "; model label id: "; for (auto it = m_label_objects_ids.begin(); it != m_label_objects_ids.end(); it++) objects_id_list += (std::to_string(*it) + (it != m_label_objects_ids.end() - 1 ? "," : "\n")); file.writeln(objects_id_list); } else { m_enable_exclude_object = false; m_label_objects_ids.clear(); } } file.write_format("; HEADER_BLOCK_END\n\n"); // BBS: write global config at the beginning of gcode file because printer // need these config information // Append full config, delimited by two 'phony' configuration keys // CONFIG_BLOCK_START and CONFIG_BLOCK_END. The delimiters are structured // as configuration key / value pairs to be parsable by older versions of // PrusaSlicer G-code viewer. { if (is_bbl_printers) { file.write("; CONFIG_BLOCK_START\n"); std::string full_config; append_full_config(print, full_config); if (!full_config.empty()) file.write(full_config); // SoftFever: write compatiple image int first_layer_bed_temperature = get_bed_temperature(0, true, print.config().curr_bed_type); file.write_format("; first_layer_bed_temperature = %d\n", first_layer_bed_temperature); file.write_format( "; first_layer_temperature = %d\n", print.config().nozzle_temperature_initial_layer.get_at(0)); file.write("; CONFIG_BLOCK_END\n\n"); } else { if (m_gcode_thumbnail_format != GCodeThumbnailsFormat::BTT_TFT) GCodeThumbnails::export_thumbnails_to_file( thumbnail_cb, print.get_plate_index(), print.full_print_config().option("thumbnails")->values, m_gcode_thumbnail_format, [&file](const char *sz) { file.write(sz); }, [&print]() { print.throw_if_canceled(); }); } } // Write some terse information on the slicing parameters. const PrintObject *first_object = print.objects().front(); const double layer_height = first_object->config().layer_height.value; const double initial_layer_print_height = print.config().initial_layer_print_height.value; for (size_t region_id = 0; region_id < print.num_print_regions(); ++ region_id) { const PrintRegion ®ion = print.get_print_region(region_id); file.write_format("; external perimeters extrusion width = %.2fmm\n", region.flow(*first_object, frExternalPerimeter, layer_height).width()); file.write_format("; perimeters extrusion width = %.2fmm\n", region.flow(*first_object, frPerimeter, layer_height).width()); file.write_format("; infill extrusion width = %.2fmm\n", region.flow(*first_object, frInfill, layer_height).width()); file.write_format("; solid infill extrusion width = %.2fmm\n", region.flow(*first_object, frSolidInfill, layer_height).width()); file.write_format("; top infill extrusion width = %.2fmm\n", region.flow(*first_object, frTopSolidInfill, layer_height).width()); if (print.has_support_material()) file.write_format("; support material extrusion width = %.2fmm\n", support_material_flow(first_object).width()); if (print.config().initial_layer_line_width.value > 0) file.write_format("; first layer extrusion width = %.2fmm\n", region.flow(*first_object, frPerimeter, initial_layer_print_height, true).width()); file.write_format("\n"); } file.write_format("; EXECUTABLE_BLOCK_START\n"); // SoftFever if( m_config.gcode_flavor.value == gcfKlipper && m_enable_exclude_object) file.write(set_object_info(&print)); // adds tags for time estimators file.write_format(";%s\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::First_Line_M73_Placeholder).c_str()); // Prepare the helper object for replacing placeholders in custom G-code and output filename. m_placeholder_parser_integration.parser = print.placeholder_parser(); m_placeholder_parser_integration.parser.update_timestamp(); m_placeholder_parser_integration.context.rng = std::mt19937(std::chrono::high_resolution_clock::now().time_since_epoch().count()); // Enable passing global variables between PlaceholderParser invocations. m_placeholder_parser_integration.context.global_config = std::make_unique(); print.update_object_placeholders(m_placeholder_parser_integration.parser.config_writable(), ".gcode"); // Get optimal tool ordering to minimize tool switches of a multi-exruder print. // For a print by objects, find the 1st printing object. ToolOrdering tool_ordering; unsigned int initial_extruder_id = (unsigned int)-1; //BBS: first non-support filament extruder unsigned int initial_non_support_extruder_id; unsigned int final_extruder_id = (unsigned int)-1; bool has_wipe_tower = false; std::vector print_object_instances_ordering; std::vector::const_iterator print_object_instance_sequential_active; if (print.config().print_sequence == PrintSequence::ByObject) { // Order object instances for sequential print. print_object_instances_ordering = sort_object_instances_by_model_order(print); // print_object_instances_ordering = sort_object_instances_by_max_z(print); // Find the 1st printing object, find its tool ordering and the initial extruder ID. print_object_instance_sequential_active = print_object_instances_ordering.begin(); for (; print_object_instance_sequential_active != print_object_instances_ordering.end(); ++ print_object_instance_sequential_active) { tool_ordering = ToolOrdering(*(*print_object_instance_sequential_active)->print_object, initial_extruder_id); if ((initial_extruder_id = tool_ordering.first_extruder()) != static_cast(-1)) { //BBS: try to find the non-support filament extruder if is multi color and initial_extruder is support filament initial_non_support_extruder_id = initial_extruder_id; if (tool_ordering.all_extruders().size() > 1 && print.config().filament_is_support.get_at(initial_extruder_id)) { bool has_non_support_filament = false; for (unsigned int extruder : tool_ordering.all_extruders()) { if (!print.config().filament_is_support.get_at(extruder)) { has_non_support_filament = true; break; } } //BBS: find the non-support filament extruder of object if (has_non_support_filament) for (LayerTools layer_tools : tool_ordering.layer_tools()) { if (!layer_tools.has_object) continue; for (unsigned int extruder : layer_tools.extruders) { if (print.config().filament_is_support.get_at(extruder)) continue; initial_non_support_extruder_id = extruder; break; } } } break; } } if (initial_extruder_id == static_cast(-1)) // No object to print was found, cancel the G-code export. throw Slic3r::SlicingError(_(L("No object can be printed. Maybe too small"))); // We don't allow switching of extruders per layer by Model::custom_gcode_per_print_z in sequential mode. // Use the extruder IDs collected from Regions. this->set_extruders(print.extruders()); has_wipe_tower = print.has_wipe_tower() && tool_ordering.has_wipe_tower(); } else { // Find tool ordering for all the objects at once, and the initial extruder ID. // If the tool ordering has been pre-calculated by Print class for wipe tower already, reuse it. tool_ordering = print.tool_ordering(); tool_ordering.assign_custom_gcodes(print); if (tool_ordering.all_extruders().empty()) // No object to print was found, cancel the G-code export. throw Slic3r::SlicingError(_(L("No object can be printed. Maybe too small"))); has_wipe_tower = print.has_wipe_tower() && tool_ordering.has_wipe_tower(); // BBS: priming logic is removed, so 1st layer tool_ordering also respect the object tool sequence #if 0 initial_extruder_id = (has_wipe_tower && !print.config().single_extruder_multi_material_priming) ? // The priming towers will be skipped. tool_ordering.all_extruders().back() : // Don't skip the priming towers. tool_ordering.first_extruder(); #else initial_extruder_id = tool_ordering.first_extruder(); #endif //BBS: try to find the non-support filament extruder if is multi color and initial_extruder is support filament if (initial_extruder_id != static_cast(-1)) { initial_non_support_extruder_id = initial_extruder_id; if (tool_ordering.all_extruders().size() > 1 && print.config().filament_is_support.get_at(initial_extruder_id)) { bool has_non_support_filament = false; for (unsigned int extruder : tool_ordering.all_extruders()) { if (!print.config().filament_is_support.get_at(extruder)) { has_non_support_filament = true; break; } } //BBS: find the non-support filament extruder of object if (has_non_support_filament) for (LayerTools layer_tools : tool_ordering.layer_tools()) { if (!layer_tools.has_object) continue; for (unsigned int extruder : layer_tools.extruders) { if (print.config().filament_is_support.get_at(extruder)) continue; initial_non_support_extruder_id = extruder; break; } } } } // In non-sequential print, the printing extruders may have been modified by the extruder switches stored in Model::custom_gcode_per_print_z. // Therefore initialize the printing extruders from there. this->set_extruders(tool_ordering.all_extruders()); // Order object instances using a nearest neighbor search. print_object_instances_ordering = chain_print_object_instances(print); } if (initial_extruder_id == (unsigned int)-1) { // Nothing to print! initial_extruder_id = 0; initial_non_support_extruder_id = 0; final_extruder_id = 0; } else { final_extruder_id = tool_ordering.last_extruder(); assert(final_extruder_id != (unsigned int)-1); } print.throw_if_canceled(); m_cooling_buffer = make_unique(*this); m_cooling_buffer->set_current_extruder(initial_extruder_id); // Emit machine envelope limits for the Marlin firmware. this->print_machine_envelope(file, print); // Disable fan. if (m_config.auxiliary_fan.value && print.config().close_fan_the_first_x_layers.get_at(initial_extruder_id)) { file.write(m_writer.set_fan(0)); //BBS: disable additional fan file.write(m_writer.set_additional_fan(0)); } // Update output variables after the extruders were initialized. m_placeholder_parser_integration.init(m_writer); // Let the start-up script prime the 1st printing tool. this->placeholder_parser().set("initial_tool", initial_extruder_id); this->placeholder_parser().set("initial_extruder", initial_extruder_id); //BBS this->placeholder_parser().set("initial_no_support_tool", initial_non_support_extruder_id); this->placeholder_parser().set("initial_no_support_extruder", initial_non_support_extruder_id); this->placeholder_parser().set("current_extruder", initial_extruder_id); //Set variable for total layer count so it can be used in custom gcode. this->placeholder_parser().set("total_layer_count", m_layer_count); // Useful for sequential prints. this->placeholder_parser().set("current_object_idx", 0); // For the start / end G-code to do the priming and final filament pull in case there is no wipe tower provided. this->placeholder_parser().set("has_wipe_tower", has_wipe_tower); //this->placeholder_parser().set("has_single_extruder_multi_material_priming", has_wipe_tower && print.config().single_extruder_multi_material_priming); this->placeholder_parser().set("total_toolchanges", std::max(0, print.wipe_tower_data().number_of_toolchanges)); // Check for negative toolchanges (single extruder mode) and set to 0 (no tool change). // PlaceholderParser currently substitues non-existent vector values with the zero'th value, which is harmful in the // case of "is_extruder_used[]" as Slicer may lie about availability of such non-existent extruder. We rather // sacrifice 256B of memory before we change the behavior of the PlaceholderParser, which should really only fill in // the non-existent vector elements for filament parameters. std::vector is_extruder_used(std::max(size_t(255), print.config().filament_diameter.size()), 0); for (unsigned int extruder : tool_ordering.all_extruders()) is_extruder_used[extruder] = true; this->placeholder_parser().set("is_extruder_used", new ConfigOptionBools(is_extruder_used)); { BoundingBoxf bbox_bed(print.config().printable_area.values); this->placeholder_parser().set("print_bed_min", new ConfigOptionFloats({ bbox_bed.min.x(), bbox_bed.min.y()})); this->placeholder_parser().set("print_bed_max", new ConfigOptionFloats({ bbox_bed.max.x(), bbox_bed.max.y()})); this->placeholder_parser().set("print_bed_size", new ConfigOptionFloats({ bbox_bed.size().x(), bbox_bed.size().y() })); BoundingBoxf bbox; auto pts = std::make_unique(); if (print.calib_mode() == CalibMode::Calib_PA_Line || print.calib_mode() == CalibMode::Calib_PA_Pattern) { bbox = bbox_bed; bbox.offset(-5.0); // add 4 corner points of bbox into pts pts->values.reserve(4); pts->values.emplace_back(bbox.min.x(), bbox.min.y()); pts->values.emplace_back(bbox.max.x(), bbox.min.y()); pts->values.emplace_back(bbox.max.x(), bbox.max.y()); pts->values.emplace_back(bbox.min.x(), bbox.max.y()); } else { // Convex hull of the 1st layer extrusions, for bed leveling and placing the initial purge line. // It encompasses the object extrusions, support extrusions, skirt, brim, wipe tower. // It does NOT encompass user extrusions generated by custom G-code, // therefore it does NOT encompass the initial purge line. // It does NOT encompass MMU/MMU2 starting (wipe) areas. pts->values.reserve(print.first_layer_convex_hull().size()); for (const Point &pt : print.first_layer_convex_hull().points) pts->values.emplace_back(print.translate_to_print_space(pt)); bbox = BoundingBoxf((pts->values)); } this->placeholder_parser().set("first_layer_print_convex_hull", pts.release()); this->placeholder_parser().set("first_layer_print_min", new ConfigOptionFloats({bbox.min.x(), bbox.min.y()})); this->placeholder_parser().set("first_layer_print_max", new ConfigOptionFloats({bbox.max.x(), bbox.max.y()})); this->placeholder_parser().set("first_layer_print_size", new ConfigOptionFloats({ bbox.size().x(), bbox.size().y() })); } float outer_wall_volumetric_speed = 0.0f; { int curr_bed_type = m_config.curr_bed_type.getInt(); std::string first_layer_bed_temp_str; const ConfigOptionInts* first_bed_temp_opt = m_config.option(get_bed_temp_1st_layer_key((BedType)curr_bed_type)); const ConfigOptionInts* bed_temp_opt = m_config.option(get_bed_temp_key((BedType)curr_bed_type)); this->placeholder_parser().set("bbl_bed_temperature_gcode", new ConfigOptionBool(false)); this->placeholder_parser().set("bed_temperature_initial_layer", new ConfigOptionInts(*first_bed_temp_opt)); this->placeholder_parser().set("bed_temperature", new ConfigOptionInts(*bed_temp_opt)); this->placeholder_parser().set("bed_temperature_initial_layer_single", new ConfigOptionInt(first_bed_temp_opt->get_at(initial_extruder_id))); this->placeholder_parser().set("bed_temperature_initial_layer_vector", new ConfigOptionString("")); this->placeholder_parser().set("chamber_temperature",new ConfigOptionInts(m_config.chamber_temperature)); // SoftFever: support variables `first_layer_temperature` and `first_layer_bed_temperature` this->placeholder_parser().set("first_layer_bed_temperature", new ConfigOptionInts(*first_bed_temp_opt)); this->placeholder_parser().set("first_layer_temperature", new ConfigOptionInts(m_config.nozzle_temperature_initial_layer)); this->placeholder_parser().set("max_print_height",new ConfigOptionInt(m_config.printable_height)); this->placeholder_parser().set("z_offset", new ConfigOptionFloat(m_config.z_offset)); this->placeholder_parser().set("plate_name", new ConfigOptionString(print.get_plate_name())); this->placeholder_parser().set("first_layer_height", new ConfigOptionFloat(m_config.initial_layer_print_height.value)); //add during_print_exhaust_fan_speed std::vector during_print_exhaust_fan_speed_num; during_print_exhaust_fan_speed_num.reserve(m_config.during_print_exhaust_fan_speed.size()); for (const auto& item : m_config.during_print_exhaust_fan_speed.values) during_print_exhaust_fan_speed_num.emplace_back((int)(item / 100.0 * 255)); this->placeholder_parser().set("during_print_exhaust_fan_speed_num",new ConfigOptionInts(during_print_exhaust_fan_speed_num)); // calculate the volumetric speed of outer wall. Ignore pre-object setting and multi-filament, and just use the default setting { float filament_max_volumetric_speed = m_config.option("filament_max_volumetric_speed")->get_at(initial_non_support_extruder_id); const double nozzle_diameter = m_config.nozzle_diameter.get_at(initial_non_support_extruder_id); float outer_wall_line_width = this->config().get_abs_value("outer_wall_line_width", nozzle_diameter); if (outer_wall_line_width == 0.0) { float default_line_width = this->config().get_abs_value("line_width", nozzle_diameter); outer_wall_line_width = default_line_width == 0.0 ? nozzle_diameter : default_line_width; } Flow outer_wall_flow = Flow(outer_wall_line_width, m_config.layer_height, m_config.nozzle_diameter.get_at(initial_non_support_extruder_id)); float outer_wall_speed = print.default_region_config().outer_wall_speed.value; outer_wall_volumetric_speed = outer_wall_speed * outer_wall_flow.mm3_per_mm(); if (outer_wall_volumetric_speed > filament_max_volumetric_speed) outer_wall_volumetric_speed = filament_max_volumetric_speed; this->placeholder_parser().set("outer_wall_volumetric_speed", new ConfigOptionFloat(outer_wall_volumetric_speed)); } } std::string machine_start_gcode = this->placeholder_parser_process("machine_start_gcode", print.config().machine_start_gcode.value, initial_extruder_id); if (print.config().gcode_flavor != gcfKlipper) { // Set bed temperature if the start G-code does not contain any bed temp control G-codes. this->_print_first_layer_bed_temperature(file, print, machine_start_gcode, initial_extruder_id, true); // Set extruder(s) temperature before and after start G-code. this->_print_first_layer_extruder_temperatures(file, print, machine_start_gcode, initial_extruder_id, false); } // adds tag for processor file.write_format(";%s%s\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Role).c_str(), ExtrusionEntity::role_to_string(erCustom).c_str()); // Orca: set chamber temperature at the beginning of gcode file bool activate_chamber_temp_control = false; auto max_chamber_temp = 0; for (const auto &extruder : m_writer.extruders()) { activate_chamber_temp_control |= m_config.activate_chamber_temp_control.get_at(extruder.id()); max_chamber_temp = std::max(max_chamber_temp, m_config.chamber_temperature.get_at(extruder.id())); } if (activate_chamber_temp_control && max_chamber_temp > 0) file.write(m_writer.set_chamber_temperature(max_chamber_temp, true)); // set chamber_temperature // Write the custom start G-code file.writeln(machine_start_gcode); //BBS: gcode writer doesn't know where the real position of extruder is after inserting custom gcode m_writer.set_current_position_clear(false); m_start_gcode_filament = GCodeProcessor::get_gcode_last_filament(machine_start_gcode); //flush FanMover buffer to avoid modifying the start gcode if it's manual. if (!machine_start_gcode.empty() && this->m_fan_mover.get() != nullptr) file.write(this->m_fan_mover.get()->process_gcode("", true)); // Process filament-specific gcode. /* if (has_wipe_tower) { // Wipe tower will control the extruder switching, it will call the filament_start_gcode. } else { DynamicConfig config; config.set_key_value("filament_extruder_id", new ConfigOptionInt(int(initial_extruder_id))); file.writeln(this->placeholder_parser_process("filament_start_gcode", print.config().filament_start_gcode.values[initial_extruder_id], initial_extruder_id, &config)); } */ if (is_bbl_printers) { this->_print_first_layer_extruder_temperatures(file, print, machine_start_gcode, initial_extruder_id, true); } // Orca: when activate_air_filtration is set on any extruder, find and set the highest during_print_exhaust_fan_speed bool activate_air_filtration = false; int during_print_exhaust_fan_speed = 0; for (const auto &extruder : m_writer.extruders()) { activate_air_filtration |= m_config.activate_air_filtration.get_at(extruder.id()); if (m_config.activate_air_filtration.get_at(extruder.id())) during_print_exhaust_fan_speed = std::max(during_print_exhaust_fan_speed, m_config.during_print_exhaust_fan_speed.get_at(extruder.id())); } if (activate_air_filtration) file.write(m_writer.set_exhaust_fan(during_print_exhaust_fan_speed, true)); print.throw_if_canceled(); // Set other general things. file.write(this->preamble()); // Calculate wiping points if needed DoExport::init_ooze_prevention(print, m_ooze_prevention); print.throw_if_canceled(); // Collect custom seam data from all objects. std::function throw_if_canceled_func = [&print]() { print.throw_if_canceled(); }; m_seam_placer.init(print, throw_if_canceled_func); // BBS: get path for change filament if (m_writer.multiple_extruders) { std::vector points = get_path_of_change_filament(print); if (points.size() == 3) { travel_point_1 = points[0]; travel_point_2 = points[1]; travel_point_3 = points[2]; } } // BBS: priming logic is removed, always set first extruer here. //if (! (has_wipe_tower && print.config().single_extruder_multi_material_priming)) { // Set initial extruder only after custom start G-code. // Ugly hack: Do not set the initial extruder if the extruder is primed using the MMU priming towers at the edge of the print bed. file.write(this->set_extruder(initial_extruder_id, 0.)); } // BBS: set that indicates objs with brim for (auto iter = print.m_brimMap.begin(); iter != print.m_brimMap.end(); ++iter) { if (!iter->second.empty()) this->m_objsWithBrim.insert(iter->first); } for (auto iter = print.m_supportBrimMap.begin(); iter != print.m_supportBrimMap.end(); ++iter) { if (!iter->second.empty()) this->m_objSupportsWithBrim.insert(iter->first); } if (this->m_objsWithBrim.empty() && this->m_objSupportsWithBrim.empty()) m_brim_done = true; // SoftFever: calib if (print.calib_params().mode == CalibMode::Calib_PA_Line) { std::string gcode; if ((m_config.default_acceleration.value > 0 && m_config.outer_wall_acceleration.value > 0)) { gcode += m_writer.set_print_acceleration((unsigned int)floor(m_config.outer_wall_acceleration.value + 0.5)); } if (m_config.default_jerk.value > 0) { double jerk = m_config.outer_wall_jerk.value; gcode += m_writer.set_jerk_xy(jerk); } auto params = print.calib_params(); CalibPressureAdvanceLine pa_test(this); auto fast_speed = CalibPressureAdvance::find_optimal_PA_speed(print.full_print_config(), pa_test.line_width(), 0.2); auto slow_speed = std::max(20.0, fast_speed / 10.0); pa_test.set_speed(fast_speed, slow_speed); pa_test.draw_numbers() = print.calib_params().print_numbers; gcode += pa_test.generate_test(params.start, params.step, std::llround(std::ceil((params.end - params.start) / params.step))); file.write(gcode); } else { //BBS: open spaghetti detector if (is_bbl_printers) { // if (print.config().spaghetti_detector.value) file.write("M981 S1 P20000 ;open spaghetti detector\n"); } // Do all objects for each layer. if (print.config().print_sequence == PrintSequence::ByObject && !has_wipe_tower) { size_t finished_objects = 0; const PrintObject *prev_object = (*print_object_instance_sequential_active)->print_object; for (; print_object_instance_sequential_active != print_object_instances_ordering.end(); ++ print_object_instance_sequential_active) { const PrintObject &object = *(*print_object_instance_sequential_active)->print_object; if (&object != prev_object || tool_ordering.first_extruder() != final_extruder_id) { tool_ordering = ToolOrdering(object, final_extruder_id); unsigned int new_extruder_id = tool_ordering.first_extruder(); if (new_extruder_id == (unsigned int)-1) // Skip this object. continue; initial_extruder_id = new_extruder_id; final_extruder_id = tool_ordering.last_extruder(); assert(final_extruder_id != (unsigned int)-1); } print.throw_if_canceled(); this->set_origin(unscale((*print_object_instance_sequential_active)->shift)); // BBS: prime extruder if extruder change happens before this object instance bool prime_extruder = false; if (finished_objects > 0) { // Move to the origin position for the copy we're going to print. // This happens before Z goes down to layer 0 again, so that no collision happens hopefully. m_enable_cooling_markers = false; // we're not filtering these moves through CoolingBuffer m_avoid_crossing_perimeters.use_external_mp_once(); // BBS. change tool before moving to origin point. if (m_writer.need_toolchange(initial_extruder_id)) { const PrintObjectConfig& object_config = object.config(); coordf_t initial_layer_print_height = print.config().initial_layer_print_height.value; file.write(this->set_extruder(initial_extruder_id, initial_layer_print_height)); prime_extruder = true; } else { file.write(this->retract()); } file.write(m_writer.travel_to_z(m_max_layer_z)); file.write(this->travel_to(Point(0, 0), erNone, "move to origin position for next object")); m_enable_cooling_markers = true; // Disable motion planner when traveling to first object point. m_avoid_crossing_perimeters.disable_once(); // Ff we are printing the bottom layer of an object, and we have already finished // another one, set first layer temperatures. This happens before the Z move // is triggered, so machine has more time to reach such temperatures. this->placeholder_parser().set("current_object_idx", int(finished_objects)); //BBS: remove printing_by_object_gcode //std::string printing_by_object_gcode = this->placeholder_parser_process("printing_by_object_gcode", print.config().printing_by_object_gcode.value, initial_extruder_id); std::string printing_by_object_gcode; // Set first layer bed and extruder temperatures, don't wait for it to reach the temperature. this->_print_first_layer_bed_temperature(file, print, printing_by_object_gcode, initial_extruder_id, false); this->_print_first_layer_extruder_temperatures(file, print, printing_by_object_gcode, initial_extruder_id, false); file.writeln(printing_by_object_gcode); } // Reset the cooling buffer internal state (the current position, feed rate, accelerations). m_cooling_buffer->reset(this->writer().get_position()); m_cooling_buffer->set_current_extruder(initial_extruder_id); // Process all layers of a single object instance (sequential mode) with a parallel pipeline: // Generate G-code, run the filters (vase mode, cooling buffer), run the G-code analyser // and export G-code into file. this->process_layers(print, tool_ordering, collect_layers_to_print(object), *print_object_instance_sequential_active - object.instances().data(), file, prime_extruder); //BBS: close powerlost recovery { if (is_bbl_printers && m_second_layer_things_done) { file.write("; close powerlost recovery\n"); file.write("M1003 S0\n"); } } ++ finished_objects; // Flag indicating whether the nozzle temperature changes from 1st to 2nd layer were performed. // Reset it when starting another object from 1st layer. m_second_layer_things_done = false; prev_object = &object; } } else { // Sort layers by Z. // All extrusion moves with the same top layer height are extruded uninterrupted. std::vector>> layers_to_print = collect_layers_to_print(print); // Prusa Multi-Material wipe tower. if (has_wipe_tower && ! layers_to_print.empty()) { m_wipe_tower.reset(new WipeTowerIntegration(print.config(), print.get_plate_index(), print.get_plate_origin(), * print.wipe_tower_data().priming.get(), print.wipe_tower_data().tool_changes, *print.wipe_tower_data().final_purge.get())); //BBS file.write(m_writer.travel_to_z(initial_layer_print_height + m_config.z_offset.value, "Move to the first layer height")); #if 0 if (print.config().single_extruder_multi_material_priming) { file.write(m_wipe_tower->prime(*this)); // Verify, whether the print overaps the priming extrusions. BoundingBoxf bbox_print(get_print_extrusions_extents(print)); coordf_t twolayers_printz = ((layers_to_print.size() == 1) ? layers_to_print.front() : layers_to_print[1]).first + EPSILON; for (const PrintObject *print_object : print.objects()) bbox_print.merge(get_print_object_extrusions_extents(*print_object, twolayers_printz)); bbox_print.merge(get_wipe_tower_extrusions_extents(print, twolayers_printz)); BoundingBoxf bbox_prime(get_wipe_tower_priming_extrusions_extents(print)); bbox_prime.offset(0.5f); bool overlap = bbox_prime.overlap(bbox_print); if (print.config().gcode_flavor == gcfMarlinLegacy || print.config().gcode_flavor == gcfMarlinFirmware) { file.write(this->retract()); file.write("M300 S800 P500\n"); // Beep for 500ms, tone 800Hz. if (overlap) { // Wait for the user to remove the priming extrusions. file.write("M1 Remove priming towers and click button.\n"); } else { // Just wait for a bit to let the user check, that the priming succeeded. //TODO Add a message explaining what the printer is waiting for. This needs a firmware fix. file.write("M1 S10\n"); } } //BBS: only support Marlin //else { // This is not Marlin, M1 command is probably not supported. //if (overlap) { // print.active_step_add_warning(PrintStateBase::WarningLevel::CRITICAL, // _(L("Your print is very close to the priming regions. " // "Make sure there is no collision."))); //} else { // // Just continue printing, no action necessary. //} //} } #endif print.throw_if_canceled(); } // Process all layers of all objects (non-sequential mode) with a parallel pipeline: // Generate G-code, run the filters (vase mode, cooling buffer), run the G-code analyser // and export G-code into file. this->process_layers(print, tool_ordering, print_object_instances_ordering, layers_to_print, file); //BBS: close powerlost recovery { if (is_bbl_printers && m_second_layer_things_done) { file.write("; close powerlost recovery\n"); file.write("M1003 S0\n"); } } if (m_wipe_tower) // Purge the extruder, pull out the active filament. file.write(m_wipe_tower->finalize(*this)); } } //BBS: the last retraction // Write end commands to file. file.write(this->retract(false, true)); // if needed, write the gcode_label_objects_end { std::string gcode; m_writer.add_object_change_labels(gcode); file.write(gcode); } file.write(m_writer.set_fan(0)); //BBS: make sure the additional fan is closed when end if(m_config.auxiliary_fan.value) file.write(m_writer.set_additional_fan(0)); if (is_bbl_printers) { //BBS: close spaghetti detector //Note: M981 is also used to tell xcam the last layer is finished, so we need always send it even if spaghetti option is disabled. //if (print.config().spaghetti_detector.value) file.write("M981 S0 P20000 ; close spaghetti detector\n"); } // adds tag for processor file.write_format(";%s%s\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Role).c_str(), ExtrusionEntity::role_to_string(erCustom).c_str()); // Process filament-specific gcode in extruder order. { DynamicConfig config; config.set_key_value("layer_num", new ConfigOptionInt(m_layer_index)); //BBS config.set_key_value("layer_z", new ConfigOptionFloat(m_writer.get_position()(2) - m_config.z_offset.value)); config.set_key_value("max_layer_z", new ConfigOptionFloat(m_max_layer_z)); if (print.config().single_extruder_multi_material) { // Process the filament_end_gcode for the active filament only. int extruder_id = m_writer.extruder()->id(); config.set_key_value("filament_extruder_id", new ConfigOptionInt(extruder_id)); file.writeln(this->placeholder_parser_process("filament_end_gcode", print.config().filament_end_gcode.get_at(extruder_id), extruder_id, &config)); } else { for (const std::string &end_gcode : print.config().filament_end_gcode.values) { int extruder_id = (unsigned int)(&end_gcode - &print.config().filament_end_gcode.values.front()); config.set_key_value("filament_extruder_id", new ConfigOptionInt(extruder_id)); file.writeln(this->placeholder_parser_process("filament_end_gcode", end_gcode, extruder_id, &config)); } } file.writeln(this->placeholder_parser_process("machine_end_gcode", print.config().machine_end_gcode, m_writer.extruder()->id(), &config)); } file.write(m_writer.update_progress(m_layer_count, m_layer_count, true)); // 100% file.write(m_writer.postamble()); if (activate_chamber_temp_control && max_chamber_temp > 0) file.write(m_writer.set_chamber_temperature(0, false)); //close chamber_temperature if (activate_air_filtration) { int complete_print_exhaust_fan_speed = 0; for (const auto& extruder : m_writer.extruders()) if (m_config.activate_air_filtration.get_at(extruder.id())) complete_print_exhaust_fan_speed = std::max(complete_print_exhaust_fan_speed, m_config.complete_print_exhaust_fan_speed.get_at(extruder.id())); file.write(m_writer.set_exhaust_fan(complete_print_exhaust_fan_speed, true)); } // adds tags for time estimators file.write_format(";%s\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Last_Line_M73_Placeholder).c_str()); file.write_format("; EXECUTABLE_BLOCK_END\n\n"); print.throw_if_canceled(); // Get filament stats. file.write(DoExport::update_print_stats_and_format_filament_stats( // Const inputs has_wipe_tower, print.wipe_tower_data(), m_writer.extruders(), // Modifies print.m_print_statistics)); if (!is_bbl_printers) { file.write_format("; total filament used [g] = %.2lf\n", print.m_print_statistics.total_weight); file.write_format("; total filament cost = %.2lf\n", print.m_print_statistics.total_cost); if (print.m_print_statistics.total_toolchanges > 0) file.write_format("; total filament change = %i\n", print.m_print_statistics.total_toolchanges); file.write_format("; total layers count = %i\n", m_layer_count); file.write_format( ";%s\n", GCodeProcessor::reserved_tag( GCodeProcessor::ETags::Estimated_Printing_Time_Placeholder) .c_str()); file.write("\n"); file.write("; CONFIG_BLOCK_START\n"); std::string full_config; append_full_config(print, full_config); if (!full_config.empty()) file.write(full_config); // SoftFever: write compatiple info int first_layer_bed_temperature = get_bed_temperature(0, true, print.config().curr_bed_type); file.write_format("; first_layer_bed_temperature = %d\n", first_layer_bed_temperature); file.write_format("; bed_shape = %s\n", print.full_print_config().opt_serialize("printable_area").c_str()); file.write_format("; first_layer_temperature = %d\n", print.config().nozzle_temperature_initial_layer.get_at(0)); file.write_format("; first_layer_height = %.3f\n", print.config().initial_layer_print_height.value); //SF TODO // file.write_format("; variable_layer_height = %d\n", print.ad.adaptive_layer_height ? 1 : 0); file.write("; CONFIG_BLOCK_END\n\n"); } file.write("\n"); print.throw_if_canceled(); } //BBS void GCode::check_placeholder_parser_failed() { if (! m_placeholder_parser_integration.failed_templates.empty()) { // G-code export proceeded, but some of the PlaceholderParser substitutions failed. std::string msg = Slic3r::format(_(L("Failed to generate gcode for invalid custom G-code.\n\n"))); for (const auto &name_and_error : m_placeholder_parser_integration.failed_templates) msg += name_and_error.first + " " + name_and_error.second + "\n"; msg += Slic3r::format(_(L("Please check the custom G-code or use the default custom G-code."))); throw Slic3r::PlaceholderParserError(msg); } } // Process all layers of all objects (non-sequential mode) with a parallel pipeline: // Generate G-code, run the filters (vase mode, cooling buffer), run the G-code analyser // and export G-code into file. void GCode::process_layers( const Print &print, const ToolOrdering &tool_ordering, const std::vector &print_object_instances_ordering, const std::vector>> &layers_to_print, GCodeOutputStream &output_stream) { // The pipeline is variable: The vase mode filter is optional. size_t layer_to_print_idx = 0; const auto generator = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [this, &print, &tool_ordering, &print_object_instances_ordering, &layers_to_print, &layer_to_print_idx](tbb::flow_control& fc) -> LayerResult { if (layer_to_print_idx >= layers_to_print.size()) { if ((!m_pressure_equalizer && layer_to_print_idx == layers_to_print.size()) || (m_pressure_equalizer && layer_to_print_idx == (layers_to_print.size() + 1))) { fc.stop(); return {}; } else { // Pressure equalizer need insert empty input. Because it returns one layer back. // Insert NOP (no operation) layer; ++layer_to_print_idx; return LayerResult::make_nop_layer_result(); } } else { const std::pair>& layer = layers_to_print[layer_to_print_idx++]; const LayerTools& layer_tools = tool_ordering.tools_for_layer(layer.first); print.set_status(80, Slic3r::format(_(L("Generating G-code: layer %1%")), std::to_string(layer_to_print_idx))); if (m_wipe_tower && layer_tools.has_wipe_tower) m_wipe_tower->next_layer(); //BBS check_placeholder_parser_failed(); print.throw_if_canceled(); return this->process_layer(print, layer.second, layer_tools, &layer == &layers_to_print.back(), &print_object_instances_ordering, size_t(-1)); } }); const auto spiral_mode = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [&spiral_mode = *this->m_spiral_vase.get()](LayerResult in) -> LayerResult { if (in.nop_layer_result) return in; spiral_mode.enable(in.spiral_vase_enable); return { spiral_mode.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush }; }); const auto pressure_equalizer = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [pressure_equalizer = this->m_pressure_equalizer.get()](LayerResult in) -> LayerResult { return pressure_equalizer->process_layer(std::move(in)); }); const auto cooling = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [&cooling_buffer = *this->m_cooling_buffer.get()](LayerResult in) -> std::string { if (in.nop_layer_result) return in.gcode; return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush); }); const auto output = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [&output_stream](std::string s) { output_stream.write(s); } ); const auto fan_mover = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [&fan_mover = this->m_fan_mover, &config = this->config(), &writer = this->m_writer](std::string in)->std::string { CNumericLocalesSetter locales_setter; if (config.fan_speedup_time.value != 0 || config.fan_kickstart.value > 0) { if (fan_mover.get() == nullptr) fan_mover.reset(new Slic3r::FanMover( writer, std::abs((float)config.fan_speedup_time.value), config.fan_speedup_time.value > 0, config.use_relative_e_distances.value, config.fan_speedup_overhangs.value, (float)config.fan_kickstart.value)); //flush as it's a whole layer return fan_mover->process_gcode(in, true); } return in; }); // The pipeline elements are joined using const references, thus no copying is performed. if (m_spiral_vase && m_pressure_equalizer) tbb::parallel_pipeline(12, generator & spiral_mode & pressure_equalizer & cooling & fan_mover & output); else if (m_spiral_vase) tbb::parallel_pipeline(12, generator & spiral_mode & cooling & fan_mover & output); else if (m_pressure_equalizer) tbb::parallel_pipeline(12, generator & pressure_equalizer & cooling & fan_mover & output); else tbb::parallel_pipeline(12, generator & cooling & fan_mover & output); } // Process all layers of a single object instance (sequential mode) with a parallel pipeline: // Generate G-code, run the filters (vase mode, cooling buffer), run the G-code analyser // and export G-code into file. void GCode::process_layers( const Print &print, const ToolOrdering &tool_ordering, std::vector layers_to_print, const size_t single_object_idx, GCodeOutputStream &output_stream, // BBS const bool prime_extruder) { // The pipeline is variable: The vase mode filter is optional. size_t layer_to_print_idx = 0; const auto generator = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [this, &print, &tool_ordering, &layers_to_print, &layer_to_print_idx, single_object_idx, prime_extruder](tbb::flow_control& fc) -> LayerResult { if (layer_to_print_idx == layers_to_print.size()) { fc.stop(); return {}; } else { LayerToPrint &layer = layers_to_print[layer_to_print_idx ++]; print.set_status(80, Slic3r::format(_(L("Generating G-code: layer %1%")), std::to_string(layer_to_print_idx))); //BBS check_placeholder_parser_failed(); print.throw_if_canceled(); return this->process_layer(print, { std::move(layer) }, tool_ordering.tools_for_layer(layer.print_z()), &layer == &layers_to_print.back(), nullptr, single_object_idx, prime_extruder); } }); const auto spiral_mode = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [&spiral_mode = *this->m_spiral_vase.get()](LayerResult in)->LayerResult { spiral_mode.enable(in.spiral_vase_enable); return { spiral_mode.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush }; }); const auto cooling = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [&cooling_buffer = *this->m_cooling_buffer.get()](LayerResult in)->std::string { return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush); }); const auto output = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [&output_stream](std::string s) { output_stream.write(s); } ); const auto fan_mover = tbb::make_filter(slic3r_tbb_filtermode::serial_in_order, [&fan_mover = this->m_fan_mover, &config = this->config(), &writer = this->m_writer](std::string in)->std::string { if (config.fan_speedup_time.value != 0 || config.fan_kickstart.value > 0) { if (fan_mover.get() == nullptr) fan_mover.reset(new Slic3r::FanMover( writer, std::abs((float)config.fan_speedup_time.value), config.fan_speedup_time.value > 0, config.use_relative_e_distances.value, config.fan_speedup_overhangs.value, (float)config.fan_kickstart.value)); //flush as it's a whole layer return fan_mover->process_gcode(in, true); } return in; }); // The pipeline elements are joined using const references, thus no copying is performed. if (m_spiral_vase) tbb::parallel_pipeline(12, generator & spiral_mode & cooling & fan_mover & output); else tbb::parallel_pipeline(12, generator & cooling & fan_mover & output); } std::string GCode::placeholder_parser_process(const std::string &name, const std::string &templ, unsigned int current_extruder_id, const DynamicConfig *config_override) { PlaceholderParserIntegration &ppi = m_placeholder_parser_integration; try { ppi.update_from_gcodewriter(m_writer); std::string output = ppi.parser.process(templ, current_extruder_id, config_override, &ppi.output_config, &ppi.context); ppi.validate_output_vector_variables(); if (const std::vector &pos = ppi.opt_position->values; ppi.position != pos) { // Update G-code writer. m_writer.set_position({ pos[0], pos[1], pos[2] }); this->set_last_pos(this->gcode_to_point({ pos[0], pos[1] })); } for (const Extruder &e : m_writer.extruders()) { unsigned int eid = e.id(); assert(eid < ppi.num_extruders); if ( eid < ppi.num_extruders) { if (! m_writer.config.use_relative_e_distances && ! is_approx(ppi.e_position[eid], ppi.opt_e_position->values[eid])) const_cast(e).set_position(ppi.opt_e_position->values[eid]); if (! is_approx(ppi.e_retracted[eid], ppi.opt_e_retracted->values[eid]) || ! is_approx(ppi.e_restart_extra[eid], ppi.opt_e_restart_extra->values[eid])) const_cast(e).set_retracted(ppi.opt_e_retracted->values[eid], ppi.opt_e_restart_extra->values[eid]); } } return output; } catch (std::runtime_error &err) { // Collect the names of failed template substitutions for error reporting. auto it = ppi.failed_templates.find(name); if (it == ppi.failed_templates.end()) // Only if there was no error reported for this template, store the first error message into the map to be reported. // We don't want to collect error message for each and every occurence of a single custom G-code section. ppi.failed_templates.insert(it, std::make_pair(name, std::string(err.what()))); // Insert the macro error message into the G-code. return std::string("\n!!!!! Failed to process the custom G-code template ") + name + "\n" + err.what() + "!!!!! End of an error report for the custom G-code template " + name + "\n\n"; } } // Parse the custom G-code, try to find mcode_set_temp_dont_wait and mcode_set_temp_and_wait or optionally G10 with temperature inside the custom G-code. // Returns true if one of the temp commands are found, and try to parse the target temperature value into temp_out. static bool custom_gcode_sets_temperature(const std::string &gcode, const int mcode_set_temp_dont_wait, const int mcode_set_temp_and_wait, const bool include_g10, int &temp_out) { temp_out = -1; if (gcode.empty()) return false; const char *ptr = gcode.data(); bool temp_set_by_gcode = false; while (*ptr != 0) { // Skip whitespaces. for (; *ptr == ' ' || *ptr == '\t'; ++ ptr); if (*ptr == 'M' || // Line starts with 'M'. It is a machine command. (*ptr == 'G' && include_g10)) { // Only check for G10 if requested bool is_gcode = *ptr == 'G'; ++ ptr; // Parse the M or G code value. char *endptr = nullptr; int mgcode = int(strtol(ptr, &endptr, 10)); if (endptr != nullptr && endptr != ptr && is_gcode ? // G10 found mgcode == 10 : // M104/M109 or M140/M190 found. (mgcode == mcode_set_temp_dont_wait || mgcode == mcode_set_temp_and_wait)) { ptr = endptr; if (! is_gcode) // Let the caller know that the custom M-code sets the temperature. temp_set_by_gcode = true; // Now try to parse the temperature value. // While not at the end of the line: while (strchr(";\r\n\0", *ptr) == nullptr) { // Skip whitespaces. for (; *ptr == ' ' || *ptr == '\t'; ++ ptr); if (*ptr == 'S') { // Skip whitespaces. for (++ ptr; *ptr == ' ' || *ptr == '\t'; ++ ptr); // Parse an int. endptr = nullptr; long temp_parsed = strtol(ptr, &endptr, 10); if (endptr > ptr) { ptr = endptr; temp_out = temp_parsed; // Let the caller know that the custom G-code sets the temperature // Only do this after successfully parsing temperature since G10 // can be used for other reasons temp_set_by_gcode = true; } } else { // Skip this word. for (; strchr(" \t;\r\n\0", *ptr) == nullptr; ++ ptr); } } } } // Skip the rest of the line. for (; *ptr != 0 && *ptr != '\r' && *ptr != '\n'; ++ ptr); // Skip the end of line indicators. for (; *ptr == '\r' || *ptr == '\n'; ++ ptr); } return temp_set_by_gcode; } // Print the machine envelope G-code for the Marlin firmware based on the "machine_max_xxx" parameters. // Do not process this piece of G-code by the time estimator, it already knows the values through another sources. void GCode::print_machine_envelope(GCodeOutputStream &file, Print &print) { const auto flavor = print.config().gcode_flavor.value; if (flavor == gcfMarlinLegacy || flavor == gcfMarlinFirmware) { int factor = flavor == gcfRepRapFirmware ? 60 : 1; // RRF M203 and M566 are in mm/min file.write_format("M201 X%d Y%d Z%d E%d\n", int(print.config().machine_max_acceleration_x.values.front() + 0.5), int(print.config().machine_max_acceleration_y.values.front() + 0.5), int(print.config().machine_max_acceleration_z.values.front() + 0.5), int(print.config().machine_max_acceleration_e.values.front() + 0.5)); file.write_format("M203 X%d Y%d Z%d E%d\n", int(print.config().machine_max_speed_x.values.front() * factor + 0.5), int(print.config().machine_max_speed_y.values.front() * factor + 0.5), int(print.config().machine_max_speed_z.values.front() * factor + 0.5), int(print.config().machine_max_speed_e.values.front() * factor + 0.5)); // Now M204 - acceleration. This one is quite hairy thanks to how Marlin guys care about // Legacy Marlin should export travel acceleration the same as printing acceleration. // MarlinFirmware has the two separated. int travel_acc = flavor == gcfMarlinLegacy ? int(print.config().machine_max_acceleration_extruding.values.front() + 0.5) : int(print.config().machine_max_acceleration_travel.values.front() + 0.5); if (flavor == gcfRepRapFirmware) file.write_format("M204 P%d T%d ; sets acceleration (P, T), mm/sec^2\n", int(print.config().machine_max_acceleration_extruding.values.front() + 0.5), travel_acc); else if (flavor == gcfMarlinFirmware) // New Marlin uses M204 P[print] R[retract] T[travel] file.write_format("M204 P%d R%d T%d ; sets acceleration (P, T) and retract acceleration (R), mm/sec^2\n", int(print.config().machine_max_acceleration_extruding.values.front() + 0.5), int(print.config().machine_max_acceleration_retracting.values.front() + 0.5), int(print.config().machine_max_acceleration_travel.values.front() + 0.5)); else file.write_format("M204 P%d R%d T%d\n", int(print.config().machine_max_acceleration_extruding.values.front() + 0.5), int(print.config().machine_max_acceleration_retracting.values.front() + 0.5), travel_acc); assert(is_decimal_separator_point()); file.write_format(flavor == gcfRepRapFirmware ? "M566 X%.2lf Y%.2lf Z%.2lf E%.2lf ; sets the jerk limits, mm/min\n" : "M205 X%.2lf Y%.2lf Z%.2lf E%.2lf ; sets the jerk limits, mm/sec\n", print.config().machine_max_jerk_x.values.front() * factor, print.config().machine_max_jerk_y.values.front() * factor, print.config().machine_max_jerk_z.values.front() * factor, print.config().machine_max_jerk_e.values.front() * factor); } } // BBS int GCode::get_bed_temperature(const int extruder_id, const bool is_first_layer, const BedType bed_type) const { std::string bed_temp_key = is_first_layer ? get_bed_temp_1st_layer_key(bed_type) : get_bed_temp_key(bed_type); const ConfigOptionInts* bed_temp_opt = m_config.option(bed_temp_key); return bed_temp_opt->get_at(extruder_id); } // Write 1st layer bed temperatures into the G-code. // Only do that if the start G-code does not already contain any M-code controlling an extruder temperature. // M140 - Set Extruder Temperature // M190 - Set Extruder Temperature and Wait void GCode::_print_first_layer_bed_temperature(GCodeOutputStream &file, Print &print, const std::string &gcode, unsigned int first_printing_extruder_id, bool wait) { // Initial bed temperature based on the first extruder. // BBS std::vector temps_per_bed; int bed_temp = get_bed_temperature(first_printing_extruder_id, true, print.config().curr_bed_type); // Is the bed temperature set by the provided custom G-code? int temp_by_gcode = -1; bool temp_set_by_gcode = custom_gcode_sets_temperature(gcode, 140, 190, false, temp_by_gcode); // BBS #if 0 if (temp_set_by_gcode && temp_by_gcode >= 0 && temp_by_gcode < 1000) temp = temp_by_gcode; #endif // Always call m_writer.set_bed_temperature() so it will set the internal "current" state of the bed temp as if // the custom start G-code emited these. std::string set_temp_gcode = m_writer.set_bed_temperature(bed_temp, wait); if (! temp_set_by_gcode) file.write(set_temp_gcode); } // Write 1st layer extruder temperatures into the G-code. // Only do that if the start G-code does not already contain any M-code controlling an extruder temperature. // M104 - Set Extruder Temperature // M109 - Set Extruder Temperature and Wait // RepRapFirmware: G10 Sxx void GCode::_print_first_layer_extruder_temperatures(GCodeOutputStream &file, Print &print, const std::string &gcode, unsigned int first_printing_extruder_id, bool wait) { // Is the bed temperature set by the provided custom G-code? int temp_by_gcode = -1; bool include_g10 = print.config().gcode_flavor == gcfRepRapFirmware; if (custom_gcode_sets_temperature(gcode, 104, 109, include_g10, temp_by_gcode)) { // Set the extruder temperature at m_writer, but throw away the generated G-code as it will be written with the custom G-code. int temp = print.config().nozzle_temperature_initial_layer.get_at(first_printing_extruder_id); if (temp_by_gcode >= 0 && temp_by_gcode < 1000) temp = temp_by_gcode; m_writer.set_temperature(temp, wait, first_printing_extruder_id); } else { // Custom G-code does not set the extruder temperature. Do it now. if (print.config().single_extruder_multi_material.value) { // Set temperature of the first printing extruder only. int temp = print.config().nozzle_temperature_initial_layer.get_at(first_printing_extruder_id); if (temp > 0) file.write(m_writer.set_temperature(temp, wait, first_printing_extruder_id)); } else { // Set temperatures of all the printing extruders. for (unsigned int tool_id : print.extruders()) { int temp = print.config().nozzle_temperature_initial_layer.get_at(tool_id); if (print.config().ooze_prevention.value) temp += print.config().standby_temperature_delta.value; if (temp > 0) file.write(m_writer.set_temperature(temp, wait, tool_id)); } } } } inline GCode::ObjectByExtruder& object_by_extruder( std::map> &by_extruder, unsigned int extruder_id, size_t object_idx, size_t num_objects) { std::vector &objects_by_extruder = by_extruder[extruder_id]; if (objects_by_extruder.empty()) objects_by_extruder.assign(num_objects, GCode::ObjectByExtruder()); return objects_by_extruder[object_idx]; } inline std::vector& object_islands_by_extruder( std::map> &by_extruder, unsigned int extruder_id, size_t object_idx, size_t num_objects, size_t num_islands) { std::vector &islands = object_by_extruder(by_extruder, extruder_id, object_idx, num_objects).islands; if (islands.empty()) islands.assign(num_islands, GCode::ObjectByExtruder::Island()); return islands; } std::vector GCode::sort_print_object_instances( std::vector &objects_by_extruder, const std::vector &layers, // Ordering must be defined for normal (non-sequential print). const std::vector *ordering, // For sequential print, the instance of the object to be printing has to be defined. const size_t single_object_instance_idx) { std::vector out; if (ordering == nullptr) { // Sequential print, single object is being printed. for (ObjectByExtruder &object_by_extruder : objects_by_extruder) { const size_t layer_id = &object_by_extruder - objects_by_extruder.data(); //BBS:add the support of shared print object const PrintObject *print_object = layers[layer_id].original_object; //const PrintObject *print_object = layers[layer_id].object(); if (print_object) out.emplace_back(object_by_extruder, layer_id, *print_object, single_object_instance_idx, print_object->instances()[single_object_instance_idx].model_instance->get_labeled_id()); } } else { // Create mapping from PrintObject* to ObjectByExtruder*. std::vector> sorted; sorted.reserve(objects_by_extruder.size()); for (ObjectByExtruder &object_by_extruder : objects_by_extruder) { const size_t layer_id = &object_by_extruder - objects_by_extruder.data(); //BBS:add the support of shared print object const PrintObject *print_object = layers[layer_id].original_object; //const PrintObject *print_object = layers[layer_id].object(); if (print_object) sorted.emplace_back(print_object, &object_by_extruder); } std::sort(sorted.begin(), sorted.end()); if (! sorted.empty()) { out.reserve(sorted.size()); for (const PrintInstance *instance : *ordering) { const PrintObject &print_object = *instance->print_object; //BBS:add the support of shared print object //const PrintObject* print_obj_ptr = &print_object; //if (print_object.get_shared_object()) // print_obj_ptr = print_object.get_shared_object(); std::pair key(&print_object, nullptr); auto it = std::lower_bound(sorted.begin(), sorted.end(), key); if (it != sorted.end() && it->first == &print_object) // ObjectByExtruder for this PrintObject was found. out.emplace_back(*it->second, it->second - objects_by_extruder.data(), print_object, instance - print_object.instances().data(), instance->model_instance->get_labeled_id()); } } } return out; } namespace ProcessLayer { static std::string emit_custom_gcode_per_print_z( GCode &gcodegen, const CustomGCode::Item *custom_gcode, unsigned int current_extruder_id, // ID of the first extruder printing this layer. unsigned int first_extruder_id, const PrintConfig &config) { std::string gcode; // BBS bool single_filament_print = config.filament_diameter.size() == 1; if (custom_gcode != nullptr) { // Extruder switches are processed by LayerTools, they should be filtered out. assert(custom_gcode->type != CustomGCode::ToolChange); CustomGCode::Type gcode_type = custom_gcode->type; bool color_change = gcode_type == CustomGCode::ColorChange; bool tool_change = gcode_type == CustomGCode::ToolChange; // Tool Change is applied as Color Change for a single extruder printer only. assert(!tool_change || single_filament_print); std::string pause_print_msg; int m600_extruder_before_layer = -1; if (color_change && custom_gcode->extruder > 0) m600_extruder_before_layer = custom_gcode->extruder - 1; else if (gcode_type == CustomGCode::PausePrint) pause_print_msg = custom_gcode->extra; //BBS: inserting color gcode is removed #if 0 // we should add or not colorprint_change in respect to nozzle_diameter count instead of really used extruders count if (color_change || tool_change) { assert(m600_extruder_before_layer >= 0); // Color Change or Tool Change as Color Change. // add tag for processor gcode += ";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Color_Change) + ",T" + std::to_string(m600_extruder_before_layer) + "," + custom_gcode->color + "\n"; if (!single_filament_print && m600_extruder_before_layer >= 0 && first_extruder_id != (unsigned)m600_extruder_before_layer // && !MMU1 ) { //! FIXME_in_fw show message during print pause DynamicConfig cfg; cfg.set_key_value("color_change_extruder", new ConfigOptionInt(m600_extruder_before_layer)); gcode += gcodegen.placeholder_parser_process("machine_pause_gcode", config.machine_pause_gcode, current_extruder_id, &cfg); gcode += "\n"; gcode += "M117 Change filament for Extruder " + std::to_string(m600_extruder_before_layer) + "\n"; } else { gcode += gcodegen.placeholder_parser_process("color_change_gcode", config.color_change_gcode, current_extruder_id); gcode += "\n"; //FIXME Tell G-code writer that M600 filled the extruder, thus the G-code writer shall reset the extruder to unretracted state after // return from M600. Thus the G-code generated by the following line is ignored. // see GH issue #6362 gcodegen.writer().unretract(); } } else { #endif if (gcode_type == CustomGCode::PausePrint) // Pause print { // add tag for processor gcode += ";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Pause_Print) + "\n"; //! FIXME_in_fw show message during print pause //if (!pause_print_msg.empty()) // gcode += "M117 " + pause_print_msg + "\n"; gcode += gcodegen.placeholder_parser_process("machine_pause_gcode", config.machine_pause_gcode, current_extruder_id) + "\n"; } else { // add tag for processor gcode += ";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Custom_Code) + "\n"; if (gcode_type == CustomGCode::Template) // Template Custom Gcode gcode += gcodegen.placeholder_parser_process("template_custom_gcode", config.template_custom_gcode, current_extruder_id); else // custom Gcode gcode += custom_gcode->extra; } gcode += "\n"; #if 0 } #endif } return gcode; } } // namespace ProcessLayer namespace Skirt { static void skirt_loops_per_extruder_all_printing(const Print &print, const LayerTools &layer_tools, std::map> &skirt_loops_per_extruder_out) { // Prime all extruders printing over the 1st layer over the skirt lines. size_t n_loops = print.skirt().entities.size(); size_t n_tools = layer_tools.extruders.size(); size_t lines_per_extruder = (n_loops + n_tools - 1) / n_tools; // BBS. Extrude skirt with first extruder if min_skirt_length is zero const PrintConfig &config = print.config(); if (Print::min_skirt_length < EPSILON) { skirt_loops_per_extruder_out[layer_tools.extruders.front()] = std::pair(0, n_loops); } else { for (size_t i = 0; i < n_loops; i += lines_per_extruder) skirt_loops_per_extruder_out[layer_tools.extruders[i / lines_per_extruder]] = std::pair(i, std::min(i + lines_per_extruder, n_loops)); } } static std::map> make_skirt_loops_per_extruder_1st_layer( const Print &print, const LayerTools &layer_tools, // Heights (print_z) at which the skirt has already been extruded. std::vector &skirt_done) { // Extrude skirt at the print_z of the raft layers and normal object layers // not at the print_z of the interlaced support material layers. std::map> skirt_loops_per_extruder_out; //For sequential print, the following test may fail when extruding the 2nd and other objects. // assert(skirt_done.empty()); if (skirt_done.empty() && print.has_skirt() && ! print.skirt().entities.empty() && layer_tools.has_skirt) { skirt_loops_per_extruder_all_printing(print, layer_tools, skirt_loops_per_extruder_out); skirt_done.emplace_back(layer_tools.print_z); } return skirt_loops_per_extruder_out; } static std::map> make_skirt_loops_per_extruder_other_layers( const Print &print, const LayerTools &layer_tools, // Heights (print_z) at which the skirt has already been extruded. std::vector &skirt_done) { // Extrude skirt at the print_z of the raft layers and normal object layers // not at the print_z of the interlaced support material layers. std::map> skirt_loops_per_extruder_out; if (print.has_skirt() && ! print.skirt().entities.empty() && layer_tools.has_skirt && // Not enough skirt layers printed yet. //FIXME infinite or high skirt does not make sense for sequential print! (skirt_done.size() < (size_t)print.config().skirt_height.value || print.has_infinite_skirt())) { bool valid = ! skirt_done.empty() && skirt_done.back() < layer_tools.print_z - EPSILON; assert(valid); // This print_z has not been extruded yet (sequential print) // FIXME: The skirt_done should not be empty at this point. The check is a workaround if (valid) { #if 0 // Prime just the first printing extruder. This is original Slic3r's implementation. skirt_loops_per_extruder_out[layer_tools.extruders.front()] = std::pair(0, print.config().skirt_loops.value); #else // Prime all extruders planned for this layer, see skirt_loops_per_extruder_all_printing(print, layer_tools, skirt_loops_per_extruder_out); #endif assert(!skirt_done.empty()); skirt_done.emplace_back(layer_tools.print_z); } } return skirt_loops_per_extruder_out; } } // namespace Skirt // Orca: Klipper can't parse object names with spaces and other spetical characters std::string sanitize_instance_name(const std::string& name) { // Replace sequences of non-word characters with an underscore std::string result = std::regex_replace(name, std::regex("[ !@#$%^&*()=+\\[\\]{};:\",']+"), "_"); // Remove leading and trailing underscores if (!result.empty() && result.front() == '_') { result.erase(result.begin()); } if (!result.empty() && result.back() == '_') { result.erase(result.end() - 1); } return result; } inline std::string get_instance_name(const PrintObject *object, size_t inst_id) { auto obj_name = sanitize_instance_name(object->model_object()->name); auto name = (boost::format("%1%_id_%2%_copy_%3%") % obj_name % object->get_id() % inst_id).str(); return sanitize_instance_name(name); } inline std::string get_instance_name(const PrintObject *object, const PrintInstance &inst) { return get_instance_name(object, inst.id); } // In sequential mode, process_layer is called once per each object and its copy, // therefore layers will contain a single entry and single_object_instance_idx will point to the copy of the object. // In non-sequential mode, process_layer is called per each print_z height with all object and support layers accumulated. // For multi-material prints, this routine minimizes extruder switches by gathering extruder specific extrusion paths // and performing the extruder specific extrusions together. LayerResult GCode::process_layer( const Print &print, // Set of object & print layers of the same PrintObject and with the same print_z. const std::vector &layers, const LayerTools &layer_tools, const bool last_layer, // Pairs of PrintObject index and its instance index. const std::vector *ordering, // If set to size_t(-1), then print all copies of all objects. // Otherwise print a single copy of a single object. const size_t single_object_instance_idx, // BBS const bool prime_extruder) { assert(! layers.empty()); // Either printing all copies of all objects, or just a single copy of a single object. assert(single_object_instance_idx == size_t(-1) || layers.size() == 1); // First object, support and raft layer, if available. const Layer *object_layer = nullptr; const SupportLayer *support_layer = nullptr; const SupportLayer *raft_layer = nullptr; for (const LayerToPrint &l : layers) { if (l.object_layer && ! object_layer) object_layer = l.object_layer; if (l.support_layer) { if (! support_layer) support_layer = l.support_layer; if (! raft_layer && support_layer->id() < support_layer->object()->slicing_parameters().raft_layers()) raft_layer = support_layer; } } const Layer* layer_ptr = nullptr; if (object_layer != nullptr) layer_ptr = object_layer; else if (support_layer != nullptr) layer_ptr = support_layer; const Layer& layer = *layer_ptr; LayerResult result { {}, layer.id(), false, last_layer }; if (layer_tools.extruders.empty()) // Nothing to extrude. return result; // Extract 1st object_layer and support_layer of this set of layers with an equal print_z. coordf_t print_z = layer.print_z; //BBS: using layer id to judge whether the layer is first layer is wrong. Because if the normal //support is attached above the object, and support layers has independent layer height, then the lowest support //interface layer id is 0. bool first_layer = (layer.id() == 0 && abs(layer.bottom_z()) < EPSILON); m_writer.set_is_first_layer(first_layer); unsigned int first_extruder_id = layer_tools.extruders.front(); // Initialize config with the 1st object to be printed at this layer. m_config.apply(layer.object()->config(), true); // Check whether it is possible to apply the spiral vase logic for this layer. // Just a reminder: A spiral vase mode is allowed for a single object, single material print only. m_enable_loop_clipping = true; if (m_spiral_vase && layers.size() == 1 && support_layer == nullptr) { bool enable = (layer.id() > 0 || !print.has_brim()) && (layer.id() >= (size_t)print.config().skirt_height.value && ! print.has_infinite_skirt()); if (enable) { for (const LayerRegion *layer_region : layer.regions()) if (size_t(layer_region->region().config().bottom_shell_layers.value) > layer.id() || layer_region->perimeters.items_count() > 1u || layer_region->fills.items_count() > 0) { enable = false; break; } } result.spiral_vase_enable = enable; // If we're going to apply spiralvase to this layer, disable loop clipping. m_enable_loop_clipping = !enable; } std::string gcode; assert(is_decimal_separator_point()); // for the sprintfs // add tag for processor gcode += ";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Layer_Change) + "\n"; // export layer z char buf[64]; sprintf(buf, print.is_BBL_printer() ? "; Z_HEIGHT: %g\n" : ";Z:%g\n", print_z); gcode += buf; // export layer height float height = first_layer ? static_cast(print_z) : static_cast(print_z) - m_last_layer_z; sprintf(buf, ";%s%g\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height).c_str(), height); gcode += buf; // update caches m_last_layer_z = static_cast(print_z); m_max_layer_z = std::max(m_max_layer_z, m_last_layer_z); m_last_height = height; // Set new layer - this will change Z and force a retraction if retract_when_changing_layer is enabled. if (! print.config().before_layer_change_gcode.value.empty()) { DynamicConfig config; config.set_key_value("layer_num", new ConfigOptionInt(m_layer_index + 1)); config.set_key_value("layer_z", new ConfigOptionFloat(print_z)); config.set_key_value("max_layer_z", new ConfigOptionFloat(m_max_layer_z)); gcode += this->placeholder_parser_process("before_layer_change_gcode", print.config().before_layer_change_gcode.value, m_writer.extruder()->id(), &config) + "\n"; } PrinterStructure printer_structure = m_config.printer_structure.value; bool need_insert_timelapse_gcode_for_traditional = false; if (printer_structure == PrinterStructure::psI3 && !m_spiral_vase && (!m_wipe_tower || !m_wipe_tower->enable_timelapse_print()) && print.config().print_sequence == PrintSequence::ByLayer) { need_insert_timelapse_gcode_for_traditional = true; } bool has_insert_timelapse_gcode = false; bool has_wipe_tower = (layer_tools.has_wipe_tower && m_wipe_tower); auto insert_timelapse_gcode = [this, print_z, &print]() -> std::string { std::string gcode_res; if (!print.config().time_lapse_gcode.value.empty()) { DynamicConfig config; config.set_key_value("layer_num", new ConfigOptionInt(m_layer_index)); config.set_key_value("layer_z", new ConfigOptionFloat(print_z)); config.set_key_value("max_layer_z", new ConfigOptionFloat(m_max_layer_z)); gcode_res = this->placeholder_parser_process("timelapse_gcode", print.config().time_lapse_gcode.value, m_writer.extruder()->id(), &config) + "\n"; } return gcode_res; }; // BBS: don't use lazy_raise when enable spiral vase gcode += this->change_layer(print_z); // this will increase m_layer_index m_layer = &layer; m_object_layer_over_raft = false; if(is_BBL_Printer()){ if (printer_structure == PrinterStructure::psI3 && !need_insert_timelapse_gcode_for_traditional && !m_spiral_vase && print.config().print_sequence == PrintSequence::ByLayer) { std::string timepals_gcode = insert_timelapse_gcode(); gcode += timepals_gcode; m_writer.set_current_position_clear(false); //BBS: check whether custom gcode changes the z position. Update if changed double temp_z_after_timepals_gcode; if (GCodeProcessor::get_last_z_from_gcode(timepals_gcode, temp_z_after_timepals_gcode)) { Vec3d pos = m_writer.get_position(); pos(2) = temp_z_after_timepals_gcode; m_writer.set_position(pos); } } } else { if (!print.config().time_lapse_gcode.value.empty()) { DynamicConfig config; config.set_key_value("layer_num", new ConfigOptionInt(m_layer_index)); config.set_key_value("layer_z", new ConfigOptionFloat(print_z)); config.set_key_value("max_layer_z", new ConfigOptionFloat(m_max_layer_z)); gcode += this->placeholder_parser_process("timelapse_gcode", print.config().time_lapse_gcode.value, m_writer.extruder()->id(), &config) + "\n"; } } if (! print.config().layer_change_gcode.value.empty()) { DynamicConfig config; config.set_key_value("layer_num", new ConfigOptionInt(m_layer_index)); config.set_key_value("layer_z", new ConfigOptionFloat(print_z)); gcode += this->placeholder_parser_process("layer_change_gcode", print.config().layer_change_gcode.value, m_writer.extruder()->id(), &config) + "\n"; config.set_key_value("max_layer_z", new ConfigOptionFloat(m_max_layer_z)); } //BBS: set layer time fan speed after layer change gcode gcode += ";_SET_FAN_SPEED_CHANGING_LAYER\n"; if (print.calib_mode() == CalibMode::Calib_PA_Tower) { gcode += writer().set_pressure_advance(print.calib_params().start + static_cast(print_z) * print.calib_params().step); } else if (print.calib_mode() == CalibMode::Calib_Temp_Tower) { auto offset = static_cast(print_z / 10.001) * 5; gcode += writer().set_temperature(print.calib_params().start - offset); } else if (print.calib_mode() == CalibMode::Calib_VFA_Tower) { auto _speed = print.calib_params().start + std::floor(print_z / 5.0) * print.calib_params().step; m_calib_config.set_key_value("outer_wall_speed", new ConfigOptionFloat(std::round(_speed))); } else if (print.calib_mode() == CalibMode::Calib_Vol_speed_Tower) { auto _speed = print.calib_params().start + print_z * print.calib_params().step; m_calib_config.set_key_value("outer_wall_speed", new ConfigOptionFloat(std::round(_speed))); } else if (print.calib_mode() == CalibMode::Calib_Retraction_tower) { auto _length = print.calib_params().start + std::floor(std::max(0.0,print_z-0.4)) * print.calib_params().step; DynamicConfig _cfg; _cfg.set_key_value("retraction_length", new ConfigOptionFloats{_length}); writer().config.apply(_cfg); sprintf(buf, "; Calib_Retraction_tower: Z_HEIGHT: %g, length:%g\n", print_z, _length); gcode += buf; } //BBS if (first_layer) { // Orca: we don't need to optimize the Klipper as only set once if (m_config.default_acceleration.value > 0 && m_config.initial_layer_acceleration.value > 0) { gcode += m_writer.set_print_acceleration((unsigned int)floor(m_config.initial_layer_acceleration.value + 0.5)); } if (m_config.default_jerk.value > 0 && m_config.initial_layer_jerk.value > 0) { gcode += m_writer.set_jerk_xy(m_config.initial_layer_jerk.value); } } if (! first_layer && ! m_second_layer_things_done) { if (print.is_BBL_printer()) { // BBS: open powerlost recovery { gcode += "; open powerlost recovery\n"; gcode += "M1003 S1\n"; } // BBS: open first layer inspection at second layer if (print.config().scan_first_layer.value) { // BBS: retract first to avoid droping when scan model gcode += this->retract(); gcode += "M976 S1 P1 ; scan model before printing 2nd layer\n"; gcode += "M400 P100\n"; gcode += this->unretract(); } } // Reset acceleration at sencond layer // Orca: only set once, don't need to call set_accel_and_jerk if (m_config.default_acceleration.value > 0 && m_config.initial_layer_acceleration.value > 0) { gcode += m_writer.set_print_acceleration((unsigned int) floor(m_config.default_acceleration.value + 0.5)); } if (m_config.default_jerk.value > 0 && m_config.initial_layer_jerk.value > 0) { gcode += m_writer.set_jerk_xy(m_config.default_jerk.value); } // Transition from 1st to 2nd layer. Adjust nozzle temperatures as prescribed by the nozzle dependent // nozzle_temperature_initial_layer vs. temperature settings. for (const Extruder &extruder : m_writer.extruders()) { if (print.config().single_extruder_multi_material.value && extruder.id() != m_writer.extruder()->id()) // In single extruder multi material mode, set the temperature for the current extruder only. continue; int temperature = print.config().nozzle_temperature.get_at(extruder.id()); if (temperature > 0 && temperature != print.config().nozzle_temperature_initial_layer.get_at(extruder.id())) gcode += m_writer.set_temperature(temperature, false, extruder.id()); } // BBS int bed_temp = get_bed_temperature(first_extruder_id, false, print.config().curr_bed_type); gcode += m_writer.set_bed_temperature(bed_temp); // Mark the temperature transition from 1st to 2nd layer to be finished. m_second_layer_things_done = true; } // Map from extruder ID to index of skirt loops to be extruded with that extruder. std::map> skirt_loops_per_extruder; if (single_object_instance_idx == size_t(-1)) { // Normal (non-sequential) print. gcode += ProcessLayer::emit_custom_gcode_per_print_z(*this, layer_tools.custom_gcode, m_writer.extruder()->id(), first_extruder_id, print.config()); } // Extrude skirt at the print_z of the raft layers and normal object layers // not at the print_z of the interlaced support material layers. skirt_loops_per_extruder = first_layer ? Skirt::make_skirt_loops_per_extruder_1st_layer(print, layer_tools, m_skirt_done) : Skirt::make_skirt_loops_per_extruder_other_layers(print, layer_tools, m_skirt_done); if (m_config.enable_overhang_speed && !m_config.overhang_speed_classic) { for (const auto &layer_to_print : layers) { m_extrusion_quality_estimator.prepare_for_new_layer(layer_to_print.original_object, layer_to_print.object_layer); } } // Group extrusions by an extruder, then by an object, an island and a region. std::map> by_extruder; bool is_anything_overridden = const_cast(layer_tools).wiping_extrusions().is_anything_overridden(); for (const LayerToPrint &layer_to_print : layers) { if (layer_to_print.support_layer != nullptr) { const SupportLayer &support_layer = *layer_to_print.support_layer; const PrintObject& object = *layer_to_print.original_object; if (! support_layer.support_fills.entities.empty()) { ExtrusionRole role = support_layer.support_fills.role(); bool has_support = role == erMixed || role == erSupportMaterial || role == erSupportTransition; bool has_interface = role == erMixed || role == erSupportMaterialInterface; // Extruder ID of the support base. -1 if "don't care". unsigned int support_extruder = object.config().support_filament.value - 1; // Shall the support be printed with the active extruder, preferably with non-soluble, to avoid tool changes? bool support_dontcare = object.config().support_filament.value == 0; // Extruder ID of the support interface. -1 if "don't care". unsigned int interface_extruder = object.config().support_interface_filament.value - 1; // Shall the support interface be printed with the active extruder, preferably with non-soluble, to avoid tool changes? bool interface_dontcare = object.config().support_interface_filament.value == 0; // BBS: apply wiping overridden extruders WipingExtrusions& wiping_extrusions = const_cast(layer_tools).wiping_extrusions(); if (support_dontcare) { int extruder_override = wiping_extrusions.get_support_extruder_overrides(&object); if (extruder_override >= 0) { support_extruder = extruder_override; support_dontcare = false; } } if (interface_dontcare) { int extruder_override = wiping_extrusions.get_support_interface_extruder_overrides(&object); if (extruder_override >= 0) { interface_extruder = extruder_override; interface_dontcare = false; } } // BBS: try to print support base with a filament other than interface filament if (support_dontcare && !interface_dontcare) { unsigned int dontcare_extruder = first_extruder_id; for (unsigned int extruder_id : layer_tools.extruders) { if (print.config().filament_soluble.get_at(extruder_id)) continue; if (extruder_id == interface_extruder) continue; dontcare_extruder = extruder_id; break; } if (support_dontcare) support_extruder = dontcare_extruder; } else if (support_dontcare || interface_dontcare) { // Some support will be printed with "don't care" material, preferably non-soluble. // Is the current extruder assigned a soluble filament? unsigned int dontcare_extruder = first_extruder_id; if (print.config().filament_soluble.get_at(dontcare_extruder)) { // The last extruder printed on the previous layer extrudes soluble filament. // Try to find a non-soluble extruder on the same layer. for (unsigned int extruder_id : layer_tools.extruders) if (! print.config().filament_soluble.get_at(extruder_id)) { dontcare_extruder = extruder_id; break; } } if (support_dontcare) support_extruder = dontcare_extruder; if (interface_dontcare) interface_extruder = dontcare_extruder; } // Both the support and the support interface are printed with the same extruder, therefore // the interface may be interleaved with the support base. bool single_extruder = ! has_support || support_extruder == interface_extruder; // Assign an extruder to the base. ObjectByExtruder &obj = object_by_extruder(by_extruder, has_support ? support_extruder : interface_extruder, &layer_to_print - layers.data(), layers.size()); obj.support = &support_layer.support_fills; obj.support_extrusion_role = single_extruder ? erMixed : erSupportMaterial; if (! single_extruder && has_interface) { ObjectByExtruder &obj_interface = object_by_extruder(by_extruder, interface_extruder, &layer_to_print - layers.data(), layers.size()); obj_interface.support = &support_layer.support_fills; obj_interface.support_extrusion_role = erSupportMaterialInterface; } } } if (layer_to_print.object_layer != nullptr) { const Layer &layer = *layer_to_print.object_layer; // We now define a strategy for building perimeters and fills. The separation // between regions doesn't matter in terms of printing order, as we follow // another logic instead: // - we group all extrusions by extruder so that we minimize toolchanges // - we start from the last used extruder // - for each extruder, we group extrusions by island // - for each island, we extrude perimeters first, unless user set the infill_first // option // (Still, we have to keep track of regions because we need to apply their config) size_t n_slices = layer.lslices.size(); const std::vector &layer_surface_bboxes = layer.lslices_bboxes; // Traverse the slices in an increasing order of bounding box size, so that the islands inside another islands are tested first, // so we can just test a point inside ExPolygon::contour and we may skip testing the holes. std::vector slices_test_order; slices_test_order.reserve(n_slices); for (size_t i = 0; i < n_slices; ++ i) slices_test_order.emplace_back(i); std::sort(slices_test_order.begin(), slices_test_order.end(), [&layer_surface_bboxes](size_t i, size_t j) { const Vec2d s1 = layer_surface_bboxes[i].size().cast(); const Vec2d s2 = layer_surface_bboxes[j].size().cast(); return s1.x() * s1.y() < s2.x() * s2.y(); }); auto point_inside_surface = [&layer, &layer_surface_bboxes](const size_t i, const Point &point) { const BoundingBox &bbox = layer_surface_bboxes[i]; return point(0) >= bbox.min(0) && point(0) < bbox.max(0) && point(1) >= bbox.min(1) && point(1) < bbox.max(1) && layer.lslices[i].contour.contains(point); }; for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) { const LayerRegion *layerm = layer.regions()[region_id]; if (layerm == nullptr) continue; // PrintObjects own the PrintRegions, thus the pointer to PrintRegion would be unique to a PrintObject, they would not // identify the content of PrintRegion accross the whole print uniquely. Translate to a Print specific PrintRegion. const PrintRegion ®ion = print.get_print_region(layerm->region().print_region_id()); // Now we must process perimeters and infills and create islands of extrusions in by_region std::map. // It is also necessary to save which extrusions are part of MM wiping and which are not. // The process is almost the same for perimeters and infills - we will do it in a cycle that repeats twice: std::vector printing_extruders; for (const ObjectByExtruder::Island::Region::Type entity_type : { ObjectByExtruder::Island::Region::INFILL, ObjectByExtruder::Island::Region::PERIMETERS }) { for (const ExtrusionEntity *ee : (entity_type == ObjectByExtruder::Island::Region::INFILL) ? layerm->fills.entities : layerm->perimeters.entities) { // extrusions represents infill or perimeter extrusions of a single island. assert(dynamic_cast(ee) != nullptr); const auto *extrusions = static_cast(ee); if (extrusions->entities.empty()) // This shouldn't happen but first_point() would fail. continue; // This extrusion is part of certain Region, which tells us which extruder should be used for it: int correct_extruder_id = layer_tools.extruder(*extrusions, region); // Let's recover vector of extruder overrides: const WipingExtrusions::ExtruderPerCopy *entity_overrides = nullptr; if (! layer_tools.has_extruder(correct_extruder_id)) { // this entity is not overridden, but its extruder is not in layer_tools - we'll print it // by last extruder on this layer (could happen e.g. when a wiping object is taller than others - dontcare extruders are eradicated from layer_tools) correct_extruder_id = layer_tools.extruders.back(); } printing_extruders.clear(); if (is_anything_overridden) { entity_overrides = const_cast(layer_tools).wiping_extrusions().get_extruder_overrides(extrusions, layer_to_print.original_object, correct_extruder_id, layer_to_print.object()->instances().size()); if (entity_overrides == nullptr) { printing_extruders.emplace_back(correct_extruder_id); } else { printing_extruders.reserve(entity_overrides->size()); for (int extruder : *entity_overrides) printing_extruders.emplace_back(extruder >= 0 ? // at least one copy is overridden to use this extruder extruder : // at least one copy would normally be printed with this extruder (see get_extruder_overrides function for explanation) static_cast(- extruder - 1)); Slic3r::sort_remove_duplicates(printing_extruders); } } else printing_extruders.emplace_back(correct_extruder_id); // Now we must add this extrusion into the by_extruder map, once for each extruder that will print it: for (unsigned int extruder : printing_extruders) { std::vector &islands = object_islands_by_extruder( by_extruder, extruder, &layer_to_print - layers.data(), layers.size(), n_slices+1); for (size_t i = 0; i <= n_slices; ++ i) { bool last = i == n_slices; size_t island_idx = last ? n_slices : slices_test_order[i]; if (// extrusions->first_point does not fit inside any slice last || // extrusions->first_point fits inside ith slice point_inside_surface(island_idx, extrusions->first_point())) { if (islands[island_idx].by_region.empty()) islands[island_idx].by_region.assign(print.num_print_regions(), ObjectByExtruder::Island::Region()); islands[island_idx].by_region[region.print_region_id()].append(entity_type, extrusions, entity_overrides); break; } } } } } } // for regions } } // for objects if (m_wipe_tower) m_wipe_tower->set_is_first_print(true); // Extrude the skirt, brim, support, perimeters, infill ordered by the extruders. for (unsigned int extruder_id : layer_tools.extruders) { if (has_wipe_tower) { if (!m_wipe_tower->is_empty_wipe_tower_gcode(*this, extruder_id, extruder_id == layer_tools.extruders.back())) { if (need_insert_timelapse_gcode_for_traditional && !has_insert_timelapse_gcode) { gcode += this->retract(false, false, LiftType::NormalLift); m_writer.add_object_change_labels(gcode); std::string timepals_gcode = insert_timelapse_gcode(); gcode += timepals_gcode; m_writer.set_current_position_clear(false); //BBS: check whether custom gcode changes the z position. Update if changed double temp_z_after_timepals_gcode; if (GCodeProcessor::get_last_z_from_gcode(timepals_gcode, temp_z_after_timepals_gcode)) { Vec3d pos = m_writer.get_position(); pos(2) = temp_z_after_timepals_gcode; m_writer.set_position(pos); } has_insert_timelapse_gcode = true; } gcode += m_wipe_tower->tool_change(*this, extruder_id, extruder_id == layer_tools.extruders.back()); } } else { gcode += this->set_extruder(extruder_id, print_z); } // let analyzer tag generator aware of a role type change if (layer_tools.has_wipe_tower && m_wipe_tower) m_last_processor_extrusion_role = erWipeTower; if (auto loops_it = skirt_loops_per_extruder.find(extruder_id); loops_it != skirt_loops_per_extruder.end()) { const std::pair loops = loops_it->second; this->set_origin(0., 0.); m_avoid_crossing_perimeters.use_external_mp(); Flow layer_skirt_flow = print.skirt_flow().with_height(float(m_skirt_done.back() - (m_skirt_done.size() == 1 ? 0. : m_skirt_done[m_skirt_done.size() - 2]))); double mm3_per_mm = layer_skirt_flow.mm3_per_mm(); for (size_t i = loops.first; i < loops.second; ++i) { // Adjust flow according to this layer's layer height. ExtrusionLoop loop = *dynamic_cast(print.skirt().entities[i]); for (ExtrusionPath &path : loop.paths) { path.height = layer_skirt_flow.height(); path.mm3_per_mm = mm3_per_mm; } //FIXME using the support_speed of the 1st object printed. gcode += this->extrude_loop(loop, "skirt", m_config.support_speed.value); } m_avoid_crossing_perimeters.use_external_mp(false); // Allow a straight travel move to the first object point if this is the first layer (but don't in next layers). if (first_layer && loops.first == 0) m_avoid_crossing_perimeters.disable_once(); } auto objects_by_extruder_it = by_extruder.find(extruder_id); if (objects_by_extruder_it == by_extruder.end()) continue; // BBS: ordering instances by extruder std::vector instances_to_print; bool has_prime_tower = print.config().enable_prime_tower && print.extruders().size() > 1 && (print.config().print_sequence == PrintSequence::ByLayer || (print.config().print_sequence == PrintSequence::ByObject && print.objects().size() == 1)); if (has_prime_tower) { int plate_idx = print.get_plate_index(); Point wt_pos(print.config().wipe_tower_x.get_at(plate_idx), print.config().wipe_tower_y.get_at(plate_idx)); std::vector& objects_by_extruder = objects_by_extruder_it->second; std::vector print_objects; for (int obj_idx = 0; obj_idx < objects_by_extruder.size(); obj_idx++) { auto& object_by_extruder = objects_by_extruder[obj_idx]; if (object_by_extruder.islands.empty() && (object_by_extruder.support == nullptr || object_by_extruder.support->empty())) continue; print_objects.push_back(print.get_object(obj_idx)); } std::vector new_ordering = chain_print_object_instances(print_objects, &wt_pos); std::reverse(new_ordering.begin(), new_ordering.end()); instances_to_print = sort_print_object_instances(objects_by_extruder_it->second, layers, &new_ordering, single_object_instance_idx); } else { instances_to_print = sort_print_object_instances(objects_by_extruder_it->second, layers, ordering, single_object_instance_idx); } // BBS if (print.config().print_sequence == PrintSequence::ByObject && prime_extruder && first_layer && extruder_id == first_extruder_id) { for (InstanceToPrint& instance_to_print : instances_to_print) { if (this->m_objSupportsWithBrim.find(instance_to_print.print_object.id()) != this->m_objSupportsWithBrim.end() && print.m_supportBrimMap.at(instance_to_print.print_object.id()).entities.size() > 0) continue; if (this->m_objsWithBrim.find(instance_to_print.print_object.id()) != this->m_objsWithBrim.end() && print.m_brimMap.at(instance_to_print.print_object.id()).entities.size() > 0) continue; const Point& offset = instance_to_print.print_object.instances()[instance_to_print.instance_id].shift; set_origin(unscaled(offset)); for (ExtrusionEntity* ee : layer.object()->object_skirt().entities) //FIXME using the support_speed of the 1st object printed. gcode += this->extrude_entity(*ee, "skirt", m_config.support_speed.value); } } // We are almost ready to print. However, we must go through all the objects twice to print the the overridden extrusions first (infill/perimeter wiping feature): std::vector by_region_per_copy_cache; for (int print_wipe_extrusions = is_anything_overridden; print_wipe_extrusions>=0; --print_wipe_extrusions) { if (is_anything_overridden && print_wipe_extrusions == 0) gcode+="; PURGING FINISHED\n"; for (InstanceToPrint &instance_to_print : instances_to_print) { const auto& inst = instance_to_print.print_object.instances()[instance_to_print.instance_id]; const LayerToPrint &layer_to_print = layers[instance_to_print.layer_id]; // To control print speed of the 1st object layer printed over raft interface. bool object_layer_over_raft = layer_to_print.object_layer && layer_to_print.object_layer->id() > 0 && instance_to_print.print_object.slicing_parameters().raft_layers() == layer_to_print.object_layer->id(); m_config.apply(instance_to_print.print_object.config(), true); m_layer = layer_to_print.layer(); m_object_layer_over_raft = object_layer_over_raft; if (m_config.reduce_crossing_wall) m_avoid_crossing_perimeters.init_layer(*m_layer); if (this->config().gcode_label_objects) { gcode += std::string("; printing object ") + instance_to_print.print_object.model_object()->name + " id:" + std::to_string(instance_to_print.print_object.get_id()) + " copy " + std::to_string(inst.id) + "\n"; } // exclude objects if (m_enable_exclude_object) { if (is_BBL_Printer()) { m_writer.set_object_start_str( std::string("; start printing object, unique label id: ") + std::to_string(instance_to_print.label_object_id) + "\n" + "M624 " + _encode_label_ids_to_base64({instance_to_print.label_object_id}) + "\n"); } else if (print.config().gcode_flavor.value == gcfKlipper) { m_writer.set_object_start_str(std::string("EXCLUDE_OBJECT_START NAME=") + get_instance_name(&instance_to_print.print_object, inst.id) + "\n"); } } if (m_config.enable_overhang_speed && !m_config.overhang_speed_classic) m_extrusion_quality_estimator.set_current_object(&instance_to_print.print_object); // When starting a new object, use the external motion planner for the first travel move. const Point &offset = instance_to_print.print_object.instances()[instance_to_print.instance_id].shift; std::pair this_object_copy(&instance_to_print.print_object, offset); if (m_last_obj_copy != this_object_copy) m_avoid_crossing_perimeters.use_external_mp_once(); m_last_obj_copy = this_object_copy; this->set_origin(unscale(offset)); if (instance_to_print.object_by_extruder.support != nullptr) { m_layer = layers[instance_to_print.layer_id].support_layer; m_object_layer_over_raft = false; //BBS: print supports' brims first if (this->m_objSupportsWithBrim.find(instance_to_print.print_object.id()) != this->m_objSupportsWithBrim.end() && !print_wipe_extrusions) { this->set_origin(0., 0.); m_avoid_crossing_perimeters.use_external_mp(); for (const ExtrusionEntity* ee : print.m_supportBrimMap.at(instance_to_print.print_object.id()).entities) { gcode += this->extrude_entity(*ee, "brim", m_config.support_speed.value); } m_avoid_crossing_perimeters.use_external_mp(false); // Allow a straight travel move to the first object point. m_avoid_crossing_perimeters.disable_once(); this->m_objSupportsWithBrim.erase(instance_to_print.print_object.id()); } // When starting a new object, use the external motion planner for the first travel move. const Point& offset = instance_to_print.print_object.instances()[instance_to_print.instance_id].shift; std::pair this_object_copy(&instance_to_print.print_object, offset); if (m_last_obj_copy != this_object_copy) m_avoid_crossing_perimeters.use_external_mp_once(); m_last_obj_copy = this_object_copy; this->set_origin(unscale(offset)); ExtrusionEntityCollection support_eec; // BBS WipingExtrusions& wiping_extrusions = const_cast(layer_tools).wiping_extrusions(); bool support_overridden = wiping_extrusions.is_support_overridden(layer_to_print.original_object); bool support_intf_overridden = wiping_extrusions.is_support_interface_overridden(layer_to_print.original_object); ExtrusionRole support_extrusion_role = instance_to_print.object_by_extruder.support_extrusion_role; bool is_overridden = support_extrusion_role == erSupportMaterialInterface ? support_intf_overridden : support_overridden; if (is_overridden == (print_wipe_extrusions != 0)) gcode += this->extrude_support( // support_extrusion_role is erSupportMaterial, erSupportTransition, erSupportMaterialInterface or erMixed for all extrusion paths. instance_to_print.object_by_extruder.support->chained_path_from(m_last_pos, support_extrusion_role)); m_layer = layer_to_print.layer(); m_object_layer_over_raft = object_layer_over_raft; } //FIXME order islands? // Sequential tool path ordering of multiple parts within the same object, aka. perimeter tracking (#5511) for (ObjectByExtruder::Island &island : instance_to_print.object_by_extruder.islands) { const auto& by_region_specific = is_anything_overridden ? island.by_region_per_copy(by_region_per_copy_cache, static_cast(instance_to_print.instance_id), extruder_id, print_wipe_extrusions != 0) : island.by_region; //BBS: add brim by obj by extruder if (this->m_objsWithBrim.find(instance_to_print.print_object.id()) != this->m_objsWithBrim.end() && !print_wipe_extrusions) { this->set_origin(0., 0.); m_avoid_crossing_perimeters.use_external_mp(); for (const ExtrusionEntity* ee : print.m_brimMap.at(instance_to_print.print_object.id()).entities) { gcode += this->extrude_entity(*ee, "brim", m_config.support_speed.value); } m_avoid_crossing_perimeters.use_external_mp(false); // Allow a straight travel move to the first object point. m_avoid_crossing_perimeters.disable_once(); this->m_objsWithBrim.erase(instance_to_print.print_object.id()); } // When starting a new object, use the external motion planner for the first travel move. const Point& offset = instance_to_print.print_object.instances()[instance_to_print.instance_id].shift; std::pair this_object_copy(&instance_to_print.print_object, offset); if (m_last_obj_copy != this_object_copy) m_avoid_crossing_perimeters.use_external_mp_once(); m_last_obj_copy = this_object_copy; this->set_origin(unscale(offset)); //FIXME the following code prints regions in the order they are defined, the path is not optimized in any way. bool is_infill_first = print.default_region_config().wall_infill_order == WallInfillOrder::InfillInnerOuter || print.default_region_config().wall_infill_order == WallInfillOrder::InfillOuterInner; //BBS: for first layer, we always print wall firstly to get better bed adhesive force //This behaviour is same with cura if (is_infill_first && !first_layer) { gcode += this->extrude_infill(print, by_region_specific, false); gcode += this->extrude_perimeters(print, by_region_specific); } else { gcode += this->extrude_perimeters(print, by_region_specific); gcode += this->extrude_infill(print,by_region_specific, false); } // ironing gcode += this->extrude_infill(print,by_region_specific, true); } if (this->config().gcode_label_objects) { gcode += std::string("; stop printing object ") + instance_to_print.print_object.model_object()->name + " id:" + std::to_string(instance_to_print.print_object.get_id()) + " copy " + std::to_string(inst.id) + "\n"; } // exclude objects // Don't set m_gcode_label_objects_end if you don't had to write the m_gcode_label_objects_start. if (!m_writer.is_object_start_str_empty()) { m_writer.set_object_start_str(""); } else if (m_enable_exclude_object) { if (is_BBL_Printer()) { m_writer.set_object_end_str(std::string("; stop printing object, unique label id: ") + std::to_string(instance_to_print.label_object_id) + "\n" + "M625\n"); } else if (print.config().gcode_flavor.value == gcfKlipper) { m_writer.set_object_end_str(std::string("EXCLUDE_OBJECT_END NAME=") + get_instance_name(&instance_to_print.print_object, inst.id) + "\n"); } } } } } #if 0 // Apply spiral vase post-processing if this layer contains suitable geometry // (we must feed all the G-code into the post-processor, including the first // bottom non-spiral layers otherwise it will mess with positions) // we apply spiral vase at this stage because it requires a full layer. // Just a reminder: A spiral vase mode is allowed for a single object per layer, single material print only. if (m_spiral_vase) gcode = m_spiral_vase->process_layer(std::move(gcode)); // Apply cooling logic; this may alter speeds. if (m_cooling_buffer) gcode = m_cooling_buffer->process_layer(std::move(gcode), layer.id(), // Flush the cooling buffer at each object layer or possibly at the last layer, even if it contains just supports (This should not happen). object_layer || last_layer); file.write(gcode); #endif BOOST_LOG_TRIVIAL(trace) << "Exported layer " << layer.id() << " print_z " << print_z << log_memory_info(); if (!has_wipe_tower && need_insert_timelapse_gcode_for_traditional && !has_insert_timelapse_gcode) { if (m_support_traditional_timelapse) m_support_traditional_timelapse = false; gcode += this->retract(false, false, LiftType::NormalLift); m_writer.add_object_change_labels(gcode); std::string timepals_gcode = insert_timelapse_gcode(); gcode += timepals_gcode; m_writer.set_current_position_clear(false); //BBS: check whether custom gcode changes the z position. Update if changed double temp_z_after_timepals_gcode; if (GCodeProcessor::get_last_z_from_gcode(timepals_gcode, temp_z_after_timepals_gcode)) { Vec3d pos = m_writer.get_position(); pos(2) = temp_z_after_timepals_gcode; m_writer.set_position(pos); } } result.gcode = std::move(gcode); result.cooling_buffer_flush = object_layer || raft_layer || last_layer; return result; } void GCode::apply_print_config(const PrintConfig &print_config) { m_writer.apply_print_config(print_config); m_config.apply(print_config); m_scaled_resolution = scaled(print_config.resolution.value); } void GCode::append_full_config(const Print &print, std::string &str) { const DynamicPrintConfig &cfg = print.full_print_config(); // Sorted list of config keys, which shall not be stored into the G-code. Initializer list. static constexpr auto banned_keys = { "compatible_printers"sv, "compatible_prints"sv }; assert(std::is_sorted(banned_keys.begin(), banned_keys.end())); auto is_banned = [](const std::string &key) { return std::binary_search(banned_keys.begin(), banned_keys.end(), key); }; std::ostringstream ss; for (const std::string& key : cfg.keys()) { if (!is_banned(key) && !cfg.option(key)->is_nil()) { if (key == "wipe_tower_x" || key == "wipe_tower_y") { ss << std::fixed << std::setprecision(3) << "; " << key << " = " << dynamic_cast(cfg.option(key))->get_at(print.get_plate_index()) << "\n"; } else ss << "; " << key << " = " << cfg.opt_serialize(key) << "\n"; } } str += ss.str(); } void GCode::set_extruders(const std::vector &extruder_ids) { m_writer.set_extruders(extruder_ids); // enable wipe path generation if any extruder has wipe enabled m_wipe.enable = false; for (auto id : extruder_ids) if (m_config.wipe.get_at(id)) { m_wipe.enable = true; break; } } void GCode::set_origin(const Vec2d &pointf) { // if origin increases (goes towards right), last_pos decreases because it goes towards left const Point translate( scale_(m_origin(0) - pointf(0)), scale_(m_origin(1) - pointf(1)) ); m_last_pos += translate; m_wipe.path.translate(translate); m_origin = pointf; } std::string GCode::preamble() { std::string gcode = m_writer.preamble(); /* Perform a *silent* move to z_offset: we need this to initialize the Z position of our writer object so that any initial lift taking place before the first layer change will raise the extruder from the correct initial Z instead of 0. */ m_writer.travel_to_z(m_config.z_offset.value); return gcode; } // called by GCode::process_layer() std::string GCode::change_layer(coordf_t print_z) { std::string gcode; if (m_layer_count > 0) // Increment a progress bar indicator. gcode += m_writer.update_progress(++ m_layer_index, m_layer_count); //BBS coordf_t z = print_z + m_config.z_offset.value; // in unscaled coordinates if (EXTRUDER_CONFIG(retract_when_changing_layer) && m_writer.will_move_z(z)) { LiftType lift_type = this->to_lift_type(ZHopType(EXTRUDER_CONFIG(z_hop_types))); //BBS: force to use SpiralLift when change layer if lift type is auto gcode += this->retract(false, false, ZHopType(EXTRUDER_CONFIG(z_hop_types)) == ZHopType::zhtAuto ? LiftType::SpiralLift : lift_type); } m_writer.add_object_change_labels(gcode); if (m_spiral_vase) { //BBS: force to normal lift immediately in spiral vase mode std::ostringstream comment; comment << "move to next layer (" << m_layer_index << ")"; gcode += m_writer.travel_to_z(z, comment.str()); } else { //BBS: set m_need_change_layer_lift_z to be true so that z lift can be done in travel_to() function m_need_change_layer_lift_z = true; } m_nominal_z = z; // forget last wiping path as wiping after raising Z is pointless // BBS. Dont forget wiping path to reduce stringing. //m_wipe.reset_path(); return gcode; } static std::unique_ptr calculate_layer_edge_grid(const Layer& layer) { auto out = make_unique(); // Create the distance field for a layer below. const coord_t distance_field_resolution = coord_t(scale_(1.) + 0.5); out->create(layer.lslices, distance_field_resolution); out->calculate_sdf(); #if 0 { static int iRun = 0; BoundingBox bbox = (*lower_layer_edge_grid)->bbox(); bbox.min(0) -= scale_(5.f); bbox.min(1) -= scale_(5.f); bbox.max(0) += scale_(5.f); bbox.max(1) += scale_(5.f); EdgeGrid::save_png(*(*lower_layer_edge_grid), bbox, scale_(0.1f), debug_out_path("GCode_extrude_loop_edge_grid-%d.png", iRun++)); } #endif return out; } std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, double speed) { // get a copy; don't modify the orientation of the original loop object otherwise // next copies (if any) would not detect the correct orientation bool is_hole = (loop.loop_role() & elrHole) == elrHole; if (m_config.spiral_mode && !is_hole) { // if spiral vase, we have to ensure that all contour are in the same orientation. loop.make_counter_clockwise(); } // find the point of the loop that is closest to the current extruder position // or randomize if requested Point last_pos = this->last_pos(); if (!m_config.spiral_mode && description == "perimeter") { assert(m_layer != nullptr); bool is_outer_wall_first = m_config.wall_infill_order == WallInfillOrder::OuterInnerInfill || m_config.wall_infill_order == WallInfillOrder::InfillOuterInner || m_config.wall_infill_order == WallInfillOrder::InnerOuterInnerInfill; m_seam_placer.place_seam(m_layer, loop, is_outer_wall_first, this->last_pos()); } else loop.split_at(last_pos, false); // clip the path to avoid the extruder to get exactly on the first point of the loop; // if polyline was shorter than the clipping distance we'd get a null polyline, so // we discard it in that case double clip_length = m_enable_loop_clipping ? scale_(m_config.seam_gap.get_abs_value(EXTRUDER_CONFIG(nozzle_diameter))) : 0; // get paths ExtrusionPaths paths; loop.clip_end(clip_length, &paths); if (paths.empty()) return ""; // SoftFever: check loop lenght for small perimeter. double small_peri_speed = -1; if (speed == -1 && loop.length() <= SMALL_PERIMETER_LENGTH(m_config.small_perimeter_threshold.value)) small_peri_speed = m_config.small_perimeter_speed.get_abs_value(m_config.outer_wall_speed); // extrude along the path std::string gcode; bool is_small_peri = false; for (ExtrusionPaths::iterator path = paths.begin(); path != paths.end(); ++path) { // description += ExtrusionLoop::role_to_string(loop.loop_role()); // description += ExtrusionEntity::role_to_string(path->role); // don't apply small perimeter setting for overhangs/bridges/non-perimeters is_small_peri = is_perimeter(path->role()) && !is_bridge(path->role()) && small_peri_speed > 0 && (path->get_overhang_degree() == 0 || path->get_overhang_degree() > 5); gcode += this->_extrude(*path, description, is_small_peri ? small_peri_speed : speed); } // BBS if (m_wipe.enable) { m_wipe.path = Polyline(); for (ExtrusionPath &path : paths) { //BBS: Don't need to save duplicated point into wipe path if (!m_wipe.path.empty() && !path.empty() && m_wipe.path.last_point() == path.first_point()) m_wipe.path.append(path.polyline.points.begin() + 1, path.polyline.points.end()); else m_wipe.path.append(path.polyline); // TODO: don't limit wipe to last path } } // make a little move inwards before leaving loop if (m_config.wipe_on_loops.value && paths.back().role() == erExternalPerimeter && m_layer != NULL && m_config.wall_loops.value > 1 && paths.front().size() >= 2 && paths.back().polyline.points.size() >= 3) { // detect angle between last and first segment // the side depends on the original winding order of the polygon (inwards for contours, outwards for holes) //FIXME improve the algorithm in case the loop is tiny. //FIXME improve the algorithm in case the loop is split into segments with a low number of points (see the Point b query). Point a = paths.front().polyline.points[1]; // second point Point b = *(paths.back().polyline.points.end()-3); // second to last point if (is_hole == loop.is_counter_clockwise()) { // swap points Point c = a; a = b; b = c; } double angle = paths.front().first_point().ccw_angle(a, b) / 3; // turn inwards if contour, turn outwards if hole if (is_hole == loop.is_counter_clockwise()) angle *= -1; // create the destination point along the first segment and rotate it // we make sure we don't exceed the segment length because we don't know // the rotation of the second segment so we might cross the object boundary Vec2d p1 = paths.front().polyline.points.front().cast(); Vec2d p2 = paths.front().polyline.points[1].cast(); Vec2d v = p2 - p1; double nd = scale_(EXTRUDER_CONFIG(nozzle_diameter)); double l2 = v.squaredNorm(); // Shift by no more than a nozzle diameter. //FIXME Hiding the seams will not work nicely for very densely discretized contours! //BBS. shorten the travel distant before the wipe path double threshold = 0.2; Point pt = (p1 + v * threshold).cast(); if (nd * nd < l2) pt = (p1 + threshold * v * (nd / sqrt(l2))).cast(); //Point pt = ((nd * nd >= l2) ? (p1+v*0.4): (p1 + 0.2 * v * (nd / sqrt(l2)))).cast(); pt.rotate(angle, paths.front().polyline.points.front()); // generate the travel move gcode += m_writer.extrude_to_xy(this->point_to_gcode(pt), 0,"move inwards before travel",true); } return gcode; } std::string GCode::extrude_multi_path(ExtrusionMultiPath multipath, std::string description, double speed) { // extrude along the path std::string gcode; for (ExtrusionPath path : multipath.paths) gcode += this->_extrude(path, description, speed); // BBS if (m_wipe.enable) { m_wipe.path = Polyline(); for (ExtrusionPath &path : multipath.paths) { //BBS: Don't need to save duplicated point into wipe path if (!m_wipe.path.empty() && !path.empty() && m_wipe.path.last_point() == path.first_point()) m_wipe.path.append(path.polyline.points.begin() + 1, path.polyline.points.end()); else m_wipe.path.append(path.polyline); // TODO: don't limit wipe to last path } m_wipe.path.reverse(); } return gcode; } std::string GCode::extrude_entity(const ExtrusionEntity &entity, std::string description, double speed) { if (const ExtrusionPath* path = dynamic_cast(&entity)) return this->extrude_path(*path, description, speed); else if (const ExtrusionMultiPath* multipath = dynamic_cast(&entity)) return this->extrude_multi_path(*multipath, description, speed); else if (const ExtrusionLoop* loop = dynamic_cast(&entity)) return this->extrude_loop(*loop, description, speed); else throw Slic3r::InvalidArgument("Invalid argument supplied to extrude()"); return ""; } std::string GCode::extrude_path(ExtrusionPath path, std::string description, double speed) { // description += ExtrusionEntity::role_to_string(path.role()); std::string gcode = this->_extrude(path, description, speed); if (m_wipe.enable) { m_wipe.path = std::move(path.polyline); m_wipe.path.reverse(); } return gcode; } // Extrude perimeters: Decide where to put seams (hide or align seams). std::string GCode::extrude_perimeters(const Print &print, const std::vector &by_region) { std::string gcode; for (const ObjectByExtruder::Island::Region ®ion : by_region) if (! region.perimeters.empty()) { m_config.apply(print.get_print_region(®ion - &by_region.front()).config()); for (const ExtrusionEntity* ee : region.perimeters) gcode += this->extrude_entity(*ee, "perimeter", -1.); } return gcode; } // Chain the paths hierarchically by a greedy algorithm to minimize a travel distance. std::string GCode::extrude_infill(const Print &print, const std::vector &by_region, bool ironing) { std::string gcode; ExtrusionEntitiesPtr extrusions; const char* extrusion_name = ironing ? "ironing" : "infill"; for (const ObjectByExtruder::Island::Region ®ion : by_region) if (! region.infills.empty()) { extrusions.clear(); extrusions.reserve(region.infills.size()); for (ExtrusionEntity *ee : region.infills) if ((ee->role() == erIroning) == ironing) extrusions.emplace_back(ee); if (! extrusions.empty()) { m_config.apply(print.get_print_region(®ion - &by_region.front()).config()); chain_and_reorder_extrusion_entities(extrusions, &m_last_pos); for (const ExtrusionEntity *fill : extrusions) { auto *eec = dynamic_cast(fill); if (eec) { for (ExtrusionEntity *ee : eec->chained_path_from(m_last_pos).entities) gcode += this->extrude_entity(*ee, extrusion_name); } else gcode += this->extrude_entity(*fill, extrusion_name); } } } return gcode; } std::string GCode::extrude_support(const ExtrusionEntityCollection &support_fills) { static constexpr const char *support_label = "support material"; static constexpr const char *support_interface_label = "support material interface"; const char* support_transition_label = "support transition"; std::string gcode; if (! support_fills.entities.empty()) { const double support_speed = m_config.support_speed.value; const double support_interface_speed = m_config.get_abs_value("support_interface_speed"); for (const ExtrusionEntity *ee : support_fills.entities) { ExtrusionRole role = ee->role(); assert(role == erSupportMaterial || role == erSupportMaterialInterface || role == erSupportTransition); const char* label = (role == erSupportMaterial) ? support_label : ((role == erSupportMaterialInterface) ? support_interface_label : support_transition_label); // BBS //const double speed = (role == erSupportMaterial) ? support_speed : support_interface_speed; const double speed = -1.0; const ExtrusionPath* path = dynamic_cast(ee); const ExtrusionMultiPath* multipath = dynamic_cast(ee); const ExtrusionLoop* loop = dynamic_cast(ee); const ExtrusionEntityCollection* collection = dynamic_cast(ee); if (path) gcode += this->extrude_path(*path, label, speed); else if (multipath) { gcode += this->extrude_multi_path(*multipath, label, speed); } else if (loop) { gcode += this->extrude_loop(*loop, label, speed); } else if (collection) { gcode += extrude_support(*collection); } else { throw Slic3r::InvalidArgument("Unknown extrusion type"); } } } return gcode; } bool GCode::GCodeOutputStream::is_error() const { return ::ferror(this->f); } void GCode::GCodeOutputStream::flush() { ::fflush(this->f); } void GCode::GCodeOutputStream::close() { if (this->f) { ::fclose(this->f); this->f = nullptr; } } void GCode::GCodeOutputStream::write(const char *what) { if (what != nullptr) { const char* gcode = what; // writes string to file fwrite(gcode, 1, ::strlen(gcode), this->f); //FIXME don't allocate a string, maybe process a batch of lines? m_processor.process_buffer(std::string(gcode)); } } void GCode::GCodeOutputStream::writeln(const std::string &what) { if (! what.empty()) this->write(what.back() == '\n' ? what : what + '\n'); } void GCode::GCodeOutputStream::write_format(const char* format, ...) { va_list args; va_start(args, format); int buflen; { va_list args2; va_copy(args2, args); buflen = #ifdef _MSC_VER ::_vscprintf(format, args2) #else ::vsnprintf(nullptr, 0, format, args2) #endif + 1; va_end(args2); } char buffer[1024]; bool buffer_dynamic = buflen > 1024; char *bufptr = buffer_dynamic ? (char*)malloc(buflen) : buffer; int res = ::vsnprintf(bufptr, buflen, format, args); if (res > 0) this->write(bufptr); if (buffer_dynamic) free(bufptr); va_end(args); } static std::map overhang_speed_key_map = { {1, "overhang_1_4_speed"}, {2, "overhang_2_4_speed"}, {3, "overhang_3_4_speed"}, {4, "overhang_4_4_speed"}, {5, "bridge_speed"}, }; std::string GCode::_extrude(const ExtrusionPath &path, std::string description, double speed) { std::string gcode; if (is_bridge(path.role())) description += " (bridge)"; // go to first point of extrusion path //BBS: path.first_point is 2D point. But in lazy raise case, lift z is done in travel_to function. //Add m_need_change_layer_lift_z when change_layer in case of no lift if m_last_pos is equal to path.first_point() by chance if (!m_last_pos_defined || m_last_pos != path.first_point() || m_need_change_layer_lift_z) { gcode += this->travel_to( path.first_point(), path.role(), "move to first " + description + " point" ); m_need_change_layer_lift_z = false; } // if needed, write the gcode_label_objects_end then gcode_label_objects_start // should be already done by travel_to, but just in case m_writer.add_object_change_labels(gcode); // compensate retraction gcode += this->unretract(); m_config.apply(m_calib_config); // Orca: optimize for Klipper, set acceleration and jerk in one command unsigned int acceleration_i = 0; double jerk = 0; // adjust acceleration if (m_config.default_acceleration.value > 0) { double acceleration; if (this->on_first_layer() && m_config.initial_layer_acceleration.value > 0) { acceleration = m_config.initial_layer_acceleration.value; #if 0 } else if (this->object_layer_over_raft() && m_config.first_layer_acceleration_over_raft.value > 0) { acceleration = m_config.first_layer_acceleration_over_raft.value; #endif } else if (m_config.get_abs_value("bridge_acceleration") > 0 && is_bridge(path.role())) { acceleration = m_config.get_abs_value("bridge_acceleration"); } else if (m_config.get_abs_value("sparse_infill_acceleration") > 0 && (path.role() == erInternalInfill)) { acceleration = m_config.get_abs_value("sparse_infill_acceleration"); } else if (m_config.get_abs_value("internal_solid_infill_acceleration") > 0 && (path.role() == erSolidInfill)) { acceleration = m_config.get_abs_value("internal_solid_infill_acceleration"); } else if (m_config.outer_wall_acceleration.value > 0 && is_external_perimeter(path.role())) { acceleration = m_config.outer_wall_acceleration.value; } else if (m_config.inner_wall_acceleration.value > 0 && is_internal_perimeter(path.role())) { acceleration = m_config.inner_wall_acceleration.value; } else if (m_config.top_surface_acceleration.value > 0 && is_top_surface(path.role())) { acceleration = m_config.top_surface_acceleration.value; } else { acceleration = m_config.default_acceleration.value; } acceleration_i = (unsigned int)floor(acceleration + 0.5); } // adjust X Y jerk if (m_config.default_jerk.value > 0) { if (this->on_first_layer() && m_config.initial_layer_jerk.value > 0) { jerk = m_config.initial_layer_jerk.value; } else if (m_config.outer_wall_jerk.value > 0 && is_external_perimeter(path.role())) { jerk = m_config.outer_wall_jerk.value; } else if (m_config.inner_wall_jerk.value > 0 && is_internal_perimeter(path.role())) { jerk = m_config.inner_wall_jerk.value; } else if (m_config.top_surface_jerk.value > 0 && is_top_surface(path.role())) { jerk = m_config.top_surface_jerk.value; } else if (m_config.infill_jerk.value > 0 && is_infill(path.role())) { jerk = m_config.infill_jerk.value; } else { jerk = m_config.default_jerk.value; } } if (m_writer.get_gcode_flavor() == gcfKlipper) { gcode += m_writer.set_accel_and_jerk(acceleration_i, jerk); } else { gcode += m_writer.set_print_acceleration(acceleration_i); gcode += m_writer.set_jerk_xy(jerk); } // calculate extrusion length per distance unit auto _mm3_per_mm = path.mm3_per_mm * this->config().print_flow_ratio; if (path.role() == erTopSolidInfill) _mm3_per_mm *= m_config.top_solid_infill_flow_ratio; else if (path.role() == erBottomSurface) _mm3_per_mm *= m_config.bottom_solid_infill_flow_ratio; double e_per_mm = m_writer.extruder()->e_per_mm3() * _mm3_per_mm; double min_speed = double(m_config.slow_down_min_speed.get_at(m_writer.extruder()->id())); // set speed if (speed == -1) { int overhang_degree = path.get_overhang_degree(); if (path.role() == erPerimeter) { speed = m_config.get_abs_value("inner_wall_speed"); if (m_config.overhang_speed_classic.value && m_config.enable_overhang_speed.value && overhang_degree > 0 && overhang_degree <= 5) { double new_speed = m_config.get_abs_value(overhang_speed_key_map[overhang_degree].c_str()); speed = new_speed == 0.0 ? speed : new_speed; } } else if (path.role() == erExternalPerimeter) { speed = m_config.get_abs_value("outer_wall_speed"); if (m_config.overhang_speed_classic.value && m_config.enable_overhang_speed.value && overhang_degree > 0 && overhang_degree <= 5) { double new_speed = m_config.get_abs_value(overhang_speed_key_map[overhang_degree].c_str()); speed = new_speed == 0.0 ? speed : new_speed; } } else if(path.role() == erInternalBridgeInfill) { speed = m_config.get_abs_value("internal_bridge_speed"); } else if (path.role() == erOverhangPerimeter || path.role() == erSupportTransition || path.role() == erBridgeInfill) { speed = m_config.get_abs_value("bridge_speed"); } else if (path.role() == erInternalInfill) { speed = m_config.get_abs_value("sparse_infill_speed"); } else if (path.role() == erSolidInfill) { speed = m_config.get_abs_value("internal_solid_infill_speed"); } else if (path.role() == erTopSolidInfill) { speed = m_config.get_abs_value("top_surface_speed"); } else if (path.role() == erIroning) { speed = m_config.get_abs_value("ironing_speed"); } else if (path.role() == erBottomSurface) { speed = m_config.get_abs_value("initial_layer_infill_speed"); } else if (path.role() == erGapFill) { speed = m_config.get_abs_value("gap_infill_speed"); } else if (path.role() == erSupportMaterial || path.role() == erSupportMaterialInterface) { const double support_speed = m_config.support_speed.value; const double support_interface_speed = m_config.get_abs_value("support_interface_speed"); speed = (path.role() == erSupportMaterial) ? support_speed : support_interface_speed; } else { throw Slic3r::InvalidArgument("Invalid speed"); } } //BBS: if not set the speed, then use the filament_max_volumetric_speed directly if (speed == 0) speed = EXTRUDER_CONFIG(filament_max_volumetric_speed) / _mm3_per_mm; if (this->on_first_layer()) { //BBS: for solid infill of initial layer, speed can be higher as long as //wall lines have be attached if (path.role() != erBottomSurface) speed = m_config.get_abs_value("initial_layer_speed"); } else if(m_config.slow_down_layers > 1){ const auto _layer = layer_id() + 1; if (_layer > 0 && _layer < m_config.slow_down_layers) { const auto first_layer_speed = is_perimeter(path.role()) ? m_config.get_abs_value("initial_layer_speed") : m_config.get_abs_value("initial_layer_infill_speed"); if (first_layer_speed < speed) { speed = std::min( speed, Slic3r::lerp(first_layer_speed, speed, (double)_layer / m_config.slow_down_layers)); } } } // Override skirt speed if set if (path.role() == erSkirt) { const double skirt_speed = m_config.get_abs_value("skirt_speed"); if (skirt_speed > 0.0) speed = skirt_speed; } //BBS: remove this config //else if (this->object_layer_over_raft()) // speed = m_config.get_abs_value("first_layer_speed_over_raft", speed); //if (m_config.max_volumetric_speed.value > 0) { // // cap speed with max_volumetric_speed anyway (even if user is not using autospeed) // speed = std::min( // speed, // m_config.max_volumetric_speed.value / _mm3_per_mm // ); //} if (EXTRUDER_CONFIG(filament_max_volumetric_speed) > 0) { // cap speed with max_volumetric_speed anyway (even if user is not using autospeed) speed = std::min( speed, EXTRUDER_CONFIG(filament_max_volumetric_speed) / _mm3_per_mm ); } bool variable_speed = false; std::vector new_points {}; if (m_config.enable_overhang_speed && !m_config.overhang_speed_classic && !this->on_first_layer() && (is_bridge(path.role()) || is_perimeter(path.role()))) { double out_wall_ref_speed = m_config.get_abs_value("outer_wall_speed"); ConfigOptionPercents overhang_overlap_levels({75, 50, 25, 13, 12.99, 0}); if (m_config.slowdown_for_curled_perimeters){ ConfigOptionFloatsOrPercents dynamic_overhang_speeds( {(m_config.get_abs_value("overhang_1_4_speed") < 0.5) ? FloatOrPercent{100, true} : FloatOrPercent{m_config.get_abs_value("overhang_1_4_speed") * 100 / out_wall_ref_speed, true}, (m_config.get_abs_value("overhang_2_4_speed") < 0.5) ? FloatOrPercent{100, true} : FloatOrPercent{m_config.get_abs_value("overhang_2_4_speed") * 100 / out_wall_ref_speed, true}, (m_config.get_abs_value("overhang_3_4_speed") < 0.5) ? FloatOrPercent{100, true} : FloatOrPercent{m_config.get_abs_value("overhang_3_4_speed") * 100 / out_wall_ref_speed, true}, (m_config.get_abs_value("overhang_4_4_speed") < 0.5) ? FloatOrPercent{100, true} : FloatOrPercent{m_config.get_abs_value("overhang_4_4_speed") * 100 / out_wall_ref_speed, true}, (m_config.get_abs_value("overhang_4_4_speed") < 0.5) ? FloatOrPercent{100, true} : FloatOrPercent{m_config.get_abs_value("overhang_4_4_speed") * 100 / out_wall_ref_speed, true}, (m_config.get_abs_value("overhang_4_4_speed") < 0.5) ? FloatOrPercent{100, true} : FloatOrPercent{m_config.get_abs_value("overhang_4_4_speed") * 100 / out_wall_ref_speed, true}}); if (out_wall_ref_speed == 0) out_wall_ref_speed = EXTRUDER_CONFIG(filament_max_volumetric_speed) / _mm3_per_mm; if (EXTRUDER_CONFIG(filament_max_volumetric_speed) > 0) { out_wall_ref_speed = std::min(out_wall_ref_speed, EXTRUDER_CONFIG(filament_max_volumetric_speed) / path.mm3_per_mm); } new_points = m_extrusion_quality_estimator.estimate_extrusion_quality(path, overhang_overlap_levels, dynamic_overhang_speeds, out_wall_ref_speed, speed, m_config.slowdown_for_curled_perimeters); }else{ ConfigOptionFloatsOrPercents dynamic_overhang_speeds( {(m_config.get_abs_value("overhang_1_4_speed") < 0.5) ? FloatOrPercent{100, true} : FloatOrPercent{m_config.get_abs_value("overhang_1_4_speed") * 100 / out_wall_ref_speed, true}, (m_config.get_abs_value("overhang_2_4_speed") < 0.5) ? FloatOrPercent{100, true} : FloatOrPercent{m_config.get_abs_value("overhang_2_4_speed") * 100 / out_wall_ref_speed, true}, (m_config.get_abs_value("overhang_3_4_speed") < 0.5) ? FloatOrPercent{100, true} : FloatOrPercent{m_config.get_abs_value("overhang_3_4_speed") * 100 / out_wall_ref_speed, true}, (m_config.get_abs_value("overhang_4_4_speed") < 0.5) ? FloatOrPercent{100, true} : FloatOrPercent{m_config.get_abs_value("overhang_4_4_speed") * 100 / out_wall_ref_speed, true}, FloatOrPercent{m_config.get_abs_value("bridge_speed") * 100 / out_wall_ref_speed, true}, FloatOrPercent{m_config.get_abs_value("bridge_speed") * 100 / out_wall_ref_speed, true}}); if (out_wall_ref_speed == 0) out_wall_ref_speed = EXTRUDER_CONFIG(filament_max_volumetric_speed) / _mm3_per_mm; if (EXTRUDER_CONFIG(filament_max_volumetric_speed) > 0) { out_wall_ref_speed = std::min(out_wall_ref_speed, EXTRUDER_CONFIG(filament_max_volumetric_speed) / path.mm3_per_mm); } new_points = m_extrusion_quality_estimator.estimate_extrusion_quality(path, overhang_overlap_levels, dynamic_overhang_speeds, out_wall_ref_speed, speed, m_config.slowdown_for_curled_perimeters); } variable_speed = std::any_of(new_points.begin(), new_points.end(), [speed](const ProcessedPoint &p) { return p.speed != speed; }); } double F = speed * 60; // convert mm/sec to mm/min // extrude arc or line if (m_enable_extrusion_role_markers) { if (path.role() != m_last_extrusion_role) { char buf[32]; sprintf(buf, ";_EXTRUSION_ROLE:%d\n", int(path.role())); gcode += buf; } } m_last_extrusion_role = path.role(); // adds processor tags and updates processor tracking data // PrusaMultiMaterial::Writer may generate GCodeProcessor::Height_Tag lines without updating m_last_height // so, if the last role was erWipeTower we force export of GCodeProcessor::Height_Tag lines bool last_was_wipe_tower = (m_last_processor_extrusion_role == erWipeTower); char buf[64]; assert(is_decimal_separator_point()); if (path.role() != m_last_processor_extrusion_role) { m_last_processor_extrusion_role = path.role(); sprintf(buf, ";%s%s\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Role).c_str(), ExtrusionEntity::role_to_string(m_last_processor_extrusion_role).c_str()); gcode += buf; } if (last_was_wipe_tower || m_last_width != path.width) { m_last_width = path.width; sprintf(buf, ";%s%g\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Width).c_str(), m_last_width); gcode += buf; } #if ENABLE_GCODE_VIEWER_DATA_CHECKING if (last_was_wipe_tower || (m_last_mm3_per_mm != path.mm3_per_mm)) { m_last_mm3_per_mm = path.mm3_per_mm; sprintf(buf, ";%s%f\n", GCodeProcessor::Mm3_Per_Mm_Tag.c_str(), m_last_mm3_per_mm); gcode += buf; } #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING if (last_was_wipe_tower || std::abs(m_last_height - path.height) > EPSILON) { m_last_height = path.height; sprintf(buf, ";%s%g\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height).c_str(), m_last_height); gcode += buf; } auto overhang_fan_threshold = EXTRUDER_CONFIG(overhang_fan_threshold); auto enable_overhang_bridge_fan = EXTRUDER_CONFIG(enable_overhang_bridge_fan); auto supp_interface_fan_speed = EXTRUDER_CONFIG(support_material_interface_fan_speed); // { "0%", Overhang_threshold_none }, // { "10%", Overhang_threshold_1_4 }, // { "25%", Overhang_threshold_2_4 }, // { "50%", Overhang_threshold_3_4 }, // { "75%", Overhang_threshold_4_4 }, // { "95%", Overhang_threshold_bridge } auto check_overhang_fan = [&overhang_fan_threshold](float overlap, ExtrusionRole role) { if (is_bridge(role)) { return true; } switch (overhang_fan_threshold) { case (int)Overhang_threshold_1_4: return overlap <= 0.9f; break; case (int)Overhang_threshold_2_4: return overlap <= 0.75f; break; case (int)Overhang_threshold_3_4: return overlap <= 0.5f; break; case (int)Overhang_threshold_4_4: return overlap <= 0.25f; break; case (int)Overhang_threshold_bridge: return overlap <= 0.05f; break; case (int)Overhang_threshold_none: return is_external_perimeter(role); break; default: return false; } }; std::string comment; if (m_enable_cooling_markers) { comment = ";_EXTRUDE_SET_SPEED"; if (is_external_perimeter(path.role())) comment += ";_EXTERNAL_PERIMETER"; } if (!variable_speed) { // F is mm per minute. gcode += m_writer.set_speed(F, "", comment); double path_length = 0.; { if (m_enable_cooling_markers) { if (enable_overhang_bridge_fan) { // BBS: Overhang_threshold_none means Overhang_threshold_1_4 and forcing cooling for all external // perimeter int overhang_threshold = overhang_fan_threshold == Overhang_threshold_none ? Overhang_threshold_none : overhang_fan_threshold - 1; if ((overhang_fan_threshold == Overhang_threshold_none && is_external_perimeter(path.role())) || (path.get_overhang_degree() > overhang_threshold || is_bridge(path.role()))) { if (!m_is_overhang_fan_on) { gcode += ";_OVERHANG_FAN_START\n"; m_is_overhang_fan_on = true; } } else { if (m_is_overhang_fan_on) { m_is_overhang_fan_on = false; gcode += ";_OVERHANG_FAN_END\n"; } } } if (supp_interface_fan_speed >= 0 && path.role() == erSupportMaterialInterface) { if (!m_is_supp_interface_fan_on) { gcode += ";_SUPP_INTERFACE_FAN_START\n"; m_is_supp_interface_fan_on = true; } } else { if (m_is_supp_interface_fan_on) { gcode += ";_SUPP_INTERFACE_FAN_END\n"; m_is_supp_interface_fan_on = false; } } } // BBS: use G1 if not enable arc fitting or has no arc fitting result or in spiral_mode mode // Attention: G2 and G3 is not supported in spiral_mode mode if (!m_config.enable_arc_fitting || path.polyline.fitting_result.empty() || m_config.spiral_mode) { for (const Line& line : path.polyline.lines()) { const double line_length = line.length() * SCALING_FACTOR; path_length += line_length; gcode += m_writer.extrude_to_xy( this->point_to_gcode(line.b), e_per_mm * line_length, GCodeWriter::full_gcode_comment ? description : "", path.is_force_no_extrusion()); } } else { // BBS: start to generate gcode from arc fitting data which includes line and arc const std::vector& fitting_result = path.polyline.fitting_result; for (size_t fitting_index = 0; fitting_index < fitting_result.size(); fitting_index++) { switch (fitting_result[fitting_index].path_type) { case EMovePathType::Linear_move: { size_t start_index = fitting_result[fitting_index].start_point_index; size_t end_index = fitting_result[fitting_index].end_point_index; for (size_t point_index = start_index + 1; point_index < end_index + 1; point_index++) { const Line line = Line(path.polyline.points[point_index - 1], path.polyline.points[point_index]); const double line_length = line.length() * SCALING_FACTOR; path_length += line_length; gcode += m_writer.extrude_to_xy( this->point_to_gcode(line.b), e_per_mm * line_length, GCodeWriter::full_gcode_comment ? description : "", path.is_force_no_extrusion()); } break; } case EMovePathType::Arc_move_cw: case EMovePathType::Arc_move_ccw: { const ArcSegment& arc = fitting_result[fitting_index].arc_data; const double arc_length = fitting_result[fitting_index].arc_data.length * SCALING_FACTOR; const Vec2d center_offset = this->point_to_gcode(arc.center) - this->point_to_gcode(arc.start_point); path_length += arc_length; gcode += m_writer.extrude_arc_to_xy( this->point_to_gcode(arc.end_point), center_offset, e_per_mm * arc_length, arc.direction == ArcDirection::Arc_Dir_CCW, GCodeWriter::full_gcode_comment ? description : "", path.is_force_no_extrusion()); break; } default: // BBS: should never happen that a empty path_type has been stored assert(0); break; } } } } } else { double last_set_speed = std::max((float)EXTRUDER_CONFIG(slow_down_min_speed), new_points[0].speed) * 60.0; gcode += m_writer.set_speed(last_set_speed, "", comment); Vec2d prev = this->point_to_gcode_quantized(new_points[0].p); bool pre_fan_enabled = false; bool cur_fan_enabled = false; if( m_enable_cooling_markers && enable_overhang_bridge_fan) pre_fan_enabled = check_overhang_fan(new_points[0].overlap, path.role()); for (size_t i = 1; i < new_points.size(); i++) { const ProcessedPoint &processed_point = new_points[i]; const ProcessedPoint &pre_processed_point = new_points[i-1]; Vec2d p = this->point_to_gcode_quantized(processed_point.p); if (m_enable_cooling_markers) { if (enable_overhang_bridge_fan) { cur_fan_enabled = check_overhang_fan(processed_point.overlap, path.role()); if (pre_fan_enabled && cur_fan_enabled) { if (!m_is_overhang_fan_on) { gcode += ";_OVERHANG_FAN_START\n"; m_is_overhang_fan_on = true; } } else { if (m_is_overhang_fan_on) { m_is_overhang_fan_on = false; gcode += ";_OVERHANG_FAN_END\n"; } } pre_fan_enabled = cur_fan_enabled; } if (supp_interface_fan_speed >= 0 && path.role() == erSupportMaterialInterface) { if (!m_is_supp_interface_fan_on) { gcode += ";_SUPP_INTERFACE_FAN_START\n"; m_is_supp_interface_fan_on = true; } } else { if (m_is_supp_interface_fan_on) { gcode += ";_SUPP_INTERFACE_FAN_END\n"; m_is_supp_interface_fan_on = false; } } } const double line_length = (p - prev).norm(); double new_speed = std::max((float)EXTRUDER_CONFIG(slow_down_min_speed), pre_processed_point.speed) * 60.0; if (last_set_speed != new_speed) { gcode += m_writer.set_speed(new_speed, "", comment); last_set_speed = new_speed; } gcode += m_writer.extrude_to_xy(p, e_per_mm * line_length, GCodeWriter::full_gcode_comment ? description : ""); prev = p; } } if (m_enable_cooling_markers) { gcode += ";_EXTRUDE_END\n"; } if (path.role() != ExtrusionRole::erGapFill) { m_last_notgapfill_extrusion_role = path.role(); } this->set_last_pos(path.last_point()); return gcode; } std::string encodeBase64(uint64_t value) { //Always use big endian mode uint8_t src[8]; for (size_t i = 0; i < 8; i++) src[i] = (value >> (8 * i)) & 0xff; std::string dest; dest.resize(boost::beast::detail::base64::encoded_size(sizeof(src))); dest.resize(boost::beast::detail::base64::encode(&dest[0], src, sizeof(src))); return dest; } std::string GCode::_encode_label_ids_to_base64(std::vector ids) { assert(m_label_objects_ids.size() < 64); uint64_t bitset = 0; for (size_t id : ids) { auto index = std::lower_bound(m_label_objects_ids.begin(), m_label_objects_ids.end(), id); if (index != m_label_objects_ids.end() && *index == id) bitset |= (1ull << (index - m_label_objects_ids.begin())); else throw Slic3r::LogicError("Unknown label object id!"); } if (bitset == 0) throw Slic3r::LogicError("Label object id error!"); return encodeBase64(bitset); } // This method accepts &point in print coordinates. std::string GCode::travel_to(const Point &point, ExtrusionRole role, std::string comment) { /* Define the travel move as a line between current position and the taget point. This is expressed in print coordinates, so it will need to be translated by this->origin in order to get G-code coordinates. */ Polyline travel { this->last_pos(), point }; // check whether a straight travel move would need retraction LiftType lift_type = LiftType::SpiralLift; bool needs_retraction = this->needs_retraction(travel, role, lift_type); // check whether wipe could be disabled without causing visible stringing bool could_be_wipe_disabled = false; // Save state of use_external_mp_once for the case that will be needed to call twice m_avoid_crossing_perimeters.travel_to. const bool used_external_mp_once = m_avoid_crossing_perimeters.used_external_mp_once(); std::string gcode; // Orca: we don't need to optimize the Klipper as only set once double jerk_to_set = 0.0; unsigned int acceleration_to_set = 0; if (this->on_first_layer()) { if (m_config.default_acceleration.value > 0 && m_config.initial_layer_acceleration.value > 0) { acceleration_to_set = (unsigned int) floor(m_config.initial_layer_acceleration.value + 0.5); } if (m_config.default_jerk.value > 0 && m_config.initial_layer_jerk.value > 0) { jerk_to_set = m_config.initial_layer_jerk.value; } } else { if (m_config.default_acceleration.value > 0 && m_config.travel_acceleration.value > 0) { acceleration_to_set = (unsigned int) floor(m_config.travel_acceleration.value + 0.5); } if (m_config.default_jerk.value > 0 && m_config.travel_jerk.value > 0) { jerk_to_set = m_config.travel_jerk.value; } } if (m_writer.get_gcode_flavor() == gcfKlipper) { gcode += m_writer.set_accel_and_jerk(acceleration_to_set, jerk_to_set); } else { gcode += m_writer.set_travel_acceleration(acceleration_to_set); gcode += m_writer.set_jerk_xy(jerk_to_set); } // if a retraction would be needed, try to use reduce_crossing_wall to plan a // multi-hop travel path inside the configuration space if (needs_retraction && m_config.reduce_crossing_wall && ! m_avoid_crossing_perimeters.disabled_once() //BBS: don't generate detour travel paths when current position is unclear && m_writer.is_current_position_clear()) { travel = m_avoid_crossing_perimeters.travel_to(*this, point, &could_be_wipe_disabled); // check again whether the new travel path still needs a retraction needs_retraction = this->needs_retraction(travel, role, lift_type); //if (needs_retraction && m_layer_index > 1) exit(0); } // Re-allow reduce_crossing_wall for the next travel moves m_avoid_crossing_perimeters.reset_once_modifiers(); // generate G-code for the travel move if (needs_retraction) { if (m_config.reduce_crossing_wall && could_be_wipe_disabled) m_wipe.reset_path(); Point last_post_before_retract = this->last_pos(); gcode += this->retract(false, false, lift_type); // When "Wipe while retracting" is enabled, then extruder moves to another position, and travel from this position can cross perimeters. // Because of it, it is necessary to call avoid crossing perimeters again with new starting point after calling retraction() // FIXME Lukas H.: Try to predict if this second calling of avoid crossing perimeters will be needed or not. It could save computations. if (last_post_before_retract != this->last_pos() && m_config.reduce_crossing_wall) { // If in the previous call of m_avoid_crossing_perimeters.travel_to was use_external_mp_once set to true restore this value for next call. if (used_external_mp_once) m_avoid_crossing_perimeters.use_external_mp_once(); travel = m_avoid_crossing_perimeters.travel_to(*this, point); // If state of use_external_mp_once was changed reset it to right value. if (used_external_mp_once) m_avoid_crossing_perimeters.reset_once_modifiers(); } } else // Reset the wipe path when traveling, so one would not wipe along an old path. m_wipe.reset_path(); // if needed, write the gcode_label_objects_end then gcode_label_objects_start m_writer.add_object_change_labels(gcode); // use G1 because we rely on paths being straight (G0 may make round paths) if (travel.size() >= 2) { for (size_t i = 1; i < travel.size(); ++ i) { // BBS. Process lazy layer change, but don't do lazy layer change when enable spiral vase Vec3d curr_pos = m_writer.get_position(); if (i == 1 && !m_spiral_vase) { Vec2d dest2d = this->point_to_gcode(travel.points[i]); Vec3d dest3d(dest2d(0), dest2d(1), m_nominal_z); gcode += m_writer.travel_to_xyz(dest3d, comment+" travel_to_xyz"); } else { gcode += m_writer.travel_to_xy(this->point_to_gcode(travel.points[i]), comment+" travel_to_xy"); } } this->set_last_pos(travel.points.back()); } return gcode; } //BBS LiftType GCode::to_lift_type(ZHopType z_hop_types) { switch (z_hop_types) { case ZHopType::zhtNormal: return LiftType::NormalLift; case ZHopType::zhtSlope: return LiftType::LazyLift; case ZHopType::zhtSpiral: return LiftType::SpiralLift; default: // if no corresponding lift type, use normal lift return LiftType::NormalLift; } }; bool GCode::needs_retraction(const Polyline &travel, ExtrusionRole role, LiftType& lift_type) { if (travel.length() < scale_(EXTRUDER_CONFIG(retraction_minimum_travel))) { // skip retraction if the move is shorter than the configured threshold return false; } //BBS: input travel polyline must be in current plate coordinate system auto is_through_overhang = [this](const Polyline& travel) { BoundingBox travel_bbox = get_extents(travel); travel_bbox.inflated(1); travel_bbox.defined = true; const float protect_z_scaled = scale_(0.4); std::pair z_range; z_range.second = m_layer ? m_layer->print_z : 0.f; z_range.first = std::max(0.f, z_range.second - protect_z_scaled); std::vector layers_of_objects; std::vector boundingBox_for_objects; std::vector objects_instances_shift; std::vector idx_of_object_sorted = m_curr_print->layers_sorted_for_object(z_range.first, z_range.second, layers_of_objects, boundingBox_for_objects, objects_instances_shift); std::vector is_layers_of_objects_sorted(layers_of_objects.size(), false); for (size_t idx : idx_of_object_sorted) { for (const Point & instance_shift : objects_instances_shift[idx]) { BoundingBox instance_bbox = boundingBox_for_objects[idx]; if (!instance_bbox.defined) //BBS: Don't need to check when bounding box of overhang area is empty(undefined) continue; instance_bbox.offset(scale_(EPSILON)); instance_bbox.translate(instance_shift.x(), instance_shift.y()); if (!instance_bbox.overlap(travel_bbox)) continue; Polygons temp; temp.emplace_back(std::move(instance_bbox.polygon())); if (intersection_pl(travel, temp).empty()) continue; if (!is_layers_of_objects_sorted[idx]) { std::sort(layers_of_objects[idx].begin(), layers_of_objects[idx].end(), [](auto left, auto right) { return left->loverhangs_bbox.area() > right->loverhangs_bbox.area();}); is_layers_of_objects_sorted[idx] = true; } for (const auto& layer : layers_of_objects[idx]) { for (ExPolygon overhang : layer->loverhangs) { overhang.translate(instance_shift); BoundingBox bbox1 = get_extents(overhang); if (!bbox1.overlap(travel_bbox)) continue; if (intersection_pl(travel, overhang).empty()) continue; return true; } } } } return false; }; float max_z_hop = 0.f; for (int i = 0; i < m_config.z_hop.size(); i++) max_z_hop = std::max(max_z_hop, (float)m_config.z_hop.get_at(i)); float travel_len_thresh = max_z_hop / tan(GCodeWriter::slope_threshold); float accum_len = 0.f; Polyline clipped_travel; clipped_travel.append(Polyline(travel.points[0], travel.points[1])); if (clipped_travel.length() > travel_len_thresh) clipped_travel.points.back() = clipped_travel.points.front()+(clipped_travel.points.back() - clipped_travel.points.front()) * (travel_len_thresh / clipped_travel.length()); //BBS: translate to current plate coordinate system clipped_travel.translate(Point::new_scale(double(m_origin.x() - m_writer.get_xy_offset().x()), double(m_origin.y() - m_writer.get_xy_offset().y()))); //BBS: force to retract when leave from external perimeter for a long travel //Better way is judging whether the travel move direction is same with last extrusion move. if (is_perimeter(m_last_processor_extrusion_role) && m_last_processor_extrusion_role != erPerimeter) { if (ZHopType(EXTRUDER_CONFIG(z_hop_types)) == ZHopType::zhtAuto) { lift_type = is_through_overhang(clipped_travel) ? LiftType::SpiralLift : LiftType::LazyLift; } else { lift_type = to_lift_type(ZHopType(EXTRUDER_CONFIG(z_hop_types))); } return true; } if (role == erSupportMaterial || role == erSupportTransition) { const SupportLayer* support_layer = dynamic_cast(m_layer); //FIXME support_layer->support_islands.contains should use some search structure! if (support_layer != NULL) // skip retraction if this is a travel move inside a support material island //FIXME not retracting over a long path may cause oozing, which in turn may result in missing material // at the end of the extrusion path! for (const ExPolygon& support_island : support_layer->support_islands) if (support_island.contains(travel)) return false; //reduce the retractions in lightning infills for tree support if (support_layer != NULL && support_layer->support_type==stInnerTree) for (auto &area : support_layer->base_areas) if (area.contains(travel)) return false; } //BBS: need retract when long moving to print perimeter to avoid dropping of material if (!is_perimeter(role) && m_config.reduce_infill_retraction && m_layer != nullptr && m_config.sparse_infill_density.value > 0 && m_retract_when_crossing_perimeters.travel_inside_internal_regions(*m_layer, travel)) // Skip retraction if travel is contained in an internal slice *and* // internal infill is enabled (so that stringing is entirely not visible). //FIXME any_internal_region_slice_contains() is potentionally very slow, it shall test for the bounding boxes first. return false; // retract if reduce_infill_retraction is disabled or doesn't apply when role is perimeter if (ZHopType(EXTRUDER_CONFIG(z_hop_types)) == ZHopType::zhtAuto) { lift_type = is_through_overhang(clipped_travel) ? LiftType::SpiralLift : LiftType::LazyLift; } else { lift_type = to_lift_type(ZHopType(EXTRUDER_CONFIG(z_hop_types))); } return true; } std::string GCode::retract(bool toolchange, bool is_last_retraction, LiftType lift_type) { std::string gcode; if (m_writer.extruder() == nullptr) return gcode; // wipe (if it's enabled for this extruder and we have a stored wipe path and no-zero wipe distance) if (EXTRUDER_CONFIG(wipe) && m_wipe.has_path() && scale_(EXTRUDER_CONFIG(wipe_distance)) > SCALED_EPSILON) { gcode += toolchange ? m_writer.retract_for_toolchange(true) : m_writer.retract(true); gcode += m_wipe.wipe(*this, toolchange, is_last_retraction); } /* The parent class will decide whether we need to perform an actual retraction (the extruder might be already retracted fully or partially). We call these methods even if we performed wipe, since this will ensure the entire retraction length is honored in case wipe path was too short. */ gcode += toolchange ? m_writer.retract_for_toolchange() : m_writer.retract(); gcode += m_writer.reset_e(); // check if should + can lift (roughly from SuperSlicer) RetractLiftEnforceType retract_lift_type = RetractLiftEnforceType(EXTRUDER_CONFIG(retract_lift_enforce)); bool needs_lift = toolchange || m_writer.extruder()->retraction_length() > 0 || m_config.use_firmware_retraction; bool last_fill_extrusion_role_top_infill = (this->m_last_notgapfill_extrusion_role == ExtrusionRole::erTopSolidInfill || this->m_last_notgapfill_extrusion_role == ExtrusionRole::erIroning); // assume we can lift on retraction; conditions left explicit bool can_lift = true; if (retract_lift_type == RetractLiftEnforceType::rletAllSurfaces) { can_lift = true; } else if (this->m_layer_index == 0 && (retract_lift_type == RetractLiftEnforceType::rletBottomOnly || retract_lift_type == RetractLiftEnforceType::rletTopAndBottom)) { can_lift = true; } else if (retract_lift_type == RetractLiftEnforceType::rletTopOnly || retract_lift_type == RetractLiftEnforceType::rletTopAndBottom) { can_lift = last_fill_extrusion_role_top_infill; } else { can_lift = false; } if (needs_lift && can_lift) { size_t extruder_id = m_writer.extruder()->id(); gcode += m_writer.lift(!m_spiral_vase ? lift_type : LiftType::NormalLift); } return gcode; } std::string GCode::set_extruder(unsigned int extruder_id, double print_z) { if (!m_writer.need_toolchange(extruder_id)) return ""; // if we are running a single-extruder setup, just set the extruder and return nothing if (!m_writer.multiple_extruders) { this->placeholder_parser().set("current_extruder", extruder_id); std::string gcode; // Append the filament start G-code. const std::string &filament_start_gcode = m_config.filament_start_gcode.get_at(extruder_id); if (! filament_start_gcode.empty()) { // Process the filament_start_gcode for the filament. gcode += this->placeholder_parser_process("filament_start_gcode", filament_start_gcode, extruder_id); check_add_eol(gcode); } if (m_config.enable_pressure_advance.get_at(extruder_id)) { gcode += m_writer.set_pressure_advance(m_config.pressure_advance.get_at(extruder_id)); } gcode += m_writer.toolchange(extruder_id); return gcode; } // BBS. Should be placed before retract. m_toolchange_count++; // prepend retraction on the current extruder std::string gcode = this->retract(true, false); // Always reset the extrusion path, even if the tool change retract is set to zero. m_wipe.reset_path(); if (m_writer.extruder() != nullptr) { // Process the custom filament_end_gcode. set_extruder() is only called if there is no wipe tower // so it should not be injected twice. unsigned int old_extruder_id = m_writer.extruder()->id(); const std::string &filament_end_gcode = m_config.filament_end_gcode.get_at(old_extruder_id); if (! filament_end_gcode.empty()) { gcode += placeholder_parser_process("filament_end_gcode", filament_end_gcode, old_extruder_id); check_add_eol(gcode); } } // If ooze prevention is enabled, park current extruder in the nearest // standby point and set it to the standby temperature. if (m_ooze_prevention.enable && m_writer.extruder() != nullptr) gcode += m_ooze_prevention.pre_toolchange(*this); // BBS float new_retract_length = m_config.retraction_length.get_at(extruder_id); float new_retract_length_toolchange = m_config.retract_length_toolchange.get_at(extruder_id); int new_filament_temp = this->on_first_layer() ? m_config.nozzle_temperature_initial_layer.get_at(extruder_id): m_config.nozzle_temperature.get_at(extruder_id); // BBS: if print_z == 0 use first layer temperature if (abs(print_z) < EPSILON) new_filament_temp = m_config.nozzle_temperature_initial_layer.get_at(extruder_id); Vec3d nozzle_pos = m_writer.get_position(); float old_retract_length, old_retract_length_toolchange, wipe_volume; int old_filament_temp, old_filament_e_feedrate; float filament_area = float((M_PI / 4.f) * pow(m_config.filament_diameter.get_at(extruder_id), 2)); //BBS: add handling for filament change in start gcode int previous_extruder_id = -1; if (m_writer.extruder() != nullptr || m_start_gcode_filament != -1) { std::vector flush_matrix(cast(m_config.flush_volumes_matrix.values)); const unsigned int number_of_extruders = (unsigned int)(sqrt(flush_matrix.size()) + EPSILON); if (m_writer.extruder() != nullptr) assert(m_writer.extruder()->id() < number_of_extruders); else assert(m_start_gcode_filament < number_of_extruders); previous_extruder_id = m_writer.extruder() != nullptr ? m_writer.extruder()->id() : m_start_gcode_filament; old_retract_length = m_config.retraction_length.get_at(previous_extruder_id); old_retract_length_toolchange = m_config.retract_length_toolchange.get_at(previous_extruder_id); old_filament_temp = this->on_first_layer()? m_config.nozzle_temperature_initial_layer.get_at(previous_extruder_id) : m_config.nozzle_temperature.get_at(previous_extruder_id); wipe_volume = flush_matrix[previous_extruder_id * number_of_extruders + extruder_id]; wipe_volume *= m_config.flush_multiplier; old_filament_e_feedrate = (int)(60.0 * m_config.filament_max_volumetric_speed.get_at(previous_extruder_id) / filament_area); old_filament_e_feedrate = old_filament_e_feedrate == 0 ? 100 : old_filament_e_feedrate; //BBS: must clean m_start_gcode_filament m_start_gcode_filament = -1; } else { old_retract_length = 0.f; old_retract_length_toolchange = 0.f; old_filament_temp = 0; wipe_volume = 0.f; old_filament_e_feedrate = 200; } float wipe_length = wipe_volume / filament_area; int new_filament_e_feedrate = (int)(60.0 * m_config.filament_max_volumetric_speed.get_at(extruder_id) / filament_area); new_filament_e_feedrate = new_filament_e_feedrate == 0 ? 100 : new_filament_e_feedrate; DynamicConfig dyn_config; dyn_config.set_key_value("previous_extruder", new ConfigOptionInt(previous_extruder_id)); dyn_config.set_key_value("next_extruder", new ConfigOptionInt((int)extruder_id)); dyn_config.set_key_value("layer_num", new ConfigOptionInt(m_layer_index)); dyn_config.set_key_value("layer_z", new ConfigOptionFloat(print_z)); dyn_config.set_key_value("max_layer_z", new ConfigOptionFloat(m_max_layer_z)); dyn_config.set_key_value("relative_e_axis", new ConfigOptionBool(m_config.use_relative_e_distances)); dyn_config.set_key_value("toolchange_count", new ConfigOptionInt((int)m_toolchange_count)); //BBS: fan speed is useless placeholer now, but we don't remove it to avoid //slicing error in old change_filament_gcode in old 3MF dyn_config.set_key_value("fan_speed", new ConfigOptionInt((int)0)); dyn_config.set_key_value("old_retract_length", new ConfigOptionFloat(old_retract_length)); dyn_config.set_key_value("new_retract_length", new ConfigOptionFloat(new_retract_length)); dyn_config.set_key_value("old_retract_length_toolchange", new ConfigOptionFloat(old_retract_length_toolchange)); dyn_config.set_key_value("new_retract_length_toolchange", new ConfigOptionFloat(new_retract_length_toolchange)); dyn_config.set_key_value("old_filament_temp", new ConfigOptionInt(old_filament_temp)); dyn_config.set_key_value("new_filament_temp", new ConfigOptionInt(new_filament_temp)); dyn_config.set_key_value("x_after_toolchange", new ConfigOptionFloat(nozzle_pos(0))); dyn_config.set_key_value("y_after_toolchange", new ConfigOptionFloat(nozzle_pos(1))); dyn_config.set_key_value("z_after_toolchange", new ConfigOptionFloat(nozzle_pos(2))); dyn_config.set_key_value("first_flush_volume", new ConfigOptionFloat(wipe_length / 2.f)); dyn_config.set_key_value("second_flush_volume", new ConfigOptionFloat(wipe_length / 2.f)); dyn_config.set_key_value("old_filament_e_feedrate", new ConfigOptionInt(old_filament_e_feedrate)); dyn_config.set_key_value("new_filament_e_feedrate", new ConfigOptionInt(new_filament_e_feedrate)); dyn_config.set_key_value("travel_point_1_x", new ConfigOptionFloat(float(travel_point_1.x()))); dyn_config.set_key_value("travel_point_1_y", new ConfigOptionFloat(float(travel_point_1.y()))); dyn_config.set_key_value("travel_point_2_x", new ConfigOptionFloat(float(travel_point_2.x()))); dyn_config.set_key_value("travel_point_2_y", new ConfigOptionFloat(float(travel_point_2.y()))); dyn_config.set_key_value("travel_point_3_x", new ConfigOptionFloat(float(travel_point_3.x()))); dyn_config.set_key_value("travel_point_3_y", new ConfigOptionFloat(float(travel_point_3.y()))); int flush_count = std::min(g_max_flush_count, (int)std::round(wipe_volume / g_purge_volume_one_time)); float flush_unit = wipe_length / flush_count; int flush_idx = 0; for (; flush_idx < flush_count; flush_idx++) { char key_value[64] = { 0 }; snprintf(key_value, sizeof(key_value), "flush_length_%d", flush_idx + 1); dyn_config.set_key_value(key_value, new ConfigOptionFloat(flush_unit)); } for (; flush_idx < g_max_flush_count; flush_idx++) { char key_value[64] = { 0 }; snprintf(key_value, sizeof(key_value), "flush_length_%d", flush_idx + 1); dyn_config.set_key_value(key_value, new ConfigOptionFloat(0.f)); } // Process the custom change_filament_gcode. const std::string& change_filament_gcode = m_config.change_filament_gcode.value; std::string toolchange_gcode_parsed; //Orca: Ignore change_filament_gcode if is the first call for a tool change and manual_filament_change is enabled if (!change_filament_gcode.empty() && !(m_config.manual_filament_change.value && m_toolchange_count == 1)) { toolchange_gcode_parsed = placeholder_parser_process("change_filament_gcode", change_filament_gcode, extruder_id, &dyn_config); check_add_eol(toolchange_gcode_parsed); gcode += toolchange_gcode_parsed; //BBS { //BBS: gcode writer doesn't know where the extruder is and whether fan speed is changed after inserting tool change gcode //Set this flag so that normal lift will be used the first time after tool change. gcode += ";_FORCE_RESUME_FAN_SPEED\n"; m_writer.set_current_position_clear(false); //BBS: check whether custom gcode changes the z position. Update if changed double temp_z_after_tool_change; if (GCodeProcessor::get_last_z_from_gcode(toolchange_gcode_parsed, temp_z_after_tool_change)) { Vec3d pos = m_writer.get_position(); pos(2) = temp_z_after_tool_change; m_writer.set_position(pos); } } } // BBS. Reset old extruder E-value. // Keep retract length because Custom GCode will guarantee retract length be the same as toolchange if (m_config.single_extruder_multi_material) { m_writer.reset_e(); } // We inform the writer about what is happening, but we may not use the resulting gcode. std::string toolchange_command = m_writer.toolchange(extruder_id); if (! custom_gcode_changes_tool(toolchange_gcode_parsed, m_writer.toolchange_prefix(), extruder_id)) gcode += toolchange_command; else { // user provided his own toolchange gcode, no need to do anything } // Set the temperature if the wipe tower didn't (not needed for non-single extruder MM) if (m_config.single_extruder_multi_material && !m_config.enable_prime_tower) { int temp = (m_layer_index <= 0 ? m_config.nozzle_temperature_initial_layer.get_at(extruder_id) : m_config.nozzle_temperature.get_at(extruder_id)); gcode += m_writer.set_temperature(temp, false); } this->placeholder_parser().set("current_extruder", extruder_id); // Append the filament start G-code. const std::string &filament_start_gcode = m_config.filament_start_gcode.get_at(extruder_id); if (! filament_start_gcode.empty()) { // Process the filament_start_gcode for the new filament. gcode += this->placeholder_parser_process("filament_start_gcode", filament_start_gcode, extruder_id); check_add_eol(gcode); } // Set the new extruder to the operating temperature. if (m_ooze_prevention.enable) gcode += m_ooze_prevention.post_toolchange(*this); if (m_config.enable_pressure_advance.get_at(extruder_id)) { gcode += m_writer.set_pressure_advance(m_config.pressure_advance.get_at(extruder_id)); } return gcode; } inline std::string polygon_to_string(const Polygon &polygon, Print *print, bool is_print_space = false) { std::ostringstream gcode; gcode << "["; for (const Point &p : polygon.points) { const auto v = is_print_space ? Vec2d(p.x(), p.y()) : print->translate_to_print_space(p); gcode << "[" << v.x() << "," << v.y() << "],"; } const auto first_v = is_print_space ? Vec2d(polygon.points.front().x(), polygon.points.front().y()) : print->translate_to_print_space(polygon.points.front()); gcode << "[" << first_v.x() << "," << first_v.y() << "]"; gcode << "]"; return gcode.str(); } // this function iterator PrintObject and assign a seqential id to each object. // this id is used to generate unique object id for each object. std::string GCode::set_object_info(Print *print) { std::ostringstream gcode; size_t object_id = 0; // Orca: check if we are in pa calib mode if (print->calib_mode() == CalibMode::Calib_PA_Line || print->calib_mode() == CalibMode::Calib_PA_Pattern) { BoundingBoxf bbox_bed(print->config().printable_area.values); bbox_bed.offset(-5.0); Polygon polygon_bed; polygon_bed.append(Point(bbox_bed.min.x(), bbox_bed.min.y())); polygon_bed.append(Point(bbox_bed.max.x(), bbox_bed.min.y())); polygon_bed.append(Point(bbox_bed.max.x(), bbox_bed.max.y())); polygon_bed.append(Point(bbox_bed.min.x(), bbox_bed.max.y())); gcode << "EXCLUDE_OBJECT_DEFINE NAME=" << "Orca-PA-Calibration-Test" << " CENTER=" << 0 << "," << 0 << " POLYGON=" << polygon_to_string(polygon_bed, print, true) << "\n"; } else { for (PrintObject *object : print->objects()) { object->set_id(object_id++); size_t inst_id = 0; for (PrintInstance &inst : object->instances()) { inst.id = inst_id++; if (this->config().exclude_object && print->config().gcode_flavor.value == gcfKlipper) { auto bbox = inst.get_bounding_box(); auto center = print->translate_to_print_space(Vec2d(bbox.center().x(), bbox.center().y())); gcode << "EXCLUDE_OBJECT_DEFINE NAME=" << get_instance_name(object, inst) << " CENTER=" << center.x() << "," << center.y() << " POLYGON=" << polygon_to_string(inst.get_convex_hull_2d(), print) << "\n"; } } } } return gcode.str(); } // convert a model-space scaled point into G-code coordinates Vec2d GCode::point_to_gcode(const Point &point) const { Vec2d extruder_offset = EXTRUDER_CONFIG(extruder_offset); return unscale(point) + m_origin - extruder_offset; } // convert a model-space scaled point into G-code coordinates Point GCode::gcode_to_point(const Vec2d &point) const { Vec2d extruder_offset = EXTRUDER_CONFIG(extruder_offset); return Point( scale_(point(0) - m_origin(0) + extruder_offset(0)), scale_(point(1) - m_origin(1) + extruder_offset(1))); } Vec2d GCode::point_to_gcode_quantized(const Point& point) const { Vec2d p = this->point_to_gcode(point); return { GCodeFormatter::quantize_xyzf(p.x()), GCodeFormatter::quantize_xyzf(p.y()) }; } // Goes through by_region std::vector and returns reference to a subvector of entities, that are to be printed // during infill/perimeter wiping, or normally (depends on wiping_entities parameter) // Fills in by_region_per_copy_cache and returns its reference. const std::vector& GCode::ObjectByExtruder::Island::by_region_per_copy(std::vector &by_region_per_copy_cache, unsigned int copy, unsigned int extruder, bool wiping_entities) const { bool has_overrides = false; for (const auto& reg : by_region) if (! reg.infills_overrides.empty() || ! reg.perimeters_overrides.empty()) { has_overrides = true; break; } // Data is cleared, but the memory is not. by_region_per_copy_cache.clear(); if (! has_overrides) // Simple case. No need to copy the regions. return wiping_entities ? by_region_per_copy_cache : this->by_region; // Complex case. Some of the extrusions of some object instances are to be printed first - those are the wiping extrusions. // Some of the extrusions of some object instances are printed later - those are the clean print extrusions. // Filter out the extrusions based on the infill_overrides / perimeter_overrides: for (const auto& reg : by_region) { by_region_per_copy_cache.emplace_back(); // creates a region in the newly created Island // Now we are going to iterate through perimeters and infills and pick ones that are supposed to be printed // References are used so that we don't have to repeat the same code for (int iter = 0; iter < 2; ++iter) { const ExtrusionEntitiesPtr& entities = (iter ? reg.infills : reg.perimeters); ExtrusionEntitiesPtr& target_eec = (iter ? by_region_per_copy_cache.back().infills : by_region_per_copy_cache.back().perimeters); const std::vector& overrides = (iter ? reg.infills_overrides : reg.perimeters_overrides); // Now the most important thing - which extrusion should we print. // See function ToolOrdering::get_extruder_overrides for details about the negative numbers hack. if (wiping_entities) { // Apply overrides for this region. for (unsigned int i = 0; i < overrides.size(); ++ i) { const WipingExtrusions::ExtruderPerCopy *this_override = overrides[i]; // This copy (aka object instance) should be printed with this extruder, which overrides the default one. if (this_override != nullptr && (*this_override)[copy] == int(extruder)) target_eec.emplace_back(entities[i]); } } else { // Apply normal extrusions (non-overrides) for this region. unsigned int i = 0; for (; i < overrides.size(); ++ i) { const WipingExtrusions::ExtruderPerCopy *this_override = overrides[i]; // This copy (aka object instance) should be printed with this extruder, which shall be equal to the default one. if (this_override == nullptr || (*this_override)[copy] == -int(extruder)-1) target_eec.emplace_back(entities[i]); } for (; i < entities.size(); ++ i) target_eec.emplace_back(entities[i]); } } } return by_region_per_copy_cache; } // This function takes the eec and appends its entities to either perimeters or infills of this Region (depending on the first parameter) // It also saves pointer to ExtruderPerCopy struct (for each entity), that holds information about which extruders should be used for which copy. void GCode::ObjectByExtruder::Island::Region::append(const Type type, const ExtrusionEntityCollection* eec, const WipingExtrusions::ExtruderPerCopy* copies_extruder) { // We are going to manipulate either perimeters or infills, exactly in the same way. Let's create pointers to the proper structure to not repeat ourselves: ExtrusionEntitiesPtr* perimeters_or_infills; std::vector* perimeters_or_infills_overrides; switch (type) { case PERIMETERS: perimeters_or_infills = &perimeters; perimeters_or_infills_overrides = &perimeters_overrides; break; case INFILL: perimeters_or_infills = &infills; perimeters_or_infills_overrides = &infills_overrides; break; default: throw Slic3r::InvalidArgument("Unknown parameter!"); } // First we append the entities, there are eec->entities.size() of them: size_t old_size = perimeters_or_infills->size(); size_t new_size = old_size + (eec->can_sort() ? eec->entities.size() : 1); perimeters_or_infills->reserve(new_size); if (eec->can_sort()) { for (auto* ee : eec->entities) perimeters_or_infills->emplace_back(ee); } else perimeters_or_infills->emplace_back(const_cast(eec)); if (copies_extruder != nullptr) { // Don't reallocate overrides if not needed. // Missing overrides are implicitely considered non-overridden. perimeters_or_infills_overrides->reserve(new_size); perimeters_or_infills_overrides->resize(old_size, nullptr); perimeters_or_infills_overrides->resize(new_size, copies_extruder); } } // Index into std::vector, which contains Object and Support layers for the current print_z, collected for // a single object, or for possibly multiple objects with multiple instances. } // namespace Slic3r