OrcaSlicer/src/libslic3r/GCode/GCodeProcessor.cpp
Ocraftyone 4d14ee15ce
Thumbnail Formats Option Ported from PrusaSlicer and add BIQU/BTT format (#2405)
* Add needed src files and update CMake files

* Implementation of GCodeThumbnailsFormat for PNG, JPG, and QOI complete

* Implement BIQU (Big Tree Tech) Thumbnail Format

* have GCodeProcessor.post_process pass through original line end characters

* fix biqu thumbnail output
use \r\n for new lines in the biqu thumbnail portion. the firmware requires these end characters to function properly.
update names of variables and add comments to be more descriptive
replace modified Qt pixel algorithm with much simpler algorithm from BTT TFT firmware

* rename BiQU to BTT_TFT for better clarity

* remove underscore from GUI option

---------

Co-authored-by: SoftFever <103989404+SoftFever@users.noreply.github.com>
2023-10-17 20:00:38 +08:00

4414 lines
182 KiB
C++

#include "ExtrusionEntity.hpp"
#include "libslic3r/libslic3r.h"
#include "libslic3r/Utils.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/LocalesUtils.hpp"
#include "libslic3r/format.hpp"
#include "GCodeProcessor.hpp"
#include <boost/log/trivial.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/nowide/fstream.hpp>
#include <boost/nowide/cstdio.hpp>
#include <boost/filesystem/path.hpp>
#include <fast_float/fast_float.h>
#include <float.h>
#include <assert.h>
#include <regex>
#if __has_include(<charconv>)
#include <charconv>
#include <utility>
#endif
#include <chrono>
static const float DEFAULT_TOOLPATH_WIDTH = 0.4f;
static const float DEFAULT_TOOLPATH_HEIGHT = 0.2f;
static const float INCHES_TO_MM = 25.4f;
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
static const float DRAW_ARC_TOLERANCE = 0.0125f; //0.0125mm tolerance for drawing arc
static const float DEFAULT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_RETRACT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_TRAVEL_ACCELERATION = 1250.0f;
static const size_t MIN_EXTRUDERS_COUNT = 5;
static const float DEFAULT_FILAMENT_DIAMETER = 1.75f;
static const int DEFAULT_FILAMENT_HRC = 0;
static const float DEFAULT_FILAMENT_DENSITY = 1.245f;
static const int DEFAULT_FILAMENT_VITRIFICATION_TEMPERATURE = 0;
static const Slic3r::Vec3f DEFAULT_EXTRUDER_OFFSET = Slic3r::Vec3f::Zero();
namespace Slic3r {
const std::vector<std::string> GCodeProcessor::Reserved_Tags = {
" FEATURE: ",
" WIPE_START",
" WIPE_END",
" LAYER_HEIGHT: ",
" LINE_WIDTH: ",
" CHANGE_LAYER",
" COLOR_CHANGE",
" PAUSE_PRINTING",
" CUSTOM_GCODE",
"_GP_FIRST_LINE_M73_PLACEHOLDER",
"_GP_LAST_LINE_M73_PLACEHOLDER",
"_GP_ESTIMATED_PRINTING_TIME_PLACEHOLDER",
"_GP_TOTAL_LAYER_NUMBER_PLACEHOLDER",
"_DURING_PRINT_EXHAUST_FAN"
};
const std::vector<std::string> GCodeProcessor::Reserved_Tags_compatible = {
"TYPE:",
"WIPE_START",
"WIPE_END",
"HEIGHT:",
"WIDTH:",
"LAYER_CHANGE",
"COLOR_CHANGE",
"PAUSE_PRINT",
"CUSTOM_GCODE",
"_GP_FIRST_LINE_M73_PLACEHOLDER",
"_GP_LAST_LINE_M73_PLACEHOLDER",
"_GP_ESTIMATED_PRINTING_TIME_PLACEHOLDER",
"_GP_TOTAL_LAYER_NUMBER_PLACEHOLDER"
};
const std::string GCodeProcessor::Flush_Start_Tag = " FLUSH_START";
const std::string GCodeProcessor::Flush_End_Tag = " FLUSH_END";
const std::map<NozzleType,int> GCodeProcessor::Nozzle_Type_To_HRC={
{NozzleType::ntStainlessSteel,20},
{NozzleType::ntHardenedSteel,55},
{NozzleType::ntBrass,2},
{NozzleType::ntUndefine,0}
};
const float GCodeProcessor::Wipe_Width = 0.05f;
const float GCodeProcessor::Wipe_Height = 0.05f;
bool GCodeProcessor::s_IsBBLPrinter = true;
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
const std::string GCodeProcessor::Mm3_Per_Mm_Tag = "MM3_PER_MM:";
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
static void set_option_value(ConfigOptionFloats& option, size_t id, float value)
{
if (id < option.values.size())
option.values[id] = static_cast<double>(value);
};
static float get_option_value(const ConfigOptionFloats& option, size_t id)
{
return option.values.empty() ? 0.0f :
((id < option.values.size()) ? static_cast<float>(option.values[id]) : static_cast<float>(option.values.back()));
}
static float estimated_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
return (acceleration == 0.0f) ? 0.0f : (sqr(target_rate) - sqr(initial_rate)) / (2.0f * acceleration);
}
static float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
return (acceleration == 0.0f) ? 0.0f : (2.0f * acceleration * distance - sqr(initial_rate) + sqr(final_rate)) / (4.0f * acceleration);
}
static float speed_from_distance(float initial_feedrate, float distance, float acceleration)
{
// to avoid invalid negative numbers due to numerical errors
float value = std::max(0.0f, sqr(initial_feedrate) + 2.0f * acceleration * distance);
return ::sqrt(value);
}
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance.
static float max_allowable_speed(float acceleration, float target_velocity, float distance)
{
// to avoid invalid negative numbers due to numerical errors
float value = std::max(0.0f, sqr(target_velocity) - 2.0f * acceleration * distance);
return std::sqrt(value);
}
static float acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration)
{
return (acceleration != 0.0f) ? (speed_from_distance(initial_feedrate, distance, acceleration) - initial_feedrate) / acceleration : 0.0f;
}
void GCodeProcessor::CachedPosition::reset()
{
std::fill(position.begin(), position.end(), FLT_MAX);
feedrate = FLT_MAX;
}
void GCodeProcessor::CpColor::reset()
{
counter = 0;
current = 0;
}
float GCodeProcessor::Trapezoid::acceleration_time(float entry_feedrate, float acceleration) const
{
return acceleration_time_from_distance(entry_feedrate, accelerate_until, acceleration);
}
float GCodeProcessor::Trapezoid::cruise_time() const
{
return (cruise_feedrate != 0.0f) ? cruise_distance() / cruise_feedrate : 0.0f;
}
float GCodeProcessor::Trapezoid::deceleration_time(float distance, float acceleration) const
{
return acceleration_time_from_distance(cruise_feedrate, (distance - decelerate_after), -acceleration);
}
float GCodeProcessor::Trapezoid::cruise_distance() const
{
return decelerate_after - accelerate_until;
}
void GCodeProcessor::TimeBlock::calculate_trapezoid()
{
trapezoid.cruise_feedrate = feedrate_profile.cruise;
float accelerate_distance = std::max(0.0f, estimated_acceleration_distance(feedrate_profile.entry, feedrate_profile.cruise, acceleration));
float decelerate_distance = std::max(0.0f, estimated_acceleration_distance(feedrate_profile.cruise, feedrate_profile.exit, -acceleration));
float cruise_distance = distance - accelerate_distance - decelerate_distance;
// Not enough space to reach the nominal feedrate.
// This means no cruising, and we'll have to use intersection_distance() to calculate when to abort acceleration
// and start braking in order to reach the exit_feedrate exactly at the end of this block.
if (cruise_distance < 0.0f) {
accelerate_distance = std::clamp(intersection_distance(feedrate_profile.entry, feedrate_profile.exit, acceleration, distance), 0.0f, distance);
cruise_distance = 0.0f;
trapezoid.cruise_feedrate = speed_from_distance(feedrate_profile.entry, accelerate_distance, acceleration);
}
trapezoid.accelerate_until = accelerate_distance;
trapezoid.decelerate_after = accelerate_distance + cruise_distance;
}
float GCodeProcessor::TimeBlock::time() const
{
return trapezoid.acceleration_time(feedrate_profile.entry, acceleration)
+ trapezoid.cruise_time()
+ trapezoid.deceleration_time(distance, acceleration);
}
void GCodeProcessor::TimeMachine::State::reset()
{
feedrate = 0.0f;
safe_feedrate = 0.0f;
axis_feedrate = { 0.0f, 0.0f, 0.0f, 0.0f };
abs_axis_feedrate = { 0.0f, 0.0f, 0.0f, 0.0f };
//BBS
enter_direction = { 0.0f, 0.0f, 0.0f };
exit_direction = { 0.0f, 0.0f, 0.0f };
}
void GCodeProcessor::TimeMachine::CustomGCodeTime::reset()
{
needed = false;
cache = 0.0f;
times = std::vector<std::pair<CustomGCode::Type, float>>();
}
void GCodeProcessor::TimeMachine::reset()
{
enabled = false;
acceleration = 0.0f;
max_acceleration = 0.0f;
retract_acceleration = 0.0f;
max_retract_acceleration = 0.0f;
travel_acceleration = 0.0f;
max_travel_acceleration = 0.0f;
extrude_factor_override_percentage = 1.0f;
time = 0.0f;
stop_times = std::vector<StopTime>();
curr.reset();
prev.reset();
gcode_time.reset();
blocks = std::vector<TimeBlock>();
g1_times_cache = std::vector<G1LinesCacheItem>();
std::fill(moves_time.begin(), moves_time.end(), 0.0f);
std::fill(roles_time.begin(), roles_time.end(), 0.0f);
layers_time = std::vector<float>();
prepare_time = 0.0f;
}
void GCodeProcessor::TimeMachine::simulate_st_synchronize(float additional_time)
{
if (!enabled)
return;
calculate_time(0, additional_time);
}
static void planner_forward_pass_kernel(GCodeProcessor::TimeBlock& prev, GCodeProcessor::TimeBlock& curr)
{
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!prev.flags.nominal_length) {
if (prev.feedrate_profile.entry < curr.feedrate_profile.entry) {
float entry_speed = std::min(curr.feedrate_profile.entry, max_allowable_speed(-prev.acceleration, prev.feedrate_profile.entry, prev.distance));
// Check for junction speed change
if (curr.feedrate_profile.entry != entry_speed) {
curr.feedrate_profile.entry = entry_speed;
curr.flags.recalculate = true;
}
}
}
}
void planner_reverse_pass_kernel(GCodeProcessor::TimeBlock& curr, GCodeProcessor::TimeBlock& next)
{
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (curr.feedrate_profile.entry != curr.max_entry_speed) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
if (!curr.flags.nominal_length && curr.max_entry_speed > next.feedrate_profile.entry)
curr.feedrate_profile.entry = std::min(curr.max_entry_speed, max_allowable_speed(-curr.acceleration, next.feedrate_profile.entry, curr.distance));
else
curr.feedrate_profile.entry = curr.max_entry_speed;
curr.flags.recalculate = true;
}
}
static void recalculate_trapezoids(std::vector<GCodeProcessor::TimeBlock>& blocks)
{
GCodeProcessor::TimeBlock* curr = nullptr;
GCodeProcessor::TimeBlock* next = nullptr;
for (size_t i = 0; i < blocks.size(); ++i) {
GCodeProcessor::TimeBlock& b = blocks[i];
curr = next;
next = &b;
if (curr != nullptr) {
// Recalculate if current block entry or exit junction speed has changed.
if (curr->flags.recalculate || next->flags.recalculate) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
GCodeProcessor::TimeBlock block = *curr;
block.feedrate_profile.exit = next->feedrate_profile.entry;
block.calculate_trapezoid();
curr->trapezoid = block.trapezoid;
curr->flags.recalculate = false; // Reset current only to ensure next trapezoid is computed
}
}
}
// Last/newest block in buffer. Always recalculated.
if (next != nullptr) {
GCodeProcessor::TimeBlock block = *next;
block.feedrate_profile.exit = next->safe_feedrate;
block.calculate_trapezoid();
next->trapezoid = block.trapezoid;
next->flags.recalculate = false;
}
}
void GCodeProcessor::TimeMachine::calculate_time(size_t keep_last_n_blocks, float additional_time)
{
if (!enabled || blocks.size() < 2)
return;
assert(keep_last_n_blocks <= blocks.size());
// forward_pass
for (size_t i = 0; i + 1 < blocks.size(); ++i) {
planner_forward_pass_kernel(blocks[i], blocks[i + 1]);
}
// reverse_pass
for (int i = static_cast<int>(blocks.size()) - 1; i > 0; --i)
planner_reverse_pass_kernel(blocks[i - 1], blocks[i]);
recalculate_trapezoids(blocks);
size_t n_blocks_process = blocks.size() - keep_last_n_blocks;
for (size_t i = 0; i < n_blocks_process; ++i) {
const TimeBlock& block = blocks[i];
float block_time = block.time();
if (i == 0)
block_time += additional_time;
time += block_time;
gcode_time.cache += block_time;
//BBS: don't calculate travel of start gcode into travel time
if (!block.flags.prepare_stage || block.move_type != EMoveType::Travel)
moves_time[static_cast<size_t>(block.move_type)] += block_time;
roles_time[static_cast<size_t>(block.role)] += block_time;
if (block.layer_id >= layers_time.size()) {
const size_t curr_size = layers_time.size();
layers_time.resize(block.layer_id);
for (size_t i = curr_size; i < layers_time.size(); ++i) {
layers_time[i] = 0.0f;
}
}
layers_time[block.layer_id - 1] += block_time;
//BBS
if (block.flags.prepare_stage)
prepare_time += block_time;
g1_times_cache.push_back({ block.g1_line_id, time });
// update times for remaining time to printer stop placeholders
auto it_stop_time = std::lower_bound(stop_times.begin(), stop_times.end(), block.g1_line_id,
[](const StopTime& t, unsigned int value) { return t.g1_line_id < value; });
if (it_stop_time != stop_times.end() && it_stop_time->g1_line_id == block.g1_line_id)
it_stop_time->elapsed_time = time;
}
if (keep_last_n_blocks)
blocks.erase(blocks.begin(), blocks.begin() + n_blocks_process);
else
blocks.clear();
}
void GCodeProcessor::TimeProcessor::reset()
{
extruder_unloaded = true;
machine_envelope_processing_enabled = false;
machine_limits = MachineEnvelopeConfig();
filament_load_times = 0.0f;
filament_unload_times = 0.0f;
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
machines[i].reset();
}
machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].enabled = true;
}
void GCodeProcessor::TimeProcessor::post_process(const std::string& filename, std::vector<GCodeProcessorResult::MoveVertex>& moves, std::vector<size_t>& lines_ends, size_t total_layer_num)
{
FilePtr in{ boost::nowide::fopen(filename.c_str(), "rb") };
if (in.f == nullptr)
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nCannot open file for reading.\n"));
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": before process %1%")%filename.c_str();
// temporary file to contain modified gcode
std::string out_path = filename + ".postprocess";
FilePtr out{ boost::nowide::fopen(out_path.c_str(), "wb") };
if (out.f == nullptr) {
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nCannot open file for writing.\n"));
}
auto time_in_minutes = [](float time_in_seconds) {
assert(time_in_seconds >= 0.f);
return int((time_in_seconds + 0.5f) / 60.0f);
};
auto time_in_last_minute = [](float time_in_seconds) {
assert(time_in_seconds <= 60.0f);
return time_in_seconds / 60.0f;
};
auto format_line_M73_main = [](const std::string& mask, int percent, int time) {
char line_M73[64];
sprintf(line_M73, mask.c_str(),
std::to_string(percent).c_str(),
std::to_string(time).c_str());
return std::string(line_M73);
};
auto format_line_M73_stop_int = [](const std::string& mask, int time) {
char line_M73[64];
sprintf(line_M73, mask.c_str(), std::to_string(time).c_str());
return std::string(line_M73);
};
auto format_line_exhaust_fan_control = [](const std::string& mask,int fan_index,int percent) {
char line_fan[64] = { 0 };
sprintf(line_fan,mask.c_str(),
std::to_string(fan_index).c_str(),
std::to_string(int((percent/100.0)*255)).c_str());
return std::string(line_fan);
};
auto format_time_float = [](float time) {
return Slic3r::float_to_string_decimal_point(time, 2);
};
auto format_line_M73_stop_float = [format_time_float](const std::string& mask, float time) {
char line_M73[64];
sprintf(line_M73, mask.c_str(), format_time_float(time).c_str());
return std::string(line_M73);
};
std::string gcode_line;
size_t g1_lines_counter = 0;
// keeps track of last exported pair <percent, remaining time>
std::array<std::pair<int, int>, static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count)> last_exported_main;
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
last_exported_main[i] = { 0, time_in_minutes(machines[i].time) };
}
// keeps track of last exported remaining time to next printer stop
std::array<int, static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count)> last_exported_stop;
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
last_exported_stop[i] = time_in_minutes(machines[i].time);
}
// buffer line to export only when greater than 64K to reduce writing calls
std::string export_line;
// replace placeholder lines with the proper final value
// gcode_line is in/out parameter, to reduce expensive memory allocation
auto process_placeholders = [&](std::string& gcode_line) {
unsigned int extra_lines_count = 0;
// remove trailing '\n'
auto line = std::string_view(gcode_line).substr(0, gcode_line.length() - 1);
std::string ret;
if (line.length() > 1) {
line = line.substr(1);
if (line == reserved_tag(ETags::First_Line_M73_Placeholder) || line == reserved_tag(ETags::Last_Line_M73_Placeholder)) {
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
const TimeMachine& machine = machines[i];
if (machine.enabled) {
// export pair <percent, remaining time>
ret += format_line_M73_main(machine.line_m73_main_mask.c_str(),
(line == reserved_tag(ETags::First_Line_M73_Placeholder)) ? 0 : 100,
(line == reserved_tag(ETags::First_Line_M73_Placeholder)) ? time_in_minutes(machine.time) : 0);
++extra_lines_count;
// export remaining time to next printer stop
if (line == reserved_tag(ETags::First_Line_M73_Placeholder) && !machine.stop_times.empty()) {
int to_export_stop = time_in_minutes(machine.stop_times.front().elapsed_time);
ret += format_line_M73_stop_int(machine.line_m73_stop_mask.c_str(), to_export_stop);
last_exported_stop[i] = to_export_stop;
++extra_lines_count;
}
}
}
}
else if (line == reserved_tag(ETags::Estimated_Printing_Time_Placeholder)) {
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
const TimeMachine& machine = machines[i];
PrintEstimatedStatistics::ETimeMode mode = static_cast<PrintEstimatedStatistics::ETimeMode>(i);
if (mode == PrintEstimatedStatistics::ETimeMode::Normal || machine.enabled) {
char buf[128];
if(!s_IsBBLPrinter)
// SoftFever: compatibility with klipper_estimator
sprintf(buf, "; estimated printing time (normal mode) = %s\n", get_time_dhms(machine.time).c_str());
else {
//sprintf(buf, "; estimated printing time (%s mode) = %s\n",
// (mode == PrintEstimatedStatistics::ETimeMode::Normal) ? "normal" : "silent",
// get_time_dhms(machine.time).c_str());
sprintf(buf, "; model printing time: %s; total estimated time: %s\n",
get_time_dhms(machine.time - machine.prepare_time).c_str(),
get_time_dhms(machine.time).c_str());
}
ret += buf;
}
}
}
//BBS: write total layer number
else if (line == reserved_tag(ETags::Total_Layer_Number_Placeholder)) {
char buf[128];
sprintf(buf, "; total layer number: %zd\n", total_layer_num);
ret += buf;
}
}
if (! ret.empty())
// Not moving the move operator on purpose, so that the gcode_line allocation will grow and it will not be reallocated after handful of lines are processed.
gcode_line = ret;
return std::tuple(!ret.empty(), (extra_lines_count == 0) ? extra_lines_count : extra_lines_count - 1);
};
// check for temporary lines
auto is_temporary_decoration = [](const std::string_view gcode_line) {
// remove trailing '\n'
assert(! gcode_line.empty());
assert(gcode_line.back() == '\n');
// return true for decorations which are used in processing the gcode but that should not be exported into the final gcode
// i.e.:
// bool ret = gcode_line.substr(0, gcode_line.length() - 1) == ";" + Layer_Change_Tag;
// ...
// return ret;
return false;
};
// Iterators for the normal and silent cached time estimate entry recently processed, used by process_line_G1.
auto g1_times_cache_it = Slic3r::reserve_vector<std::vector<TimeMachine::G1LinesCacheItem>::const_iterator>(machines.size());
for (const auto& machine : machines)
g1_times_cache_it.emplace_back(machine.g1_times_cache.begin());
// add lines M73 to exported gcode
auto process_line_move = [
// Lambdas, mostly for string formatting, all with an empty capture block.
time_in_minutes, format_time_float, format_line_M73_main, format_line_M73_stop_int, format_line_M73_stop_float, time_in_last_minute,format_line_exhaust_fan_control,
&self = std::as_const(*this),
// Caches, to be modified
&g1_times_cache_it, &last_exported_main, &last_exported_stop,
// String output
&export_line]
(const size_t g1_lines_counter) {
unsigned int exported_lines_count = 0;
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
const TimeMachine& machine = self.machines[i];
if (machine.enabled) {
// export pair <percent, remaining time>
// Skip all machine.g1_times_cache below g1_lines_counter.
auto& it = g1_times_cache_it[i];
while (it != machine.g1_times_cache.end() && it->id < g1_lines_counter)
++it;
if (it != machine.g1_times_cache.end() && it->id == g1_lines_counter) {
std::pair<int, int> to_export_main = { int(100.0f * it->elapsed_time / machine.time),
time_in_minutes(machine.time - it->elapsed_time) };
if (last_exported_main[i] != to_export_main) {
export_line += format_line_M73_main(machine.line_m73_main_mask.c_str(),
to_export_main.first, to_export_main.second);
last_exported_main[i] = to_export_main;
++exported_lines_count;
}
// export remaining time to next printer stop
auto it_stop = std::upper_bound(machine.stop_times.begin(), machine.stop_times.end(), it->elapsed_time,
[](float value, const TimeMachine::StopTime& t) { return value < t.elapsed_time; });
if (it_stop != machine.stop_times.end()) {
int to_export_stop = time_in_minutes(it_stop->elapsed_time - it->elapsed_time);
if (last_exported_stop[i] != to_export_stop) {
if (to_export_stop > 0) {
if (last_exported_stop[i] != to_export_stop) {
export_line += format_line_M73_stop_int(machine.line_m73_stop_mask.c_str(), to_export_stop);
last_exported_stop[i] = to_export_stop;
++exported_lines_count;
}
}
else {
bool is_last = false;
auto next_it = it + 1;
is_last |= (next_it == machine.g1_times_cache.end());
if (next_it != machine.g1_times_cache.end()) {
auto next_it_stop = std::upper_bound(machine.stop_times.begin(), machine.stop_times.end(), next_it->elapsed_time,
[](float value, const TimeMachine::StopTime& t) { return value < t.elapsed_time; });
is_last |= (next_it_stop != it_stop);
std::string time_float_str = format_time_float(time_in_last_minute(it_stop->elapsed_time - it->elapsed_time));
std::string next_time_float_str = format_time_float(time_in_last_minute(it_stop->elapsed_time - next_it->elapsed_time));
is_last |= (string_to_double_decimal_point(time_float_str) > 0. && string_to_double_decimal_point(next_time_float_str) == 0.);
}
if (is_last) {
if (std::distance(machine.stop_times.begin(), it_stop) == static_cast<ptrdiff_t>(machine.stop_times.size() - 1))
export_line += format_line_M73_stop_int(machine.line_m73_stop_mask.c_str(), to_export_stop);
else
export_line += format_line_M73_stop_float(machine.line_m73_stop_mask.c_str(), time_in_last_minute(it_stop->elapsed_time - it->elapsed_time));
last_exported_stop[i] = to_export_stop;
++exported_lines_count;
}
}
}
}
}
}
}
return exported_lines_count;
};
// helper function to write to disk
size_t out_file_pos = 0;
lines_ends.clear();
auto write_string = [&export_line, &out, &out_path, &out_file_pos, &lines_ends](const std::string& str) {
fwrite((const void*)export_line.c_str(), 1, export_line.length(), out.f);
if (ferror(out.f)) {
out.close();
boost::nowide::remove(out_path.c_str());
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nIs the disk full?\n"));
}
for (size_t i = 0; i < export_line.size(); ++ i)
if (export_line[i] == '\n')
lines_ends.emplace_back(out_file_pos + i + 1);
out_file_pos += export_line.size();
export_line.clear();
};
unsigned int line_id = 0;
std::vector<std::pair<unsigned int, unsigned int>> offsets;
{
// Read the input stream 64kB at a time, extract lines and process them.
std::vector<char> buffer(65536 * 10, 0);
// Line buffer.
assert(gcode_line.empty());
for (;;) {
size_t cnt_read = ::fread(buffer.data(), 1, buffer.size(), in.f);
if (::ferror(in.f))
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nError while reading from file.\n"));
bool eof = cnt_read == 0;
auto it = buffer.begin();
auto it_bufend = buffer.begin() + cnt_read;
while (it != it_bufend || (eof && ! gcode_line.empty())) {
// Find end of line.
bool eol = false;
auto it_end = it;
for (; it_end != it_bufend && ! (eol = *it_end == '\r' || *it_end == '\n'); ++ it_end) ;
// End of line is indicated also if end of file was reached.
eol |= eof && it_end == it_bufend;
gcode_line.insert(gcode_line.end(), it, it_end);
if (eol) {
++line_id;
// determine the end of line character and pass to output
gcode_line += *it_end;
if(*it_end == '\r' && *(++ it_end) == '\n')
gcode_line += '\n';
// replace placeholder lines
auto [processed, lines_added_count] = process_placeholders(gcode_line);
if (processed && lines_added_count > 0)
offsets.push_back({ line_id, lines_added_count });
if (! processed && ! is_temporary_decoration(gcode_line) &&
(GCodeReader::GCodeLine::cmd_is(gcode_line, "G1") ||
GCodeReader::GCodeLine::cmd_is(gcode_line, "G2") ||
GCodeReader::GCodeLine::cmd_is(gcode_line, "G3"))) {
// remove temporary lines, add lines M73 where needed
unsigned int extra_lines_count = process_line_move(g1_lines_counter ++);
if (extra_lines_count > 0)
offsets.push_back({ line_id, extra_lines_count });
}
export_line += gcode_line;
if (export_line.length() > 65535)
write_string(export_line);
gcode_line.clear();
}
// Skip EOL.
it = it_end;
if (it != it_bufend && *it == '\r')
++ it;
if (it != it_bufend && *it == '\n')
++ it;
}
if (eof)
break;
}
}
if (!export_line.empty())
write_string(export_line);
out.close();
in.close();
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": after process %1%")%filename.c_str();
// updates moves' gcode ids which have been modified by the insertion of the M73 lines
unsigned int curr_offset_id = 0;
unsigned int total_offset = 0;
for (GCodeProcessorResult::MoveVertex& move : moves) {
while (curr_offset_id < static_cast<unsigned int>(offsets.size()) && offsets[curr_offset_id].first <= move.gcode_id) {
total_offset += offsets[curr_offset_id].second;
++curr_offset_id;
}
move.gcode_id += total_offset;
}
if (rename_file(out_path, filename)) {
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": Failed to rename the output G-code file from %1% to %2%")%out_path.c_str() % filename.c_str();
throw Slic3r::RuntimeError(std::string("Failed to rename the output G-code file from ") + out_path + " to " + filename + '\n' +
"Is " + out_path + " locked?" + '\n');
}
}
void GCodeProcessor::UsedFilaments::reset()
{
color_change_cache = 0.0f;
volumes_per_color_change = std::vector<double>();
tool_change_cache = 0.0f;
volumes_per_extruder.clear();
flush_per_filament.clear();
role_cache = 0.0f;
filaments_per_role.clear();
}
void GCodeProcessor::UsedFilaments::increase_caches(double extruded_volume)
{
color_change_cache += extruded_volume;
tool_change_cache += extruded_volume;
role_cache += extruded_volume;
}
void GCodeProcessor::UsedFilaments::process_color_change_cache()
{
if (color_change_cache != 0.0f) {
volumes_per_color_change.push_back(color_change_cache);
color_change_cache = 0.0f;
}
}
void GCodeProcessor::UsedFilaments::process_extruder_cache(GCodeProcessor* processor)
{
size_t active_extruder_id = processor->m_extruder_id;
if (tool_change_cache != 0.0f) {
if (volumes_per_extruder.find(active_extruder_id) != volumes_per_extruder.end())
volumes_per_extruder[active_extruder_id] += tool_change_cache;
else
volumes_per_extruder[active_extruder_id] = tool_change_cache;
tool_change_cache = 0.0f;
}
}
void GCodeProcessor::UsedFilaments::update_flush_per_filament(size_t extrude_id, float flush_volume)
{
if (flush_per_filament.find(extrude_id) != flush_per_filament.end())
flush_per_filament[extrude_id] += flush_volume;
else
flush_per_filament[extrude_id] = flush_volume;
}
void GCodeProcessor::UsedFilaments::process_role_cache(GCodeProcessor* processor)
{
if (role_cache != 0.0f) {
std::pair<double, double> filament = { 0.0f, 0.0f };
double s = PI * sqr(0.5 * processor->m_result.filament_diameters[processor->m_extruder_id]);
filament.first = role_cache / s * 0.001;
filament.second = role_cache * processor->m_result.filament_densities[processor->m_extruder_id] * 0.001;
ExtrusionRole active_role = processor->m_extrusion_role;
if (filaments_per_role.find(active_role) != filaments_per_role.end()) {
filaments_per_role[active_role].first += filament.first;
filaments_per_role[active_role].second += filament.second;
}
else
filaments_per_role[active_role] = filament;
role_cache = 0.0f;
}
}
void GCodeProcessor::UsedFilaments::process_caches(GCodeProcessor* processor)
{
process_color_change_cache();
process_extruder_cache(processor);
process_role_cache(processor);
}
#if ENABLE_GCODE_VIEWER_STATISTICS
void GCodeProcessorResult::reset() {
//BBS: add mutex for protection of gcode result
lock();
moves = std::vector<GCodeProcessorResult::MoveVertex>();
printable_area = Pointfs();
//BBS: add bed exclude area
bed_exclude_area = Pointfs();
//BBS: add toolpath_outside
toolpath_outside = false;
//BBS: add label_object_enabled
label_object_enabled = false;
timelapse_warning_code = 0;
printable_height = 0.0f;
settings_ids.reset();
extruders_count = 0;
extruder_colors = std::vector<std::string>();
filament_diameters = std::vector<float>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_DIAMETER);
filament_densities = std::vector<float>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_DENSITY);
custom_gcode_per_print_z = std::vector<CustomGCode::Item>();
spiral_vase_layers = std::vector<std::pair<float, std::pair<size_t, size_t>>>();
time = 0;
//BBS: add mutex for protection of gcode result
unlock();
}
#else
void GCodeProcessorResult::reset() {
//BBS: add mutex for protection of gcode result
lock();
moves.clear();
lines_ends.clear();
printable_area = Pointfs();
//BBS: add bed exclude area
bed_exclude_area = Pointfs();
//BBS: add toolpath_outside
toolpath_outside = false;
//BBS: add label_object_enabled
label_object_enabled = false;
timelapse_warning_code = 0;
printable_height = 0.0f;
settings_ids.reset();
extruders_count = 0;
extruder_colors = std::vector<std::string>();
filament_diameters = std::vector<float>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_DIAMETER);
required_nozzle_HRC = std::vector<int>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_HRC);
filament_densities = std::vector<float>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_DENSITY);
custom_gcode_per_print_z = std::vector<CustomGCode::Item>();
spiral_vase_layers = std::vector<std::pair<float, std::pair<size_t, size_t>>>();
warnings.clear();
//BBS: add mutex for protection of gcode result
unlock();
//BBS: add logs
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(" %1%: this=%2% reset finished")%__LINE__%this;
}
#endif // ENABLE_GCODE_VIEWER_STATISTICS
const std::vector<std::pair<GCodeProcessor::EProducer, std::string>> GCodeProcessor::Producers = {
//BBS: OrcaSlicer is also "bambu". Otherwise the time estimation didn't work.
//FIXME: Workaround and should be handled when do removing-bambu
{ EProducer::OrcaSlicer, SLIC3R_APP_NAME },
{ EProducer::OrcaSlicer, "generated by OrcaSlicer" },
{ EProducer::OrcaSlicer, "generated by BambuStudio" },
{ EProducer::OrcaSlicer, "BambuStudio" }
//{ EProducer::Slic3rPE, "generated by Slic3r Bambu Edition" },
//{ EProducer::Slic3r, "generated by Slic3r" },
//{ EProducer::SuperSlicer, "generated by SuperSlicer" },
//{ EProducer::Cura, "Cura_SteamEngine" },
//{ EProducer::Simplify3D, "G-Code generated by Simplify3D(R)" },
//{ EProducer::CraftWare, "CraftWare" },
//{ EProducer::ideaMaker, "ideaMaker" },
//{ EProducer::KissSlicer, "KISSlicer" }
};
unsigned int GCodeProcessor::s_result_id = 0;
bool GCodeProcessor::contains_reserved_tag(const std::string& gcode, std::string& found_tag)
{
bool ret = false;
GCodeReader parser;
auto& _tags = s_IsBBLPrinter ? Reserved_Tags : Reserved_Tags_compatible;
parser.parse_buffer(gcode, [&ret, &found_tag, _tags](GCodeReader& parser, const GCodeReader::GCodeLine& line) {
std::string comment = line.raw();
if (comment.length() > 2 && comment.front() == ';') {
comment = comment.substr(1);
for (const std::string& s : _tags) {
if (boost::starts_with(comment, s)) {
ret = true;
found_tag = comment;
parser.quit_parsing();
return;
}
}
}
});
return ret;
}
bool GCodeProcessor::contains_reserved_tags(const std::string& gcode, unsigned int max_count, std::vector<std::string>& found_tag)
{
max_count = std::max(max_count, 1U);
bool ret = false;
CNumericLocalesSetter locales_setter;
GCodeReader parser;
auto& _tags = s_IsBBLPrinter ? Reserved_Tags : Reserved_Tags_compatible;
parser.parse_buffer(gcode, [&ret, &found_tag, max_count, _tags](GCodeReader& parser, const GCodeReader::GCodeLine& line) {
std::string comment = line.raw();
if (comment.length() > 2 && comment.front() == ';') {
comment = comment.substr(1);
for (const std::string& s : _tags) {
if (boost::starts_with(comment, s)) {
ret = true;
found_tag.push_back(comment);
if (found_tag.size() == max_count) {
parser.quit_parsing();
return;
}
}
}
}
});
return ret;
}
GCodeProcessor::GCodeProcessor()
: m_options_z_corrector(m_result)
{
reset();
m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].line_m73_main_mask = "M73 P%s R%s\n";
m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].line_m73_stop_mask = "M73 C%s\n";
m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].line_m73_main_mask = "M73 Q%s S%s\n";
m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].line_m73_stop_mask = "M73 D%s\n";
}
void GCodeProcessor::apply_config(const PrintConfig& config)
{
m_parser.apply_config(config);
m_flavor = config.gcode_flavor;
// BBS
size_t extruders_count = config.filament_diameter.values.size();
m_result.extruders_count = extruders_count;
m_extruder_offsets.resize(extruders_count);
m_extruder_colors.resize(extruders_count);
m_result.filament_diameters.resize(extruders_count);
m_result.required_nozzle_HRC.resize(extruders_count);
m_result.filament_densities.resize(extruders_count);
m_result.filament_vitrification_temperature.resize(extruders_count);
m_extruder_temps.resize(extruders_count);
m_result.nozzle_hrc = static_cast<int>(config.nozzle_hrc.getInt());
m_result.nozzle_type = config.nozzle_type;
for (size_t i = 0; i < extruders_count; ++ i) {
m_extruder_offsets[i] = to_3d(config.extruder_offset.get_at(i).cast<float>().eval(), 0.f);
m_extruder_colors[i] = static_cast<unsigned char>(i);
m_result.filament_diameters[i] = static_cast<float>(config.filament_diameter.get_at(i));
m_result.required_nozzle_HRC[i] = static_cast<int>(config.required_nozzle_HRC.get_at(i));
m_result.filament_densities[i] = static_cast<float>(config.filament_density.get_at(i));
m_result.filament_vitrification_temperature[i] = static_cast<float>(config.temperature_vitrification.get_at(i));
}
if (m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware || m_flavor == gcfKlipper || m_flavor == gcfRepRapFirmware) {
m_time_processor.machine_limits = reinterpret_cast<const MachineEnvelopeConfig&>(config);
if (m_flavor == gcfMarlinLegacy) {
// Legacy Marlin does not have separate travel acceleration, it uses the 'extruding' value instead.
m_time_processor.machine_limits.machine_max_acceleration_travel = m_time_processor.machine_limits.machine_max_acceleration_extruding;
}
if (m_flavor == gcfRepRapFirmware) {
// RRF does not support setting min feedrates. Set them to zero.
m_time_processor.machine_limits.machine_min_travel_rate.values.assign(m_time_processor.machine_limits.machine_min_travel_rate.size(), 0.);
m_time_processor.machine_limits.machine_min_extruding_rate.values.assign(m_time_processor.machine_limits.machine_min_extruding_rate.size(), 0.);
}
}
// Filament load / unload times are not specific to a firmware flavor. Let anybody use it if they find it useful.
// As of now the fields are shown at the UI dialog in the same combo box as the ramming values, so they
// are considered to be active for the single extruder multi-material printers only.
m_time_processor.filament_load_times = static_cast<float>(config.machine_load_filament_time.value);
m_time_processor.filament_unload_times = static_cast<float>(config.machine_unload_filament_time.value);
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
float max_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_extruding, i);
m_time_processor.machines[i].max_acceleration = max_acceleration;
m_time_processor.machines[i].acceleration = (max_acceleration > 0.0f) ? max_acceleration : DEFAULT_ACCELERATION;
float max_retract_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, i);
m_time_processor.machines[i].max_retract_acceleration = max_retract_acceleration;
m_time_processor.machines[i].retract_acceleration = (max_retract_acceleration > 0.0f) ? max_retract_acceleration : DEFAULT_RETRACT_ACCELERATION;
float max_travel_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_travel, i);
m_time_processor.machines[i].max_travel_acceleration = max_travel_acceleration;
m_time_processor.machines[i].travel_acceleration = (max_travel_acceleration > 0.0f) ? max_travel_acceleration : DEFAULT_TRAVEL_ACCELERATION;
}
const ConfigOptionFloat* initial_layer_print_height = config.option<ConfigOptionFloat>("initial_layer_print_height");
if (initial_layer_print_height != nullptr)
m_first_layer_height = std::abs(initial_layer_print_height->value);
m_result.printable_height = config.printable_height;
const ConfigOptionBool* spiral_vase = config.option<ConfigOptionBool>("spiral_mode");
if (spiral_vase != nullptr)
m_spiral_vase_active = spiral_vase->value;
}
void GCodeProcessor::apply_config(const DynamicPrintConfig& config)
{
m_parser.apply_config(config);
//BBS
const ConfigOptionFloat* nozzle_volume = config.option<ConfigOptionFloat>("nozzle_volume");
if (nozzle_volume != nullptr)
m_nozzle_volume = nozzle_volume->value;
const ConfigOptionInt *nozzle_HRC = config.option<ConfigOptionInt>("nozzle_hrc");
if (nozzle_HRC != nullptr) m_result.nozzle_hrc = nozzle_HRC->value;
const ConfigOptionEnum<NozzleType>* nozzle_type = config.option<ConfigOptionEnum<NozzleType>>("nozzle_type");
if (nozzle_type != nullptr)
m_result.nozzle_type=nozzle_type->value;
const ConfigOptionEnum<GCodeFlavor>* gcode_flavor = config.option<ConfigOptionEnum<GCodeFlavor>>("gcode_flavor");
if (gcode_flavor != nullptr)
m_flavor = gcode_flavor->value;
const ConfigOptionPoints* printable_area = config.option<ConfigOptionPoints>("printable_area");
if (printable_area != nullptr)
m_result.printable_area = printable_area->values;
//BBS: add bed_exclude_area
const ConfigOptionPoints* bed_exclude_area = config.option<ConfigOptionPoints>("bed_exclude_area");
if (bed_exclude_area != nullptr)
m_result.bed_exclude_area = bed_exclude_area->values;
const ConfigOptionString* print_settings_id = config.option<ConfigOptionString>("print_settings_id");
if (print_settings_id != nullptr)
m_result.settings_ids.print = print_settings_id->value;
const ConfigOptionStrings* filament_settings_id = config.option<ConfigOptionStrings>("filament_settings_id");
if (filament_settings_id != nullptr)
m_result.settings_ids.filament = filament_settings_id->values;
const ConfigOptionString* printer_settings_id = config.option<ConfigOptionString>("printer_settings_id");
if (printer_settings_id != nullptr)
m_result.settings_ids.printer = printer_settings_id->value;
// BBS
m_result.extruders_count = config.option<ConfigOptionFloats>("filament_diameter")->values.size();
const ConfigOptionFloats* filament_diameters = config.option<ConfigOptionFloats>("filament_diameter");
if (filament_diameters != nullptr) {
m_result.filament_diameters.clear();
m_result.filament_diameters.resize(filament_diameters->values.size());
for (size_t i = 0; i < filament_diameters->values.size(); ++i) {
m_result.filament_diameters[i] = static_cast<float>(filament_diameters->values[i]);
}
}
if (m_result.filament_diameters.size() < m_result.extruders_count) {
for (size_t i = m_result.filament_diameters.size(); i < m_result.extruders_count; ++i) {
m_result.filament_diameters.emplace_back(DEFAULT_FILAMENT_DIAMETER);
}
}
const ConfigOptionInts *filament_HRC = config.option<ConfigOptionInts>("required_nozzle_HRC");
if (filament_HRC != nullptr) {
m_result.required_nozzle_HRC.clear();
m_result.required_nozzle_HRC.resize(filament_HRC->values.size());
for (size_t i = 0; i < filament_HRC->values.size(); ++i) { m_result.required_nozzle_HRC[i] = static_cast<float>(filament_HRC->values[i]); }
}
if (m_result.required_nozzle_HRC.size() < m_result.extruders_count) {
for (size_t i = m_result.required_nozzle_HRC.size(); i < m_result.extruders_count; ++i) { m_result.required_nozzle_HRC.emplace_back(DEFAULT_FILAMENT_HRC);
}
}
const ConfigOptionFloats* filament_densities = config.option<ConfigOptionFloats>("filament_density");
if (filament_densities != nullptr) {
m_result.filament_densities.clear();
m_result.filament_densities.resize(filament_densities->values.size());
for (size_t i = 0; i < filament_densities->values.size(); ++i) {
m_result.filament_densities[i] = static_cast<float>(filament_densities->values[i]);
}
}
if (m_result.filament_densities.size() < m_result.extruders_count) {
for (size_t i = m_result.filament_densities.size(); i < m_result.extruders_count; ++i) {
m_result.filament_densities.emplace_back(DEFAULT_FILAMENT_DENSITY);
}
}
//BBS
const ConfigOptionInts* filament_vitrification_temperature = config.option<ConfigOptionInts>("temperature_vitrification");
if (filament_vitrification_temperature != nullptr) {
m_result.filament_vitrification_temperature.clear();
m_result.filament_vitrification_temperature.resize(filament_vitrification_temperature->values.size());
for (size_t i = 0; i < filament_vitrification_temperature->values.size(); ++i) {
m_result.filament_vitrification_temperature[i] = static_cast<int>(filament_vitrification_temperature->values[i]);
}
}
if (m_result.filament_vitrification_temperature.size() < m_result.extruders_count) {
for (size_t i = m_result.filament_vitrification_temperature.size(); i < m_result.extruders_count; ++i) {
m_result.filament_vitrification_temperature.emplace_back(DEFAULT_FILAMENT_VITRIFICATION_TEMPERATURE);
}
}
const ConfigOptionPoints* extruder_offset = config.option<ConfigOptionPoints>("extruder_offset");
const ConfigOptionBool* single_extruder_multi_material = config.option<ConfigOptionBool>("single_extruder_multi_material");
if (extruder_offset != nullptr) {
//BBS: for single extruder multi material, only use the offset of first extruder
if (single_extruder_multi_material != nullptr && single_extruder_multi_material->getBool()) {
Vec2f offset = extruder_offset->values[0].cast<float>();
m_extruder_offsets.resize(m_result.extruders_count);
for (size_t i = 0; i < m_result.extruders_count; ++i) {
m_extruder_offsets[i] = { offset(0), offset(1), 0.0f };
}
}
else {
m_extruder_offsets.resize(extruder_offset->values.size());
for (size_t i = 0; i < extruder_offset->values.size(); ++i) {
Vec2f offset = extruder_offset->values[i].cast<float>();
m_extruder_offsets[i] = { offset(0), offset(1), 0.0f };
}
}
}
if (m_extruder_offsets.size() < m_result.extruders_count) {
for (size_t i = m_extruder_offsets.size(); i < m_result.extruders_count; ++i) {
m_extruder_offsets.emplace_back(DEFAULT_EXTRUDER_OFFSET);
}
}
// BBS
const ConfigOptionStrings* filament_colour = config.option<ConfigOptionStrings>("filament_colour");
if (filament_colour != nullptr && filament_colour->values.size() == m_result.extruder_colors.size()) {
for (size_t i = 0; i < m_result.extruder_colors.size(); ++i) {
if (m_result.extruder_colors[i].empty())
m_result.extruder_colors[i] = filament_colour->values[i];
}
}
if (m_result.extruder_colors.size() < m_result.extruders_count) {
for (size_t i = m_result.extruder_colors.size(); i < m_result.extruders_count; ++i) {
m_result.extruder_colors.emplace_back(std::string());
}
}
// replace missing values with default
for (size_t i = 0; i < m_result.extruder_colors.size(); ++i) {
if (m_result.extruder_colors[i].empty())
m_result.extruder_colors[i] = "#FF8000";
}
m_extruder_colors.resize(m_result.extruder_colors.size());
for (size_t i = 0; i < m_result.extruder_colors.size(); ++i) {
m_extruder_colors[i] = static_cast<unsigned char>(i);
}
m_extruder_temps.resize(m_result.extruders_count);
const ConfigOptionFloat* machine_load_filament_time = config.option<ConfigOptionFloat>("machine_load_filament_time");
if (machine_load_filament_time != nullptr)
m_time_processor.filament_load_times = static_cast<float>(machine_load_filament_time->value);
const ConfigOptionFloat* machine_unload_filament_time = config.option<ConfigOptionFloat>("machine_unload_filament_time");
if (machine_unload_filament_time != nullptr)
m_time_processor.filament_unload_times = static_cast<float>(machine_unload_filament_time->value);
if (m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware || m_flavor == gcfKlipper) {
const ConfigOptionFloats* machine_max_acceleration_x = config.option<ConfigOptionFloats>("machine_max_acceleration_x");
if (machine_max_acceleration_x != nullptr)
m_time_processor.machine_limits.machine_max_acceleration_x.values = machine_max_acceleration_x->values;
const ConfigOptionFloats* machine_max_acceleration_y = config.option<ConfigOptionFloats>("machine_max_acceleration_y");
if (machine_max_acceleration_y != nullptr)
m_time_processor.machine_limits.machine_max_acceleration_y.values = machine_max_acceleration_y->values;
const ConfigOptionFloats* machine_max_acceleration_z = config.option<ConfigOptionFloats>("machine_max_acceleration_z");
if (machine_max_acceleration_z != nullptr)
m_time_processor.machine_limits.machine_max_acceleration_z.values = machine_max_acceleration_z->values;
const ConfigOptionFloats* machine_max_acceleration_e = config.option<ConfigOptionFloats>("machine_max_acceleration_e");
if (machine_max_acceleration_e != nullptr)
m_time_processor.machine_limits.machine_max_acceleration_e.values = machine_max_acceleration_e->values;
const ConfigOptionFloats* machine_max_speed_x = config.option<ConfigOptionFloats>("machine_max_speed_x");
if (machine_max_speed_x != nullptr)
m_time_processor.machine_limits.machine_max_speed_x.values = machine_max_speed_x->values;
const ConfigOptionFloats* machine_max_speed_y = config.option<ConfigOptionFloats>("machine_max_speed_y");
if (machine_max_speed_y != nullptr)
m_time_processor.machine_limits.machine_max_speed_y.values = machine_max_speed_y->values;
const ConfigOptionFloats* machine_max_speed_z = config.option<ConfigOptionFloats>("machine_max_speed_z");
if (machine_max_speed_z != nullptr)
m_time_processor.machine_limits.machine_max_speed_z.values = machine_max_speed_z->values;
const ConfigOptionFloats* machine_max_speed_e = config.option<ConfigOptionFloats>("machine_max_speed_e");
if (machine_max_speed_e != nullptr)
m_time_processor.machine_limits.machine_max_speed_e.values = machine_max_speed_e->values;
const ConfigOptionFloats* machine_max_jerk_x = config.option<ConfigOptionFloats>("machine_max_jerk_x");
if (machine_max_jerk_x != nullptr)
m_time_processor.machine_limits.machine_max_jerk_x.values = machine_max_jerk_x->values;
const ConfigOptionFloats* machine_max_jerk_y = config.option<ConfigOptionFloats>("machine_max_jerk_y");
if (machine_max_jerk_y != nullptr)
m_time_processor.machine_limits.machine_max_jerk_y.values = machine_max_jerk_y->values;
const ConfigOptionFloats* machine_max_jerk_z = config.option<ConfigOptionFloats>("machine_max_jerkz");
if (machine_max_jerk_z != nullptr)
m_time_processor.machine_limits.machine_max_jerk_z.values = machine_max_jerk_z->values;
const ConfigOptionFloats* machine_max_jerk_e = config.option<ConfigOptionFloats>("machine_max_jerk_e");
if (machine_max_jerk_e != nullptr)
m_time_processor.machine_limits.machine_max_jerk_e.values = machine_max_jerk_e->values;
const ConfigOptionFloats* machine_max_acceleration_extruding = config.option<ConfigOptionFloats>("machine_max_acceleration_extruding");
if (machine_max_acceleration_extruding != nullptr)
m_time_processor.machine_limits.machine_max_acceleration_extruding.values = machine_max_acceleration_extruding->values;
const ConfigOptionFloats* machine_max_acceleration_retracting = config.option<ConfigOptionFloats>("machine_max_acceleration_retracting");
if (machine_max_acceleration_retracting != nullptr)
m_time_processor.machine_limits.machine_max_acceleration_retracting.values = machine_max_acceleration_retracting->values;
// Legacy Marlin does not have separate travel acceleration, it uses the 'extruding' value instead.
const ConfigOptionFloats* machine_max_acceleration_travel = config.option<ConfigOptionFloats>(m_flavor == gcfMarlinLegacy
? "machine_max_acceleration_extruding"
: "machine_max_acceleration_travel");
if (machine_max_acceleration_travel != nullptr)
m_time_processor.machine_limits.machine_max_acceleration_travel.values = machine_max_acceleration_travel->values;
const ConfigOptionFloats* machine_min_extruding_rate = config.option<ConfigOptionFloats>("machine_min_extruding_rate");
if (machine_min_extruding_rate != nullptr)
m_time_processor.machine_limits.machine_min_extruding_rate.values = machine_min_extruding_rate->values;
const ConfigOptionFloats* machine_min_travel_rate = config.option<ConfigOptionFloats>("machine_min_travel_rate");
if (machine_min_travel_rate != nullptr)
m_time_processor.machine_limits.machine_min_travel_rate.values = machine_min_travel_rate->values;
}
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
float max_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_extruding, i);
m_time_processor.machines[i].max_acceleration = max_acceleration;
m_time_processor.machines[i].acceleration = (max_acceleration > 0.0f) ? max_acceleration : DEFAULT_ACCELERATION;
float max_retract_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, i);
m_time_processor.machines[i].max_retract_acceleration = max_retract_acceleration;
m_time_processor.machines[i].retract_acceleration = (max_retract_acceleration > 0.0f) ? max_retract_acceleration : DEFAULT_RETRACT_ACCELERATION;
float max_travel_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_travel, i);
m_time_processor.machines[i].max_travel_acceleration = max_travel_acceleration;
m_time_processor.machines[i].travel_acceleration = (max_travel_acceleration > 0.0f) ? max_travel_acceleration : DEFAULT_TRAVEL_ACCELERATION;
}
if (m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware) {
const ConfigOptionBool* silent_mode = config.option<ConfigOptionBool>("silent_mode");
if (silent_mode != nullptr) {
if (silent_mode->value && m_time_processor.machine_limits.machine_max_acceleration_x.values.size() > 1)
enable_stealth_time_estimator(true);
}
}
const ConfigOptionFloat* initial_layer_print_height = config.option<ConfigOptionFloat>("initial_layer_print_height");
if (initial_layer_print_height != nullptr)
m_first_layer_height = std::abs(initial_layer_print_height->value);
const ConfigOptionFloat* printable_height = config.option<ConfigOptionFloat>("printable_height");
if (printable_height != nullptr)
m_result.printable_height = printable_height->value;
const ConfigOptionBool* spiral_vase = config.option<ConfigOptionBool>("spiral_mode");
if (spiral_vase != nullptr)
m_spiral_vase_active = spiral_vase->value;
const ConfigOptionEnumGeneric *bed_type = config.option<ConfigOptionEnumGeneric>("curr_bed_type");
if (bed_type != nullptr)
m_result.bed_type = (BedType)bed_type->value;
}
void GCodeProcessor::enable_stealth_time_estimator(bool enabled)
{
m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].enabled = enabled;
}
void GCodeProcessor::reset()
{
m_units = EUnits::Millimeters;
m_global_positioning_type = EPositioningType::Absolute;
m_e_local_positioning_type = EPositioningType::Absolute;
m_extruder_offsets = std::vector<Vec3f>(MIN_EXTRUDERS_COUNT, Vec3f::Zero());
m_flavor = gcfRepRapSprinter;
m_nozzle_volume = 0.f;
m_start_position = { 0.0f, 0.0f, 0.0f, 0.0f };
m_end_position = { 0.0f, 0.0f, 0.0f, 0.0f };
m_origin = { 0.0f, 0.0f, 0.0f, 0.0f };
m_cached_position.reset();
m_wiping = false;
m_flushing = false;
m_remaining_volume = 0.f;
// BBS: arc move related data
m_move_path_type = EMovePathType::Noop_move;
m_arc_center = Vec3f::Zero();
m_line_id = 0;
m_last_line_id = 0;
m_feedrate = 0.0f;
m_width = 0.0f;
m_height = 0.0f;
m_forced_width = 0.0f;
m_forced_height = 0.0f;
m_mm3_per_mm = 0.0f;
m_fan_speed = 0.0f;
m_extrusion_role = erNone;
m_extruder_id = 0;
m_last_extruder_id = 0;
m_extruder_colors.resize(MIN_EXTRUDERS_COUNT);
for (size_t i = 0; i < MIN_EXTRUDERS_COUNT; ++i) {
m_extruder_colors[i] = static_cast<unsigned char>(i);
}
m_extruder_temps.resize(MIN_EXTRUDERS_COUNT);
for (size_t i = 0; i < MIN_EXTRUDERS_COUNT; ++i) {
m_extruder_temps[i] = 0.0f;
}
m_highest_bed_temp = 0;
m_extruded_last_z = 0.0f;
m_zero_layer_height = 0.0f;
m_first_layer_height = 0.0f;
m_processing_start_custom_gcode = false;
m_g1_line_id = 0;
m_layer_id = 0;
m_cp_color.reset();
m_producer = EProducer::Unknown;
m_time_processor.reset();
m_used_filaments.reset();
m_result.reset();
m_result.id = ++s_result_id;
m_last_default_color_id = 0;
m_options_z_corrector.reset();
m_spiral_vase_active = false;
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_mm3_per_mm_compare.reset();
m_height_compare.reset();
m_width_compare.reset();
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
}
static inline const char* skip_whitespaces(const char *begin, const char *end) {
for (; begin != end && (*begin == ' ' || *begin == '\t'); ++ begin);
return begin;
}
static inline const char* remove_eols(const char *begin, const char *end) {
for (; begin != end && (*(end - 1) == '\r' || *(end - 1) == '\n'); -- end);
return end;
}
// Load a G-code into a stand-alone G-code viewer.
// throws CanceledException through print->throw_if_canceled() (sent by the caller as callback).
void GCodeProcessor::process_file(const std::string& filename, std::function<void()> cancel_callback)
{
CNumericLocalesSetter locales_setter;
#if ENABLE_GCODE_VIEWER_STATISTICS
m_start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// pre-processing
// parse the gcode file to detect its producer
{
m_parser.parse_file_raw(filename, [this](GCodeReader& reader, const char *begin, const char *end) {
begin = skip_whitespaces(begin, end);
if (begin != end && *begin == ';') {
// Comment.
begin = skip_whitespaces(++ begin, end);
end = remove_eols(begin, end);
if (begin != end) {
if (m_producer == EProducer::Unknown) {
if (detect_producer(std::string_view(begin, end - begin))) {
m_parser.quit_parsing();
}
} else if (std::string(begin, end).find("CONFIG_BLOCK_END") != std::string::npos) {
m_parser.quit_parsing();
}
}
}
});
m_parser.reset();
// if the gcode was produced by OrcaSlicer,
// extract the config from it
if (m_producer == EProducer::OrcaSlicer || m_producer == EProducer::Slic3rPE || m_producer == EProducer::Slic3r) {
DynamicPrintConfig config;
config.apply(FullPrintConfig::defaults());
// Silently substitute unknown values by new ones for loading configurations from OrcaSlicer's own G-code.
// Showing substitution log or errors may make sense, but we are not really reading many values from the G-code config,
// thus a probability of incorrect substitution is low and the G-code viewer is a consumer-only anyways.
config.load_from_gcode_file(filename, ForwardCompatibilitySubstitutionRule::EnableSilent);
apply_config(config);
}
else if (m_producer == EProducer::Simplify3D)
apply_config_simplify3d(filename);
else if (m_producer == EProducer::SuperSlicer)
apply_config_superslicer(filename);
}
// process gcode
m_result.filename = filename;
m_result.id = ++s_result_id;
// 1st move must be a dummy move
m_result.moves.emplace_back(GCodeProcessorResult::MoveVertex());
size_t parse_line_callback_cntr = 10000;
m_parser.parse_file(filename, [this, cancel_callback, &parse_line_callback_cntr](GCodeReader& reader, const GCodeReader::GCodeLine& line) {
if (-- parse_line_callback_cntr == 0) {
// Don't call the cancel_callback() too often, do it every at every 10000'th line.
parse_line_callback_cntr = 10000;
if (cancel_callback)
cancel_callback();
}
this->process_gcode_line(line, true);
}, m_result.lines_ends);
// Don't post-process the G-code to update time stamps.
this->finalize(false);
}
void GCodeProcessor::initialize(const std::string& filename)
{
assert(is_decimal_separator_point());
#if ENABLE_GCODE_VIEWER_STATISTICS
m_start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// process gcode
m_result.filename = filename;
m_result.id = ++s_result_id;
// 1st move must be a dummy move
m_result.moves.emplace_back(GCodeProcessorResult::MoveVertex());
}
void GCodeProcessor::process_buffer(const std::string &buffer)
{
//FIXME maybe cache GCodeLine gline to be over multiple parse_buffer() invocations.
m_parser.parse_buffer(buffer, [this](GCodeReader&, const GCodeReader::GCodeLine& line) {
this->process_gcode_line(line, false);
});
}
void GCodeProcessor::finalize(bool post_process)
{
// update width/height of wipe moves
for (GCodeProcessorResult::MoveVertex& move : m_result.moves) {
if (move.type == EMoveType::Wipe) {
move.width = Wipe_Width;
move.height = Wipe_Height;
}
}
// process the time blocks
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
TimeMachine& machine = m_time_processor.machines[i];
TimeMachine::CustomGCodeTime& gcode_time = machine.gcode_time;
machine.calculate_time();
if (gcode_time.needed && gcode_time.cache != 0.0f)
gcode_time.times.push_back({ CustomGCode::ColorChange, gcode_time.cache });
}
m_used_filaments.process_caches(this);
update_estimated_times_stats();
auto time_mode = m_result.print_statistics.modes[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)];
auto it = std::find_if(time_mode.roles_times.begin(), time_mode.roles_times.end(), [](const std::pair<ExtrusionRole, float>& item) { return erCustom == item.first; });
auto prepare_time = (it != time_mode.roles_times.end()) ? it->second : 0.0f;
//update times for results
for (size_t i = 0; i < m_result.moves.size(); i++) {
//field layer_duration contains the layer id for the move in which the layer_duration has to be set.
size_t layer_id = size_t(m_result.moves[i].layer_duration);
std::vector<float>& layer_times = m_result.print_statistics.modes[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].layers_times;
if (layer_times.size() > layer_id - 1 && layer_id > 0)
m_result.moves[i].layer_duration = layer_id == 1 ? std::max(0.f,layer_times[layer_id - 1] - prepare_time) : layer_times[layer_id - 1];
else
m_result.moves[i].layer_duration = 0;
}
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
std::cout << "\n";
m_mm3_per_mm_compare.output();
m_height_compare.output();
m_width_compare.output();
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
if (post_process){
m_time_processor.post_process(m_result.filename, m_result.moves, m_result.lines_ends, m_layer_id);
}
#if ENABLE_GCODE_VIEWER_STATISTICS
m_result.time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - m_start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
//BBS: update slice warning
update_slice_warnings();
}
float GCodeProcessor::get_time(PrintEstimatedStatistics::ETimeMode mode) const
{
return (mode < PrintEstimatedStatistics::ETimeMode::Count) ? m_time_processor.machines[static_cast<size_t>(mode)].time : 0.0f;
}
float GCodeProcessor::get_prepare_time(PrintEstimatedStatistics::ETimeMode mode) const
{
return (mode < PrintEstimatedStatistics::ETimeMode::Count) ? m_time_processor.machines[static_cast<size_t>(mode)].prepare_time : 0.0f;
}
std::string GCodeProcessor::get_time_dhm(PrintEstimatedStatistics::ETimeMode mode) const
{
return (mode < PrintEstimatedStatistics::ETimeMode::Count) ? short_time(get_time_dhms(m_time_processor.machines[static_cast<size_t>(mode)].time)) : std::string("N/A");
}
std::vector<std::pair<CustomGCode::Type, std::pair<float, float>>> GCodeProcessor::get_custom_gcode_times(PrintEstimatedStatistics::ETimeMode mode, bool include_remaining) const
{
std::vector<std::pair<CustomGCode::Type, std::pair<float, float>>> ret;
if (mode < PrintEstimatedStatistics::ETimeMode::Count) {
const TimeMachine& machine = m_time_processor.machines[static_cast<size_t>(mode)];
float total_time = 0.0f;
for (const auto& [type, time] : machine.gcode_time.times) {
float remaining = include_remaining ? machine.time - total_time : 0.0f;
ret.push_back({ type, { time, remaining } });
total_time += time;
}
}
return ret;
}
std::vector<std::pair<EMoveType, float>> GCodeProcessor::get_moves_time(PrintEstimatedStatistics::ETimeMode mode) const
{
std::vector<std::pair<EMoveType, float>> ret;
if (mode < PrintEstimatedStatistics::ETimeMode::Count) {
for (size_t i = 0; i < m_time_processor.machines[static_cast<size_t>(mode)].moves_time.size(); ++i) {
float time = m_time_processor.machines[static_cast<size_t>(mode)].moves_time[i];
if (time > 0.0f)
ret.push_back({ static_cast<EMoveType>(i), time });
}
}
return ret;
}
std::vector<std::pair<ExtrusionRole, float>> GCodeProcessor::get_roles_time(PrintEstimatedStatistics::ETimeMode mode) const
{
std::vector<std::pair<ExtrusionRole, float>> ret;
if (mode < PrintEstimatedStatistics::ETimeMode::Count) {
for (size_t i = 0; i < m_time_processor.machines[static_cast<size_t>(mode)].roles_time.size(); ++i) {
float time = m_time_processor.machines[static_cast<size_t>(mode)].roles_time[i];
if (time > 0.0f)
ret.push_back({ static_cast<ExtrusionRole>(i), time });
}
}
return ret;
}
ConfigSubstitutions load_from_superslicer_gcode_file(const std::string& filename, DynamicPrintConfig& config, ForwardCompatibilitySubstitutionRule compatibility_rule)
{
// for reference, see: ConfigBase::load_from_gcode_file()
boost::nowide::ifstream ifs(filename);
auto header_end_pos = ifs.tellg();
ConfigSubstitutionContext substitutions_ctxt(compatibility_rule);
size_t key_value_pairs = 0;
ifs.seekg(0, ifs.end);
auto file_length = ifs.tellg();
auto data_length = std::min<std::fstream::pos_type>(65535, file_length - header_end_pos);
ifs.seekg(file_length - data_length, ifs.beg);
std::vector<char> data(size_t(data_length) + 1, 0);
ifs.read(data.data(), data_length);
ifs.close();
key_value_pairs = ConfigBase::load_from_gcode_string_legacy(config, data.data(), substitutions_ctxt);
if (key_value_pairs < 80)
throw Slic3r::RuntimeError(format("Suspiciously low number of configuration values extracted from %1%: %2%", filename, key_value_pairs));
return std::move(substitutions_ctxt.substitutions);
}
void GCodeProcessor::apply_config_superslicer(const std::string& filename)
{
DynamicPrintConfig config;
config.apply(FullPrintConfig::defaults());
load_from_superslicer_gcode_file(filename, config, ForwardCompatibilitySubstitutionRule::EnableSilent);
apply_config(config);
}
std::vector<float> GCodeProcessor::get_layers_time(PrintEstimatedStatistics::ETimeMode mode) const
{
return (mode < PrintEstimatedStatistics::ETimeMode::Count) ?
m_time_processor.machines[static_cast<size_t>(mode)].layers_time :
std::vector<float>();
}
void GCodeProcessor::apply_config_simplify3d(const std::string& filename)
{
struct BedSize
{
double x{ 0.0 };
double y{ 0.0 };
bool is_defined() const { return x > 0.0 && y > 0.0; }
};
BedSize bed_size;
bool producer_detected = false;
m_parser.parse_file_raw(filename, [this, &bed_size, &producer_detected](GCodeReader& reader, const char* begin, const char* end) {
auto extract_double = [](const std::string_view cmt, const std::string& key, double& out) {
size_t pos = cmt.find(key);
if (pos != cmt.npos) {
pos = cmt.find(',', pos);
if (pos != cmt.npos) {
out = string_to_double_decimal_point(cmt.substr(pos+1));
return true;
}
}
return false;
};
auto extract_floats = [](const std::string_view cmt, const std::string& key, std::vector<float>& out) {
size_t pos = cmt.find(key);
if (pos != cmt.npos) {
pos = cmt.find(',', pos);
if (pos != cmt.npos) {
const std::string_view data_str = cmt.substr(pos + 1);
std::vector<std::string> values_str;
boost::split(values_str, data_str, boost::is_any_of("|,"), boost::token_compress_on);
for (const std::string& s : values_str) {
out.emplace_back(static_cast<float>(string_to_double_decimal_point(s)));
}
return true;
}
}
return false;
};
begin = skip_whitespaces(begin, end);
end = remove_eols(begin, end);
if (begin != end) {
if (*begin == ';') {
// Comment.
begin = skip_whitespaces(++ begin, end);
if (begin != end) {
std::string_view comment(begin, end - begin);
if (producer_detected) {
if (bed_size.x == 0.0 && comment.find("strokeXoverride") != comment.npos)
extract_double(comment, "strokeXoverride", bed_size.x);
else if (bed_size.y == 0.0 && comment.find("strokeYoverride") != comment.npos)
extract_double(comment, "strokeYoverride", bed_size.y);
else if (comment.find("filamentDiameters") != comment.npos) {
m_result.filament_diameters.clear();
extract_floats(comment, "filamentDiameters", m_result.filament_diameters);
} else if (comment.find("filamentDensities") != comment.npos) {
m_result.filament_densities.clear();
extract_floats(comment, "filamentDensities", m_result.filament_densities);
} else if (comment.find("extruderDiameter") != comment.npos) {
std::vector<float> extruder_diameters;
extract_floats(comment, "extruderDiameter", extruder_diameters);
m_result.extruders_count = extruder_diameters.size();
}
} else if (boost::starts_with(comment, "G-Code generated by Simplify3D(R)"))
producer_detected = true;
}
} else {
// Some non-empty G-code line detected, stop parsing config comments.
reader.quit_parsing();
}
}
});
if (m_result.extruders_count == 0)
m_result.extruders_count = std::max<size_t>(1, std::min(m_result.filament_diameters.size(), m_result.filament_densities.size()));
if (bed_size.is_defined()) {
m_result.printable_area = {
{ 0.0, 0.0 },
{ bed_size.x, 0.0 },
{ bed_size.x, bed_size.y },
{ 0.0, bed_size.y }
};
}
}
void GCodeProcessor::process_gcode_line(const GCodeReader::GCodeLine& line, bool producers_enabled)
{
/* std::cout << line.raw() << std::endl; */
++m_line_id;
// update start position
m_start_position = m_end_position;
const std::string_view cmd = line.cmd();
if (m_flavor == gcfKlipper)
{
if (boost::iequals(cmd, "SET_VELOCITY_LIMIT"))
{
process_SET_VELOCITY_LIMIT(line);
return;
}
}
if (cmd.length() > 1) {
// process command lines
switch (cmd[0])
{
case 'g':
case 'G':
switch (cmd.size()) {
case 2:
switch (cmd[1]) {
case '0': { process_G0(line); break; } // Move
case '1': { process_G1(line); break; } // Move
case '2':
case '3': { process_G2_G3(line); break; } // Move
//BBS
case 4: { process_G4(line); break; } // Delay
default: break;
}
break;
case 3:
switch (cmd[1]) {
case '1':
switch (cmd[2]) {
case '0': { process_G10(line); break; } // Retract
case '1': { process_G11(line); break; } // Unretract
default: break;
}
break;
case '2':
switch (cmd[2]) {
case '0': { process_G20(line); break; } // Set Units to Inches
case '1': { process_G21(line); break; } // Set Units to Millimeters
case '2': { process_G22(line); break; } // Firmware controlled retract
case '3': { process_G23(line); break; } // Firmware controlled unretract
case '8': { process_G28(line); break; } // Move to origin
case '9': { process_G29(line); break; }
default: break;
}
break;
case '9':
switch (cmd[2]) {
case '0': { process_G90(line); break; } // Set to Absolute Positioning
case '1': { process_G91(line); break; } // Set to Relative Positioning
case '2': { process_G92(line); break; } // Set Position
default: break;
}
break;
}
break;
default:
break;
}
break;
case 'm':
case 'M':
switch (cmd.size()) {
case 2:
switch (cmd[1]) {
case '1': { process_M1(line); break; } // Sleep or Conditional stop
default: break;
}
break;
case 3:
switch (cmd[1]) {
case '8':
switch (cmd[2]) {
case '2': { process_M82(line); break; } // Set extruder to absolute mode
case '3': { process_M83(line); break; } // Set extruder to relative mode
default: break;
}
break;
default:
break;
}
break;
case 4:
switch (cmd[1]) {
case '1':
switch (cmd[2]) {
case '0':
switch (cmd[3]) {
case '4': { process_M104(line); break; } // Set extruder temperature
case '6': { process_M106(line); break; } // Set fan speed
case '7': { process_M107(line); break; } // Disable fan
case '8': { process_M108(line); break; } // Set tool (Sailfish)
case '9': { process_M109(line); break; } // Set extruder temperature and wait
default: break;
}
break;
case '3':
switch (cmd[3]) {
case '2': { process_M132(line); break; } // Recall stored home offsets
case '5': { process_M135(line); break; } // Set tool (MakerWare)
default: break;
}
break;
case '4':
switch (cmd[3]) {
case '0': { process_M140(line); break; } // Set bed temperature
default: break;
}
case '9':
switch (cmd[3]) {
case '0': { process_M190(line); break; } // Wait bed temperature
case '1': { process_M191(line); break; } // Wait chamber temperature
default: break;
}
default:
break;
}
break;
case '2':
switch (cmd[2]) {
case '0':
switch (cmd[3]) {
case '1': { process_M201(line); break; } // Set max printing acceleration
case '3': { process_M203(line); break; } // Set maximum feedrate
case '4': { process_M204(line); break; } // Set default acceleration
case '5': { process_M205(line); break; } // Advanced settings
default: break;
}
break;
case '2':
switch (cmd[3]) {
case '1': { process_M221(line); break; } // Set extrude factor override percentage
default: break;
}
break;
default:
break;
}
break;
case '4':
switch (cmd[2]) {
case '0':
switch (cmd[3]) {
//BBS
case '0': { process_M400(line); break; } // BBS delay
case '1': { process_M401(line); break; } // Repetier: Store x, y and z position
case '2': { process_M402(line); break; } // Repetier: Go to stored position
default: break;
}
break;
default:
break;
}
break;
case '5':
switch (cmd[2]) {
case '6':
switch (cmd[3]) {
case '6': { process_M566(line); break; } // Set allowable instantaneous speed change
default: break;
}
break;
default:
break;
}
break;
case '7':
switch (cmd[2]) {
case '0':
switch (cmd[3]) {
case '2': { process_M702(line); break; } // Unload the current filament into the MK3 MMU2 unit at the end of print.
default: break;
}
break;
default:
break;
}
break;
default:
break;
}
break;
default:
break;
}
break;
case 't':
case 'T':
process_T(line); // Select Tool
break;
default:
break;
}
}
else {
const std::string &comment = line.raw();
if (comment.length() > 2 && comment.front() == ';')
// Process tags embedded into comments. Tag comments always start at the start of a line
// with a comment and continue with a tag without any whitespace separator.
process_tags(comment.substr(1), producers_enabled);
}
}
#if __has_include(<charconv>)
template <typename T, typename = void>
struct is_from_chars_convertible : std::false_type {};
template <typename T>
struct is_from_chars_convertible<T, std::void_t<decltype(std::from_chars(std::declval<const char*>(), std::declval<const char*>(), std::declval<T&>()))>> : std::true_type {};
#endif
// Returns true if the number was parsed correctly into out and the number spanned the whole input string.
template<typename T>
[[nodiscard]] static inline bool parse_number(const std::string_view sv, T &out)
{
// https://www.bfilipek.com/2019/07/detect-overload-from-chars.html#example-stdfromchars
#if __has_include(<charconv>)
// Visual Studio 19 supports from_chars all right.
// OSX compiler that we use only implements std::from_chars just for ints.
// GCC that we compile on does not provide <charconv> at all.
if constexpr (is_from_chars_convertible<T>::value) {
auto str_end = sv.data() + sv.size();
auto [end_ptr, error_code] = std::from_chars(sv.data(), str_end, out);
return error_code == std::errc() && end_ptr == str_end;
}
else
#endif
{
// Legacy conversion, which is costly due to having to make a copy of the string before conversion.
try {
assert(sv.size() < 1024);
assert(sv.data() != nullptr);
std::string str { sv };
size_t read = 0;
if constexpr (std::is_same_v<T, int>)
out = std::stoi(str, &read);
else if constexpr (std::is_same_v<T, long>)
out = std::stol(str, &read);
else if constexpr (std::is_same_v<T, float>)
out = string_to_double_decimal_point(str, &read);
else if constexpr (std::is_same_v<T, double>)
out = string_to_double_decimal_point(str, &read);
return str.size() == read;
} catch (...) {
return false;
}
}
}
int GCodeProcessor::get_gcode_last_filament(const std::string& gcode_str)
{
int str_size = gcode_str.size();
int start_index = 0;
int end_index = 0;
int out_filament = -1;
while (end_index < str_size) {
if (gcode_str[end_index] != '\n') {
end_index++;
continue;
}
if (end_index > start_index) {
std::string line_str = gcode_str.substr(start_index, end_index - start_index);
line_str.erase(0, line_str.find_first_not_of(" "));
line_str.erase(line_str.find_last_not_of(" ") + 1);
if (line_str.empty() || line_str[0] != 'T') {
start_index = end_index + 1;
end_index = start_index;
continue;
}
int out = -1;
if (parse_number(line_str.substr(1), out) && out >= 0 && out < 255)
out_filament = out;
}
start_index = end_index + 1;
end_index = start_index;
}
return out_filament;
}
//BBS: get last z position from gcode
bool GCodeProcessor::get_last_z_from_gcode(const std::string& gcode_str, double& z)
{
int str_size = gcode_str.size();
int start_index = 0;
int end_index = 0;
bool is_z_changed = false;
while (end_index < str_size) {
//find a full line
if (gcode_str[end_index] != '\n') {
end_index++;
continue;
}
//parse the line
if (end_index > start_index) {
std::string line_str = gcode_str.substr(start_index, end_index - start_index);
line_str.erase(0, line_str.find_first_not_of(" "));
line_str.erase(line_str.find_last_not_of(";") + 1);
line_str.erase(line_str.find_last_not_of(" ") + 1);
//command which may have z movement
if (line_str.size() > 5 && (line_str.find("G0 ") == 0
|| line_str.find("G1 ") == 0
|| line_str.find("G2 ") == 0
|| line_str.find("G3 ") == 0))
{
auto z_pos = line_str.find(" Z");
double temp_z = 0;
if (z_pos != line_str.npos
&& z_pos + 2 < line_str.size()) {
// Try to parse the numeric value.
std::string z_sub = line_str.substr(z_pos + 2);
char* c = &z_sub[0];
char* end = c + sizeof(z_sub.c_str());
auto is_end_of_word = [](char c) {
return c == ' ' || c == '\t' || c == '\r' || c == '\n' || c == 0 || c == ';';
};
auto [pend, ec] = fast_float::from_chars(c, end, temp_z);
if (pend != c && is_end_of_word(*pend)) {
// The axis value has been parsed correctly.
z = temp_z;
is_z_changed = true;
}
}
}
}
//loop to handle next line
start_index = end_index + 1;
end_index = start_index;
}
return is_z_changed;
}
void GCodeProcessor::process_tags(const std::string_view comment, bool producers_enabled)
{
// producers tags
if (producers_enabled && process_producers_tags(comment))
return;
// extrusion role tag
if (boost::starts_with(comment, reserved_tag(ETags::Role))) {
set_extrusion_role(ExtrusionEntity::string_to_role(comment.substr(reserved_tag(ETags::Role).length())));
if (m_extrusion_role == erExternalPerimeter)
m_seams_detector.activate(true);
m_processing_start_custom_gcode = (m_extrusion_role == erCustom && m_g1_line_id == 0);
return;
}
// wipe start tag
if (boost::starts_with(comment, reserved_tag(ETags::Wipe_Start))) {
m_wiping = true;
return;
}
// wipe end tag
if (boost::starts_with(comment, reserved_tag(ETags::Wipe_End))) {
m_wiping = false;
return;
}
//BBS: flush start tag
if (boost::starts_with(comment, GCodeProcessor::Flush_Start_Tag)) {
m_flushing = true;
return;
}
//BBS: flush end tag
if (boost::starts_with(comment, GCodeProcessor::Flush_End_Tag)) {
m_flushing = false;
return;
}
if (!producers_enabled || m_producer == EProducer::OrcaSlicer) {
// height tag
if (boost::starts_with(comment, reserved_tag(ETags::Height))) {
if (!parse_number(comment.substr(reserved_tag(ETags::Height).size()), m_forced_height))
BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Height (" << comment << ").";
return;
}
// width tag
if (boost::starts_with(comment, reserved_tag(ETags::Width))) {
if (!parse_number(comment.substr(reserved_tag(ETags::Width).size()), m_forced_width))
BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Width (" << comment << ").";
return;
}
}
// color change tag
if (boost::starts_with(comment, reserved_tag(ETags::Color_Change))) {
unsigned char extruder_id = 0;
static std::vector<std::string> Default_Colors = {
"#0B2C7A", // { 0.043f, 0.173f, 0.478f }, // bluish
"#1C8891", // { 0.110f, 0.533f, 0.569f },
"#AAF200", // { 0.667f, 0.949f, 0.000f },
"#F5CE0A", // { 0.961f, 0.808f, 0.039f },
"#D16830", // { 0.820f, 0.408f, 0.188f },
"#942616", // { 0.581f, 0.149f, 0.087f } // reddish
};
std::string color = Default_Colors[0];
auto is_valid_color = [](const std::string& color) {
auto is_hex_digit = [](char c) {
return ((c >= '0' && c <= '9') ||
(c >= 'A' && c <= 'F') ||
(c >= 'a' && c <= 'f'));
};
if (color[0] != '#' || color.length() != 7)
return false;
for (int i = 1; i <= 6; ++i) {
if (!is_hex_digit(color[i]))
return false;
}
return true;
};
std::vector<std::string> tokens;
boost::split(tokens, comment, boost::is_any_of(","), boost::token_compress_on);
if (tokens.size() > 1) {
if (tokens[1][0] == 'T') {
int eid;
if (!parse_number(tokens[1].substr(1), eid) || eid < 0 || eid > 255) {
BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Color_Change (" << comment << ").";
return;
}
extruder_id = static_cast<unsigned char>(eid);
}
}
if (tokens.size() > 2) {
if (is_valid_color(tokens[2]))
color = tokens[2];
}
else {
color = Default_Colors[m_last_default_color_id];
++m_last_default_color_id;
if (m_last_default_color_id == Default_Colors.size())
m_last_default_color_id = 0;
}
if (extruder_id < m_extruder_colors.size())
m_extruder_colors[extruder_id] = static_cast<unsigned char>(m_extruder_offsets.size()) + m_cp_color.counter; // color_change position in list of color for preview
++m_cp_color.counter;
if (m_cp_color.counter == UCHAR_MAX)
m_cp_color.counter = 0;
if (m_extruder_id == extruder_id) {
m_cp_color.current = m_extruder_colors[extruder_id];
store_move_vertex(EMoveType::Color_change);
CustomGCode::Item item = { static_cast<double>(m_end_position[2]), CustomGCode::ColorChange, extruder_id + 1, color, "" };
m_result.custom_gcode_per_print_z.emplace_back(item);
m_options_z_corrector.set();
process_custom_gcode_time(CustomGCode::ColorChange);
process_filaments(CustomGCode::ColorChange);
}
return;
}
// pause print tag
if (comment == reserved_tag(ETags::Pause_Print)) {
store_move_vertex(EMoveType::Pause_Print);
CustomGCode::Item item = { static_cast<double>(m_end_position[2]), CustomGCode::PausePrint, m_extruder_id + 1, "", "" };
m_result.custom_gcode_per_print_z.emplace_back(item);
m_options_z_corrector.set();
process_custom_gcode_time(CustomGCode::PausePrint);
return;
}
// custom code tag
if (comment == reserved_tag(ETags::Custom_Code)) {
store_move_vertex(EMoveType::Custom_GCode);
CustomGCode::Item item = { static_cast<double>(m_end_position[2]), CustomGCode::Custom, m_extruder_id + 1, "", "" };
m_result.custom_gcode_per_print_z.emplace_back(item);
m_options_z_corrector.set();
return;
}
// layer change tag
if (comment == reserved_tag(ETags::Layer_Change)) {
++m_layer_id;
if (m_spiral_vase_active) {
if (m_result.moves.empty() || m_result.spiral_vase_layers.empty())
// add a placeholder for layer height. the actual value will be set inside process_G1() method
m_result.spiral_vase_layers.push_back({ FLT_MAX, { 0, 0 } });
else {
const size_t move_id = m_result.moves.size() - 1;
if (!m_result.spiral_vase_layers.empty())
m_result.spiral_vase_layers.back().second.second = move_id;
// add a placeholder for layer height. the actual value will be set inside process_G1() method
m_result.spiral_vase_layers.push_back({ FLT_MAX, { move_id, move_id } });
}
}
return;
}
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
// mm3_per_mm print tag
if (boost::starts_with(comment, Mm3_Per_Mm_Tag)) {
if (! parse_number(comment.substr(Mm3_Per_Mm_Tag.size()), m_mm3_per_mm_compare.last_tag_value))
BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Mm3_Per_Mm (" << comment << ").";
return;
}
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
}
bool GCodeProcessor::process_producers_tags(const std::string_view comment)
{
switch (m_producer)
{
case EProducer::Slic3rPE:
case EProducer::Slic3r:
case EProducer::SuperSlicer:
case EProducer::OrcaSlicer: { return process_bambuslicer_tags(comment); }
case EProducer::Cura: { return process_cura_tags(comment); }
case EProducer::Simplify3D: { return process_simplify3d_tags(comment); }
case EProducer::CraftWare: { return process_craftware_tags(comment); }
case EProducer::ideaMaker: { return process_ideamaker_tags(comment); }
case EProducer::KissSlicer: { return process_kissslicer_tags(comment); }
default: { return false; }
}
}
bool GCodeProcessor::process_bambuslicer_tags(const std::string_view comment)
{
return false;
}
bool GCodeProcessor::process_cura_tags(const std::string_view comment)
{
// TYPE -> extrusion role
std::string tag = "TYPE:";
size_t pos = comment.find(tag);
if (pos != comment.npos) {
const std::string_view type = comment.substr(pos + tag.length());
if (type == "SKIRT")
set_extrusion_role(erSkirt);
else if (type == "WALL-OUTER")
set_extrusion_role(erExternalPerimeter);
else if (type == "WALL-INNER")
set_extrusion_role(erPerimeter);
else if (type == "SKIN")
set_extrusion_role(erSolidInfill);
else if (type == "FILL")
set_extrusion_role(erInternalInfill);
else if (type == "SUPPORT")
set_extrusion_role(erSupportMaterial);
else if (type == "SUPPORT-INTERFACE")
set_extrusion_role(erSupportMaterialInterface);
else if (type == "PRIME-TOWER")
set_extrusion_role(erWipeTower);
else {
set_extrusion_role(erNone);
BOOST_LOG_TRIVIAL(warning) << "GCodeProcessor found unknown extrusion role: " << type;
}
if (m_extrusion_role == erExternalPerimeter)
m_seams_detector.activate(true);
return true;
}
// flavor
tag = "FLAVOR:";
pos = comment.find(tag);
if (pos != comment.npos) {
const std::string_view flavor = comment.substr(pos + tag.length());
if (flavor == "BFB")
m_flavor = gcfMarlinLegacy; // is this correct ?
else if (flavor == "Mach3")
m_flavor = gcfMach3;
else if (flavor == "Makerbot")
m_flavor = gcfMakerWare;
else if (flavor == "UltiGCode")
m_flavor = gcfMarlinLegacy; // is this correct ?
else if (flavor == "Marlin(Volumetric)")
m_flavor = gcfMarlinLegacy; // is this correct ?
else if (flavor == "Griffin")
m_flavor = gcfMarlinLegacy; // is this correct ?
else if (flavor == "Repetier")
m_flavor = gcfRepetier;
else if (flavor == "RepRap")
m_flavor = gcfRepRapFirmware;
else if (flavor == "Marlin")
m_flavor = gcfMarlinLegacy;
else
BOOST_LOG_TRIVIAL(warning) << "GCodeProcessor found unknown flavor: " << flavor;
return true;
}
// layer
tag = "LAYER:";
pos = comment.find(tag);
if (pos != comment.npos) {
++m_layer_id;
return true;
}
return false;
}
bool GCodeProcessor::process_simplify3d_tags(const std::string_view comment)
{
// extrusion roles
// in older versions the comments did not contain the key 'feature'
std::string_view cmt = comment;
size_t pos = cmt.find(" feature");
if (pos == 0)
cmt.remove_prefix(8);
// ; skirt
pos = cmt.find(" skirt");
if (pos == 0) {
set_extrusion_role(erSkirt);
return true;
}
// ; outer perimeter
pos = cmt.find(" outer perimeter");
if (pos == 0) {
set_extrusion_role(erExternalPerimeter);
m_seams_detector.activate(true);
return true;
}
// ; inner perimeter
pos = cmt.find(" inner perimeter");
if (pos == 0) {
set_extrusion_role(erPerimeter);
return true;
}
// ; gap fill
pos = cmt.find(" gap fill");
if (pos == 0) {
set_extrusion_role(erGapFill);
return true;
}
// ; infill
pos = cmt.find(" infill");
if (pos == 0) {
set_extrusion_role(erInternalInfill);
return true;
}
// ; solid layer
pos = cmt.find(" solid layer");
if (pos == 0) {
set_extrusion_role(erSolidInfill);
return true;
}
// ; bridge
pos = cmt.find(" bridge");
if (pos == 0) {
set_extrusion_role(erBridgeInfill);
return true;
}
// ; internal bridge
pos = cmt.find(" internal bridge");
if (pos == 0) {
set_extrusion_role(erInternalBridgeInfill);
return true;
}
// ; support
pos = cmt.find(" support");
if (pos == 0) {
set_extrusion_role(erSupportMaterial);
return true;
}
// ; dense support
pos = cmt.find(" dense support");
if (pos == 0) {
set_extrusion_role(erSupportMaterialInterface);
return true;
}
// ; prime pillar
pos = cmt.find(" prime pillar");
if (pos == 0) {
set_extrusion_role(erWipeTower);
return true;
}
// ; ooze shield
pos = cmt.find(" ooze shield");
if (pos == 0) {
set_extrusion_role(erNone); // Missing mapping
return true;
}
// ; raft
pos = cmt.find(" raft");
if (pos == 0) {
set_extrusion_role(erSupportMaterial);
return true;
}
// ; internal single extrusion
pos = cmt.find(" internal single extrusion");
if (pos == 0) {
set_extrusion_role(erNone); // Missing mapping
return true;
}
// geometry
// ; tool
std::string tag = " tool";
pos = cmt.find(tag);
if (pos == 0) {
const std::string_view data = cmt.substr(pos + tag.length());
std::string h_tag = "H";
size_t h_start = data.find(h_tag);
size_t h_end = data.find_first_of(' ', h_start);
std::string w_tag = "W";
size_t w_start = data.find(w_tag);
size_t w_end = data.find_first_of(' ', w_start);
if (h_start != data.npos) {
if (!parse_number(data.substr(h_start + 1, (h_end != data.npos) ? h_end - h_start - 1 : h_end), m_forced_height))
BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Height (" << comment << ").";
}
if (w_start != data.npos) {
if (!parse_number(data.substr(w_start + 1, (w_end != data.npos) ? w_end - w_start - 1 : w_end), m_forced_width))
BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Width (" << comment << ").";
}
return true;
}
// ; layer
tag = " layer";
pos = cmt.find(tag);
if (pos == 0) {
// skip lines "; layer end"
const std::string_view data = cmt.substr(pos + tag.length());
size_t end_start = data.find("end");
if (end_start == data.npos)
++m_layer_id;
return true;
}
return false;
}
bool GCodeProcessor::process_craftware_tags(const std::string_view comment)
{
// segType -> extrusion role
std::string tag = "segType:";
size_t pos = comment.find(tag);
if (pos != comment.npos) {
const std::string_view type = comment.substr(pos + tag.length());
if (type == "Skirt")
set_extrusion_role(erSkirt);
else if (type == "Perimeter")
set_extrusion_role(erExternalPerimeter);
else if (type == "HShell")
set_extrusion_role(erNone); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
else if (type == "InnerHair")
set_extrusion_role(erNone); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
else if (type == "Loop")
set_extrusion_role(erNone); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
else if (type == "Infill")
set_extrusion_role(erInternalInfill);
else if (type == "Raft")
set_extrusion_role(erSkirt);
else if (type == "Support")
set_extrusion_role(erSupportMaterial);
else if (type == "SupportTouch")
set_extrusion_role(erSupportMaterial);
else if (type == "SoftSupport")
set_extrusion_role(erSupportMaterialInterface);
else if (type == "Pillar")
set_extrusion_role(erWipeTower);
else {
set_extrusion_role(erNone);
BOOST_LOG_TRIVIAL(warning) << "GCodeProcessor found unknown extrusion role: " << type;
}
if (m_extrusion_role == erExternalPerimeter)
m_seams_detector.activate(true);
return true;
}
// layer
pos = comment.find(" Layer #");
if (pos == 0) {
++m_layer_id;
return true;
}
return false;
}
bool GCodeProcessor::process_ideamaker_tags(const std::string_view comment)
{
// TYPE -> extrusion role
std::string tag = "TYPE:";
size_t pos = comment.find(tag);
if (pos != comment.npos) {
const std::string_view type = comment.substr(pos + tag.length());
if (type == "RAFT")
set_extrusion_role(erSkirt);
else if (type == "WALL-OUTER")
set_extrusion_role(erExternalPerimeter);
else if (type == "WALL-INNER")
set_extrusion_role(erPerimeter);
else if (type == "SOLID-FILL")
set_extrusion_role(erSolidInfill);
else if (type == "FILL")
set_extrusion_role(erInternalInfill);
else if (type == "BRIDGE")
set_extrusion_role(erBridgeInfill);
else if (type == "INTERNAL BRIDGE")
set_extrusion_role(erInternalBridgeInfill);
else if (type == "SUPPORT")
set_extrusion_role(erSupportMaterial);
else {
set_extrusion_role(erNone);
BOOST_LOG_TRIVIAL(warning) << "GCodeProcessor found unknown extrusion role: " << type;
}
if (m_extrusion_role == erExternalPerimeter)
m_seams_detector.activate(true);
return true;
}
// geometry
// width
tag = "WIDTH:";
pos = comment.find(tag);
if (pos != comment.npos) {
if (!parse_number(comment.substr(pos + tag.length()), m_forced_width))
BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Width (" << comment << ").";
return true;
}
// height
tag = "HEIGHT:";
pos = comment.find(tag);
if (pos != comment.npos) {
if (!parse_number(comment.substr(pos + tag.length()), m_forced_height))
BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Height (" << comment << ").";
return true;
}
// layer
pos = comment.find("LAYER:");
if (pos == 0) {
++m_layer_id;
return true;
}
return false;
}
bool GCodeProcessor::process_kissslicer_tags(const std::string_view comment)
{
// extrusion roles
// ; 'Raft Path'
size_t pos = comment.find(" 'Raft Path'");
if (pos == 0) {
set_extrusion_role(erSkirt);
return true;
}
// ; 'Support Interface Path'
pos = comment.find(" 'Support Interface Path'");
if (pos == 0) {
set_extrusion_role(erSupportMaterialInterface);
return true;
}
// ; 'Travel/Ironing Path'
pos = comment.find(" 'Travel/Ironing Path'");
if (pos == 0) {
set_extrusion_role(erIroning);
return true;
}
// ; 'Support (may Stack) Path'
pos = comment.find(" 'Support (may Stack) Path'");
if (pos == 0) {
set_extrusion_role(erSupportMaterial);
return true;
}
// ; 'Perimeter Path'
pos = comment.find(" 'Perimeter Path'");
if (pos == 0) {
set_extrusion_role(erExternalPerimeter);
m_seams_detector.activate(true);
return true;
}
// ; 'Pillar Path'
pos = comment.find(" 'Pillar Path'");
if (pos == 0) {
set_extrusion_role(erNone); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
return true;
}
// ; 'Destring/Wipe/Jump Path'
pos = comment.find(" 'Destring/Wipe/Jump Path'");
if (pos == 0) {
set_extrusion_role(erNone); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
return true;
}
// ; 'Prime Pillar Path'
pos = comment.find(" 'Prime Pillar Path'");
if (pos == 0) {
set_extrusion_role(erNone); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
return true;
}
// ; 'Loop Path'
pos = comment.find(" 'Loop Path'");
if (pos == 0) {
set_extrusion_role(erNone); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
return true;
}
// ; 'Crown Path'
pos = comment.find(" 'Crown Path'");
if (pos == 0) {
set_extrusion_role(erNone); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
return true;
}
// ; 'Solid Path'
pos = comment.find(" 'Solid Path'");
if (pos == 0) {
set_extrusion_role(erNone);
return true;
}
// ; 'Stacked Sparse Infill Path'
pos = comment.find(" 'Stacked Sparse Infill Path'");
if (pos == 0) {
set_extrusion_role(erInternalInfill);
return true;
}
// ; 'Sparse Infill Path'
pos = comment.find(" 'Sparse Infill Path'");
if (pos == 0) {
set_extrusion_role(erSolidInfill);
return true;
}
// geometry
// layer
pos = comment.find(" BEGIN_LAYER_");
if (pos == 0) {
++m_layer_id;
return true;
}
return false;
}
bool GCodeProcessor::detect_producer(const std::string_view comment)
{
for (const auto& [id, search_string] : Producers) {
size_t pos = comment.find(search_string);
if (pos != comment.npos) {
m_producer = id;
//BOOST_LOG_TRIVIAL(info) << "Detected gcode producer: " << search_string;
return true;
}
}
return false;
}
void GCodeProcessor::process_G0(const GCodeReader::GCodeLine& line)
{
process_G1(line);
}
void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
{
float filament_diameter = (static_cast<size_t>(m_extruder_id) < m_result.filament_diameters.size()) ? m_result.filament_diameters[m_extruder_id] : m_result.filament_diameters.back();
float filament_radius = 0.5f * filament_diameter;
float area_filament_cross_section = static_cast<float>(M_PI) * sqr(filament_radius);
auto absolute_position = [this, area_filament_cross_section](Axis axis, const GCodeReader::GCodeLine& lineG1) {
bool is_relative = (m_global_positioning_type == EPositioningType::Relative);
if (axis == E)
is_relative |= (m_e_local_positioning_type == EPositioningType::Relative);
if (lineG1.has(Slic3r::Axis(axis))) {
float lengthsScaleFactor = (m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f;
float ret = lineG1.value(Slic3r::Axis(axis)) * lengthsScaleFactor;
return is_relative ? m_start_position[axis] + ret : m_origin[axis] + ret;
}
else
return m_start_position[axis];
};
auto move_type = [this](const AxisCoords& delta_pos) {
EMoveType type = EMoveType::Noop;
if (m_wiping)
type = EMoveType::Wipe;
else if (delta_pos[E] < 0.0f)
type = (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f || delta_pos[Z] != 0.0f) ? EMoveType::Travel : EMoveType::Retract;
else if (delta_pos[E] > 0.0f) {
if (delta_pos[X] == 0.0f && delta_pos[Y] == 0.0f)
type = (delta_pos[Z] == 0.0f) ? EMoveType::Unretract : EMoveType::Travel;
else if (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f)
type = EMoveType::Extrude;
}
else if (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f || delta_pos[Z] != 0.0f)
type = EMoveType::Travel;
return type;
};
++m_g1_line_id;
// enable processing of lines M201/M203/M204/M205
m_time_processor.machine_envelope_processing_enabled = true;
// updates axes positions from line
for (unsigned char a = X; a <= E; ++a) {
m_end_position[a] = absolute_position((Axis)a, line);
}
// updates feedrate from line, if present
if (line.has_f())
m_feedrate = line.f() * MMMIN_TO_MMSEC;
// calculates movement deltas
float max_abs_delta = 0.0f;
AxisCoords delta_pos;
for (unsigned char a = X; a <= E; ++a) {
delta_pos[a] = m_end_position[a] - m_start_position[a];
max_abs_delta = std::max<float>(max_abs_delta, std::abs(delta_pos[a]));
}
// no displacement, return
if (max_abs_delta == 0.0f)
return;
EMoveType type = move_type(delta_pos);
if (type == EMoveType::Extrude) {
float delta_xyz = std::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]));
float volume_extruded_filament = area_filament_cross_section * delta_pos[E];
float area_toolpath_cross_section = volume_extruded_filament / delta_xyz;
// save extruded volume to the cache
m_used_filaments.increase_caches(volume_extruded_filament);
// volume extruded filament / tool displacement = area toolpath cross section
m_mm3_per_mm = area_toolpath_cross_section;
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_mm3_per_mm_compare.update(area_toolpath_cross_section, m_extrusion_role);
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
if (m_forced_height > 0.0f)
m_height = m_forced_height;
else {
if (m_end_position[Z] > m_extruded_last_z + EPSILON)
m_height = m_end_position[Z] - m_extruded_last_z;
}
if (m_height == 0.0f)
m_height = DEFAULT_TOOLPATH_HEIGHT;
if (m_end_position[Z] == 0.0f)
m_end_position[Z] = m_height;
m_extruded_last_z = m_end_position[Z];
m_options_z_corrector.update(m_height);
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_height_compare.update(m_height, m_extrusion_role);
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
if (m_forced_width > 0.0f)
m_width = m_forced_width;
else if (m_extrusion_role == erExternalPerimeter)
// cross section: rectangle
m_width = delta_pos[E] * static_cast<float>(M_PI * sqr(1.05f * filament_radius)) / (delta_xyz * m_height);
else if (m_extrusion_role == erBridgeInfill || m_extrusion_role == erInternalBridgeInfill || m_extrusion_role == erNone)
// cross section: circle
m_width = static_cast<float>(m_result.filament_diameters[m_extruder_id]) * std::sqrt(delta_pos[E] / delta_xyz);
else
// cross section: rectangle + 2 semicircles
m_width = delta_pos[E] * static_cast<float>(M_PI * sqr(filament_radius)) / (delta_xyz * m_height) + static_cast<float>(1.0 - 0.25 * M_PI) * m_height;
if (m_width == 0.0f)
m_width = DEFAULT_TOOLPATH_WIDTH;
// clamp width to avoid artifacts which may arise from wrong values of m_height
m_width = std::min(m_width, std::max(2.0f, 4.0f * m_height));
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_width_compare.update(m_width, m_extrusion_role);
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
}
else if (type == EMoveType::Unretract && m_flushing) {
float volume_flushed_filament = area_filament_cross_section * delta_pos[E];
if (m_remaining_volume > volume_flushed_filament)
{
m_used_filaments.update_flush_per_filament(m_last_extruder_id, volume_flushed_filament);
m_remaining_volume -= volume_flushed_filament;
}
else {
m_used_filaments.update_flush_per_filament(m_last_extruder_id, m_remaining_volume);
m_used_filaments.update_flush_per_filament(m_extruder_id, volume_flushed_filament - m_remaining_volume);
m_remaining_volume = 0.f;
}
}
// time estimate section
auto move_length = [](const AxisCoords& delta_pos) {
float sq_xyz_length = sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]);
return (sq_xyz_length > 0.0f) ? std::sqrt(sq_xyz_length) : std::abs(delta_pos[E]);
};
auto is_extrusion_only_move = [](const AxisCoords& delta_pos) {
return delta_pos[X] == 0.0f && delta_pos[Y] == 0.0f && delta_pos[Z] == 0.0f && delta_pos[E] != 0.0f;
};
float distance = move_length(delta_pos);
assert(distance != 0.0f);
float inv_distance = 1.0f / distance;
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
TimeMachine& machine = m_time_processor.machines[i];
if (!machine.enabled)
continue;
TimeMachine::State& curr = machine.curr;
TimeMachine::State& prev = machine.prev;
std::vector<TimeBlock>& blocks = machine.blocks;
curr.feedrate = (delta_pos[E] == 0.0f) ?
minimum_travel_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), m_feedrate) :
minimum_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), m_feedrate);
//BBS: calculeta enter and exit direction
curr.enter_direction = { static_cast<float>(delta_pos[X]), static_cast<float>(delta_pos[Y]), static_cast<float>(delta_pos[Z]) };
float norm = curr.enter_direction.norm();
if (!is_extrusion_only_move(delta_pos))
curr.enter_direction = curr.enter_direction / norm;
curr.exit_direction = curr.enter_direction;
TimeBlock block;
block.move_type = type;
//BBS: don't calculate travel time into extrusion path, except travel inside start and end gcode.
block.role = (type != EMoveType::Travel || m_extrusion_role == erCustom) ? m_extrusion_role : erNone;
block.distance = distance;
block.g1_line_id = m_g1_line_id;
block.layer_id = std::max<unsigned int>(1, m_layer_id);
block.flags.prepare_stage = m_processing_start_custom_gcode;
//BBS: limite the cruise according to centripetal acceleration
//Only need to handle when both prev and curr segment has movement in x-y plane
if ((prev.exit_direction(0) != 0.0f || prev.exit_direction(1) != 0.0f) &&
(curr.enter_direction(0) != 0.0f || curr.enter_direction(1) != 0.0f)) {
Vec3f v1 = prev.exit_direction;
v1(2, 0) = 0.0f;
v1.normalize();
Vec3f v2 = curr.enter_direction;
v2(2, 0) = 0.0f;
v2.normalize();
float norm_diff = (v2 - v1).norm();
//BBS: don't need to consider limitation of centripetal acceleration
//when angle changing is larger than 28.96 degree or two lines are almost collinear.
//Attention!!! these two value must be same with MC side.
if (norm_diff < 0.5f && norm_diff > 0.00001f) {
//BBS: calculate angle
float dot = v1(0) * v2(0) + v1(1) * v2(1);
float cross = v1(0) * v2(1) - v1(1) * v2(0);
float angle = float(atan2(double(cross), double(dot)));
float sin_theta_2 = sqrt((1.0f - cos(angle)) * 0.5f);
float r = sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y])) * 0.5 / sin_theta_2;
float acc = get_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i));
curr.feedrate = std::min(curr.feedrate, sqrt(acc * r));
}
}
// calculates block cruise feedrate
float min_feedrate_factor = 1.0f;
for (unsigned char a = X; a <= E; ++a) {
curr.axis_feedrate[a] = curr.feedrate * delta_pos[a] * inv_distance;
if (a == E)
curr.axis_feedrate[a] *= machine.extrude_factor_override_percentage;
curr.abs_axis_feedrate[a] = std::abs(curr.axis_feedrate[a]);
if (curr.abs_axis_feedrate[a] != 0.0f) {
float axis_max_feedrate = get_axis_max_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (axis_max_feedrate != 0.0f) min_feedrate_factor = std::min<float>(min_feedrate_factor, axis_max_feedrate / curr.abs_axis_feedrate[a]);
}
}
//BBS: update curr.feedrate
curr.feedrate *= min_feedrate_factor;
block.feedrate_profile.cruise = curr.feedrate;
if (min_feedrate_factor < 1.0f) {
for (unsigned char a = X; a <= E; ++a) {
curr.axis_feedrate[a] *= min_feedrate_factor;
curr.abs_axis_feedrate[a] *= min_feedrate_factor;
}
}
// calculates block acceleration
float acceleration =
(type == EMoveType::Travel) ? get_travel_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i)) :
(is_extrusion_only_move(delta_pos) ?
get_retract_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i)) :
get_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i)));
//BBS
for (unsigned char a = X; a <= E; ++a) {
float axis_max_acceleration = get_axis_max_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (acceleration * std::abs(delta_pos[a]) * inv_distance > axis_max_acceleration)
acceleration = axis_max_acceleration / (std::abs(delta_pos[a]) * inv_distance);
}
block.acceleration = acceleration;
// calculates block exit feedrate
curr.safe_feedrate = block.feedrate_profile.cruise;
for (unsigned char a = X; a <= E; ++a) {
float axis_max_jerk = get_axis_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (curr.abs_axis_feedrate[a] > axis_max_jerk)
curr.safe_feedrate = std::min(curr.safe_feedrate, axis_max_jerk);
}
block.feedrate_profile.exit = curr.safe_feedrate;
static const float PREVIOUS_FEEDRATE_THRESHOLD = 0.0001f;
// calculates block entry feedrate
float vmax_junction = curr.safe_feedrate;
if (!blocks.empty() && prev.feedrate > PREVIOUS_FEEDRATE_THRESHOLD) {
bool prev_speed_larger = prev.feedrate > block.feedrate_profile.cruise;
float smaller_speed_factor = prev_speed_larger ? (block.feedrate_profile.cruise / prev.feedrate) : (prev.feedrate / block.feedrate_profile.cruise);
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = prev_speed_larger ? block.feedrate_profile.cruise : prev.feedrate;
float v_factor = 1.0f;
bool limited = false;
for (unsigned char a = X; a <= E; ++a) {
// Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
if (a == X) {
Vec3f exit_v = prev.feedrate * (prev.exit_direction);
if (prev_speed_larger)
exit_v *= smaller_speed_factor;
Vec3f entry_v = block.feedrate_profile.cruise * (curr.enter_direction);
Vec3f jerk_v = entry_v - exit_v;
jerk_v = Vec3f(abs(jerk_v.x()), abs(jerk_v.y()), abs(jerk_v.z()));
Vec3f max_xyz_jerk_v = get_xyz_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i));
for (size_t i = 0; i < 3; i++)
{
if (jerk_v[i] > max_xyz_jerk_v[i]) {
v_factor *= max_xyz_jerk_v[i] / jerk_v[i];
jerk_v *= v_factor;
limited = true;
}
}
}
else if (a == Y || a == Z) {
continue;
}
else {
float v_exit = prev.axis_feedrate[a];
float v_entry = curr.axis_feedrate[a];
if (prev_speed_larger)
v_exit *= smaller_speed_factor;
if (limited) {
v_exit *= v_factor;
v_entry *= v_factor;
}
// Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
float jerk =
(v_exit > v_entry) ?
(((v_entry > 0.0f) || (v_exit < 0.0f)) ?
// coasting
(v_exit - v_entry) :
// axis reversal
std::max(v_exit, -v_entry)) :
// v_exit <= v_entry
(((v_entry < 0.0f) || (v_exit > 0.0f)) ?
// coasting
(v_entry - v_exit) :
// axis reversal
std::max(-v_exit, v_entry));
float axis_max_jerk = get_axis_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (jerk > axis_max_jerk) {
v_factor *= axis_max_jerk / jerk;
limited = true;
}
}
}
if (limited)
vmax_junction *= v_factor;
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
float vmax_junction_threshold = vmax_junction * 0.99f;
// Not coasting. The machine will stop and start the movements anyway, better to start the segment from start.
if (prev.safe_feedrate > vmax_junction_threshold && curr.safe_feedrate > vmax_junction_threshold)
vmax_junction = curr.safe_feedrate;
}
float v_allowable = max_allowable_speed(-acceleration, curr.safe_feedrate, block.distance);
block.feedrate_profile.entry = std::min(vmax_junction, v_allowable);
block.max_entry_speed = vmax_junction;
block.flags.nominal_length = (block.feedrate_profile.cruise <= v_allowable);
block.flags.recalculate = true;
block.safe_feedrate = curr.safe_feedrate;
// calculates block trapezoid
block.calculate_trapezoid();
// updates previous
prev = curr;
blocks.push_back(block);
if (blocks.size() > TimeProcessor::Planner::refresh_threshold)
machine.calculate_time(TimeProcessor::Planner::queue_size);
}
if (m_seams_detector.is_active()) {
// check for seam starting vertex
if (type == EMoveType::Extrude && m_extrusion_role == erExternalPerimeter && !m_seams_detector.has_first_vertex()) {
//BBS: m_result.moves.back().position has plate offset, must minus plate offset before calculate the real seam position
const Vec3f real_first_pos = Vec3f(m_result.moves.back().position.x() - m_x_offset, m_result.moves.back().position.y() - m_y_offset, m_result.moves.back().position.z());
m_seams_detector.set_first_vertex(real_first_pos - m_extruder_offsets[m_extruder_id]);
}
// check for seam ending vertex and store the resulting move
else if ((type != EMoveType::Extrude || (m_extrusion_role != erExternalPerimeter && m_extrusion_role != erOverhangPerimeter)) && m_seams_detector.has_first_vertex()) {
auto set_end_position = [this](const Vec3f& pos) {
m_end_position[X] = pos.x(); m_end_position[Y] = pos.y(); m_end_position[Z] = pos.z();
};
const Vec3f curr_pos(m_end_position[X], m_end_position[Y], m_end_position[Z]);
//BBS: m_result.moves.back().position has plate offset, must minus plate offset before calculate the real seam position
const Vec3f real_last_pos = Vec3f(m_result.moves.back().position.x() - m_x_offset, m_result.moves.back().position.y() - m_y_offset, m_result.moves.back().position.z());
const Vec3f new_pos = real_last_pos - m_extruder_offsets[m_extruder_id];
const std::optional<Vec3f> first_vertex = m_seams_detector.get_first_vertex();
// the threshold value = 0.0625f == 0.25 * 0.25 is arbitrary, we may find some smarter condition later
if ((new_pos - *first_vertex).squaredNorm() < 0.0625f) {
set_end_position(0.5f * (new_pos + *first_vertex));
store_move_vertex(EMoveType::Seam);
set_end_position(curr_pos);
}
m_seams_detector.activate(false);
}
}
else if (type == EMoveType::Extrude && m_extrusion_role == erExternalPerimeter) {
m_seams_detector.activate(true);
Vec3f plate_offset = {(float) m_x_offset, (float) m_y_offset, 0.0f};
m_seams_detector.set_first_vertex(m_result.moves.back().position - m_extruder_offsets[m_extruder_id] - plate_offset);
}
if (m_spiral_vase_active && !m_result.spiral_vase_layers.empty()) {
if (m_result.spiral_vase_layers.back().first == FLT_MAX && delta_pos[Z] >= 0.0)
// replace layer height placeholder with correct value
m_result.spiral_vase_layers.back().first = static_cast<float>(m_end_position[Z]);
if (!m_result.moves.empty())
m_result.spiral_vase_layers.back().second.second = m_result.moves.size() - 1;
}
// store move
store_move_vertex(type);
}
// BBS: this function is absolutely new for G2 and G3 gcode
void GCodeProcessor::process_G2_G3(const GCodeReader::GCodeLine& line)
{
float filament_diameter = (static_cast<size_t>(m_extruder_id) < m_result.filament_diameters.size()) ? m_result.filament_diameters[m_extruder_id] : m_result.filament_diameters.back();
float filament_radius = 0.5f * filament_diameter;
float area_filament_cross_section = static_cast<float>(M_PI) * sqr(filament_radius);
auto absolute_position = [this, area_filament_cross_section](Axis axis, const GCodeReader::GCodeLine& lineG2_3) {
bool is_relative = (m_global_positioning_type == EPositioningType::Relative);
if (axis == E)
is_relative |= (m_e_local_positioning_type == EPositioningType::Relative);
if (lineG2_3.has(Slic3r::Axis(axis))) {
float lengthsScaleFactor = (m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f;
float ret = lineG2_3.value(Slic3r::Axis(axis)) * lengthsScaleFactor;
if (axis == I)
return m_start_position[X] + ret;
else if (axis == J)
return m_start_position[Y] + ret;
else
return is_relative ? m_start_position[axis] + ret : m_origin[axis] + ret;
}
else {
if (axis == I)
return m_start_position[X];
else if (axis == J)
return m_start_position[Y];
else
return m_start_position[axis];
}
};
auto move_type = [this](const float& delta_E) {
if (delta_E == 0.0f)
return EMoveType::Travel;
else
return EMoveType::Extrude;
};
auto arc_interpolation = [this](const Vec3f& start_pos, const Vec3f& end_pos, const Vec3f& center_pos, const bool is_ccw) {
float radius = ArcSegment::calc_arc_radius(start_pos, center_pos);
//BBS: radius is too small to draw
if (radius <= DRAW_ARC_TOLERANCE) {
m_interpolation_points.resize(0);
return;
}
float radian_step = 2 * acos((radius - DRAW_ARC_TOLERANCE) / radius);
float num = ArcSegment::calc_arc_radian(start_pos, end_pos, center_pos, is_ccw) / radian_step;
float z_step = (num < 1)? end_pos.z() - start_pos.z() : (end_pos.z() - start_pos.z()) / num;
radian_step = is_ccw ? radian_step : -radian_step;
int interpolation_num = floor(num);
m_interpolation_points.resize(interpolation_num, Vec3f::Zero());
Vec3f delta = start_pos - center_pos;
for (auto i = 0; i < interpolation_num; i++) {
float cos_val = cos((i+1) * radian_step);
float sin_val = sin((i+1) * radian_step);
m_interpolation_points[i] = Vec3f(center_pos.x() + delta.x() * cos_val - delta.y() * sin_val,
center_pos.y() + delta.x() * sin_val + delta.y() * cos_val,
start_pos.z() + (i + 1) * z_step);
}
};
++m_g1_line_id;
//BBS: enable processing of lines M201/M203/M204/M205
m_time_processor.machine_envelope_processing_enabled = true;
//BBS: get axes positions from line
for (unsigned char a = X; a <= E; ++a) {
m_end_position[a] = absolute_position((Axis)a, line);
}
//BBS: G2 G3 line but has no I and J axis, invalid G code format
if (!line.has(I) && !line.has(J))
return;
//BBS: P mode, but xy position is not same, or P is not 1, invalid G code format
if (line.has(P) &&
(m_start_position[X] != m_end_position[X] ||
m_start_position[Y] != m_end_position[Y] ||
((int)line.p()) != 1))
return;
m_arc_center = Vec3f(absolute_position(I, line),absolute_position(J, line),m_start_position[Z]);
//BBS: G2 is CW direction, G3 is CCW direction
const std::string_view cmd = line.cmd();
m_move_path_type = (::atoi(&cmd[1]) == 2) ? EMovePathType::Arc_move_cw : EMovePathType::Arc_move_ccw;
//BBS: get arc length,interpolation points and radian in X-Y plane
Vec3f start_point = Vec3f(m_start_position[X], m_start_position[Y], m_start_position[Z]);
Vec3f end_point = Vec3f(m_end_position[X], m_end_position[Y], m_end_position[Z]);
float arc_length;
if (!line.has(P))
arc_length = ArcSegment::calc_arc_length(start_point, end_point, m_arc_center, (m_move_path_type == EMovePathType::Arc_move_ccw));
else
arc_length = ((int)line.p()) * 2 * PI * (start_point - m_arc_center).norm();
//BBS: Attention! arc_onterpolation does not support P mode while P is not 1.
arc_interpolation(start_point, end_point, m_arc_center, (m_move_path_type == EMovePathType::Arc_move_ccw));
float radian = ArcSegment::calc_arc_radian(start_point, end_point, m_arc_center, (m_move_path_type == EMovePathType::Arc_move_ccw));
Vec3f start_dir = Circle::calc_tangential_vector(start_point, m_arc_center, (m_move_path_type == EMovePathType::Arc_move_ccw));
Vec3f end_dir = Circle::calc_tangential_vector(end_point, m_arc_center, (m_move_path_type == EMovePathType::Arc_move_ccw));
//BBS: updates feedrate from line, if present
if (line.has_f())
m_feedrate = line.f() * MMMIN_TO_MMSEC;
//BBS: calculates movement deltas
AxisCoords delta_pos;
for (unsigned char a = X; a <= E; ++a) {
delta_pos[a] = m_end_position[a] - m_start_position[a];
}
//BBS: no displacement, return
if (arc_length == 0.0f && delta_pos[Z] == 0.0f)
return;
EMoveType type = move_type(delta_pos[E]);
float delta_xyz = std::sqrt(sqr(arc_length) + sqr(delta_pos[Z]));
if (type == EMoveType::Extrude) {
float volume_extruded_filament = area_filament_cross_section * delta_pos[E];
float area_toolpath_cross_section = volume_extruded_filament / delta_xyz;
//BBS: save extruded volume to the cache
m_used_filaments.increase_caches(volume_extruded_filament);
//BBS: volume extruded filament / tool displacement = area toolpath cross section
m_mm3_per_mm = area_toolpath_cross_section;
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_mm3_per_mm_compare.update(area_toolpath_cross_section, m_extrusion_role);
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
if (m_forced_height > 0.0f)
m_height = m_forced_height;
else {
if (m_end_position[Z] > m_extruded_last_z + EPSILON)
m_height = m_end_position[Z] - m_extruded_last_z;
}
if (m_height == 0.0f)
m_height = DEFAULT_TOOLPATH_HEIGHT;
if (m_end_position[Z] == 0.0f)
m_end_position[Z] = m_height;
m_extruded_last_z = m_end_position[Z];
m_options_z_corrector.update(m_height);
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_height_compare.update(m_height, m_extrusion_role);
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
if (m_forced_width > 0.0f)
m_width = m_forced_width;
else if (m_extrusion_role == erExternalPerimeter)
//BBS: cross section: rectangle
m_width = delta_pos[E] * static_cast<float>(M_PI * sqr(1.05f * filament_radius)) / (delta_xyz * m_height);
else if (m_extrusion_role == erBridgeInfill || m_extrusion_role == erInternalBridgeInfill || m_extrusion_role == erNone)
//BBS: cross section: circle
m_width = static_cast<float>(m_result.filament_diameters[m_extruder_id]) * std::sqrt(delta_pos[E] / delta_xyz);
else
//BBS: cross section: rectangle + 2 semicircles
m_width = delta_pos[E] * static_cast<float>(M_PI * sqr(filament_radius)) / (delta_xyz * m_height) + static_cast<float>(1.0 - 0.25 * M_PI) * m_height;
if (m_width == 0.0f)
m_width = DEFAULT_TOOLPATH_WIDTH;
//BBS: clamp width to avoid artifacts which may arise from wrong values of m_height
m_width = std::min(m_width, std::max(2.0f, 4.0f * m_height));
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_width_compare.update(m_width, m_extrusion_role);
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
}
//BBS: time estimate section
assert(delta_xyz != 0.0f);
float inv_distance = 1.0f / delta_xyz;
float radius = ArcSegment::calc_arc_radius(start_point, m_arc_center);
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
TimeMachine& machine = m_time_processor.machines[i];
if (!machine.enabled)
continue;
TimeMachine::State& curr = machine.curr;
TimeMachine::State& prev = machine.prev;
std::vector<TimeBlock>& blocks = machine.blocks;
curr.feedrate = (type == EMoveType::Travel) ?
minimum_travel_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), m_feedrate) :
minimum_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), m_feedrate);
//BBS: calculeta enter and exit direction
curr.enter_direction = start_dir;
curr.exit_direction = end_dir;
TimeBlock block;
block.move_type = type;
//BBS: don't calculate travel time into extrusion path, except travel inside start and end gcode.
block.role = (type != EMoveType::Travel || m_extrusion_role == erCustom) ? m_extrusion_role : erNone;
block.distance = delta_xyz;
block.g1_line_id = m_g1_line_id;
block.layer_id = std::max<unsigned int>(1, m_layer_id);
block.flags.prepare_stage = m_processing_start_custom_gcode;
// BBS: calculates block cruise feedrate
// For arc move, we need to limite the cruise according to centripetal acceleration which is
// same with acceleration in x-y plane. Because arc move part is only on x-y plane, we use x-y acceleration directly
float centripetal_acceleration = get_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i));
float max_feedrate_by_centri_acc = sqrtf(centripetal_acceleration * radius) / (arc_length * inv_distance);
curr.feedrate = std::min(curr.feedrate, max_feedrate_by_centri_acc);
float min_feedrate_factor = 1.0f;
for (unsigned char a = X; a <= E; ++a) {
if (a == X || a == Y)
//BBS: use resultant feedrate in x-y plane
curr.axis_feedrate[a] = curr.feedrate * arc_length * inv_distance;
else if (a == Z)
curr.axis_feedrate[a] = curr.feedrate * delta_pos[a] * inv_distance;
else
curr.axis_feedrate[a] *= machine.extrude_factor_override_percentage;
curr.abs_axis_feedrate[a] = std::abs(curr.axis_feedrate[a]);
if (curr.abs_axis_feedrate[a] != 0.0f) {
float axis_max_feedrate = get_axis_max_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (axis_max_feedrate != 0.0f) min_feedrate_factor = std::min<float>(min_feedrate_factor, axis_max_feedrate / curr.abs_axis_feedrate[a]);
}
}
curr.feedrate *= min_feedrate_factor;
block.feedrate_profile.cruise = curr.feedrate;
if (min_feedrate_factor < 1.0f) {
for (unsigned char a = X; a <= E; ++a) {
curr.axis_feedrate[a] *= min_feedrate_factor;
curr.abs_axis_feedrate[a] *= min_feedrate_factor;
}
}
//BBS: calculates block acceleration
float acceleration = (type == EMoveType::Travel) ?
get_travel_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i)) :
get_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i));
float min_acc_factor = 1.0f;
AxisCoords axis_acc;
for (unsigned char a = X; a <= Z; ++a) {
if (a == X || a == Y)
//BBS: use resultant feedrate in x-y plane
axis_acc[a] = acceleration * arc_length * inv_distance;
else
axis_acc[a] = acceleration * std::abs(delta_pos[a]) * inv_distance;
if (axis_acc[a] != 0.0f) {
float axis_max_acceleration = get_axis_max_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (axis_max_acceleration != 0.0f && axis_acc[a] > axis_max_acceleration) min_acc_factor = std::min<float>(min_acc_factor, axis_max_acceleration / axis_acc[a]);
}
}
block.acceleration = acceleration * min_acc_factor;
//BBS: calculates block exit feedrate
for (unsigned char a = X; a <= E; ++a) {
float axis_max_jerk = get_axis_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (curr.abs_axis_feedrate[a] > axis_max_jerk)
curr.safe_feedrate = std::min(curr.safe_feedrate, axis_max_jerk);
}
block.feedrate_profile.exit = curr.safe_feedrate;
//BBS: calculates block entry feedrate
static const float PREVIOUS_FEEDRATE_THRESHOLD = 0.0001f;
float vmax_junction = curr.safe_feedrate;
if (!blocks.empty() && prev.feedrate > PREVIOUS_FEEDRATE_THRESHOLD) {
bool prev_speed_larger = prev.feedrate > block.feedrate_profile.cruise;
float smaller_speed_factor = prev_speed_larger ? (block.feedrate_profile.cruise / prev.feedrate) : (prev.feedrate / block.feedrate_profile.cruise);
//BBS: Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = prev_speed_larger ? block.feedrate_profile.cruise : prev.feedrate;
float v_factor = 1.0f;
bool limited = false;
for (unsigned char a = X; a <= E; ++a) {
//BBS: Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
if (a == X) {
Vec3f exit_v = prev.feedrate * (prev.exit_direction);
if (prev_speed_larger)
exit_v *= smaller_speed_factor;
Vec3f entry_v = block.feedrate_profile.cruise * (curr.enter_direction);
Vec3f jerk_v = entry_v - exit_v;
jerk_v = Vec3f(abs(jerk_v.x()), abs(jerk_v.y()), abs(jerk_v.z()));
Vec3f max_xyz_jerk_v = get_xyz_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i));
for (size_t i = 0; i < 3; i++)
{
if (jerk_v[i] > max_xyz_jerk_v[i]) {
v_factor *= max_xyz_jerk_v[i] / jerk_v[i];
jerk_v *= v_factor;
limited = true;
}
}
}
else if (a == Y || a == Z) {
continue;
}
else {
float v_exit = prev.axis_feedrate[a];
float v_entry = curr.axis_feedrate[a];
if (prev_speed_larger)
v_exit *= smaller_speed_factor;
if (limited) {
v_exit *= v_factor;
v_entry *= v_factor;
}
//BBS: Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
float jerk =
(v_exit > v_entry) ?
(((v_entry > 0.0f) || (v_exit < 0.0f)) ?
//BBS: coasting
(v_exit - v_entry) :
//BBS: axis reversal
std::max(v_exit, -v_entry)) :
(((v_entry < 0.0f) || (v_exit > 0.0f)) ?
//BBS: coasting
(v_entry - v_exit) :
//BBS: axis reversal
std::max(-v_exit, v_entry));
float axis_max_jerk = get_axis_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a));
if (jerk > axis_max_jerk) {
v_factor *= axis_max_jerk / jerk;
limited = true;
}
}
}
if (limited)
vmax_junction *= v_factor;
//BBS: Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
float vmax_junction_threshold = vmax_junction * 0.99f;
//BBS: Not coasting. The machine will stop and start the movements anyway, better to start the segment from start.
if ((prev.safe_feedrate > vmax_junction_threshold) && (curr.safe_feedrate > vmax_junction_threshold))
vmax_junction = curr.safe_feedrate;
}
float v_allowable = max_allowable_speed(-acceleration, curr.safe_feedrate, block.distance);
block.feedrate_profile.entry = std::min(vmax_junction, v_allowable);
block.max_entry_speed = vmax_junction;
block.flags.nominal_length = (block.feedrate_profile.cruise <= v_allowable);
block.flags.recalculate = true;
block.safe_feedrate = curr.safe_feedrate;
//BBS: calculates block trapezoid
block.calculate_trapezoid();
//BBS: updates previous
prev = curr;
blocks.push_back(block);
if (blocks.size() > TimeProcessor::Planner::refresh_threshold)
machine.calculate_time(TimeProcessor::Planner::queue_size);
}
//BBS: seam detector
Vec3f plate_offset = {(float) m_x_offset, (float) m_y_offset, 0.0f};
if (m_seams_detector.is_active()) {
//BBS: check for seam starting vertex
if (type == EMoveType::Extrude && m_extrusion_role == erExternalPerimeter && !m_seams_detector.has_first_vertex()) {
m_seams_detector.set_first_vertex(m_result.moves.back().position - m_extruder_offsets[m_extruder_id] - plate_offset);
}
//BBS: check for seam ending vertex and store the resulting move
else if ((type != EMoveType::Extrude || (m_extrusion_role != erExternalPerimeter && m_extrusion_role != erOverhangPerimeter)) && m_seams_detector.has_first_vertex()) {
auto set_end_position = [this](const Vec3f& pos) {
m_end_position[X] = pos.x(); m_end_position[Y] = pos.y(); m_end_position[Z] = pos.z();
};
const Vec3f curr_pos(m_end_position[X], m_end_position[Y], m_end_position[Z]);
const Vec3f new_pos = m_result.moves.back().position - m_extruder_offsets[m_extruder_id] - plate_offset;
const std::optional<Vec3f> first_vertex = m_seams_detector.get_first_vertex();
//BBS: the threshold value = 0.0625f == 0.25 * 0.25 is arbitrary, we may find some smarter condition later
if ((new_pos - *first_vertex).squaredNorm() < 0.0625f) {
set_end_position(0.5f * (new_pos + *first_vertex));
store_move_vertex(EMoveType::Seam);
set_end_position(curr_pos);
}
m_seams_detector.activate(false);
}
}
else if (type == EMoveType::Extrude && m_extrusion_role == erExternalPerimeter) {
m_seams_detector.activate(true);
m_seams_detector.set_first_vertex(m_result.moves.back().position - m_extruder_offsets[m_extruder_id] - plate_offset);
}
//BBS: store move
store_move_vertex(type, m_move_path_type);
}
//BBS
void GCodeProcessor::process_G4(const GCodeReader::GCodeLine& line)
{
float value_s = 0.0;
float value_p = 0.0;
if (line.has_value('S', value_s) || line.has_value('P', value_p)) {
value_s += value_p * 0.001;
simulate_st_synchronize(value_s);
}
}
//BBS
void GCodeProcessor::process_G29(const GCodeReader::GCodeLine& line)
{
//BBS: hardcode 260 seconds for G29
//Todo: use a machine related setting when we have second kind of BBL printer
const float value_s = 260.0;
simulate_st_synchronize(value_s);
}
void GCodeProcessor::process_G10(const GCodeReader::GCodeLine& line)
{
// stores retract move
store_move_vertex(EMoveType::Retract);
}
void GCodeProcessor::process_G11(const GCodeReader::GCodeLine& line)
{
// stores unretract move
store_move_vertex(EMoveType::Unretract);
}
void GCodeProcessor::process_G20(const GCodeReader::GCodeLine& line)
{
m_units = EUnits::Inches;
}
void GCodeProcessor::process_G21(const GCodeReader::GCodeLine& line)
{
m_units = EUnits::Millimeters;
}
void GCodeProcessor::process_G22(const GCodeReader::GCodeLine& line)
{
// stores retract move
store_move_vertex(EMoveType::Retract);
}
void GCodeProcessor::process_G23(const GCodeReader::GCodeLine& line)
{
// stores unretract move
store_move_vertex(EMoveType::Unretract);
}
void GCodeProcessor::process_G28(const GCodeReader::GCodeLine& line)
{
std::string_view cmd = line.cmd();
std::string new_line_raw = { cmd.data(), cmd.size() };
bool found = false;
if (line.has('X')) {
new_line_raw += " X0";
found = true;
}
if (line.has('Y')) {
new_line_raw += " Y0";
found = true;
}
if (line.has('Z')) {
new_line_raw += " Z0";
found = true;
}
if (!found)
new_line_raw += " X0 Y0 Z0";
GCodeReader::GCodeLine new_gline;
GCodeReader reader;
reader.parse_line(new_line_raw, [&](GCodeReader& reader, const GCodeReader::GCodeLine& gline) { new_gline = gline; });
process_G1(new_gline);
}
void GCodeProcessor::process_G90(const GCodeReader::GCodeLine& line)
{
m_global_positioning_type = EPositioningType::Absolute;
}
void GCodeProcessor::process_G91(const GCodeReader::GCodeLine& line)
{
m_global_positioning_type = EPositioningType::Relative;
}
void GCodeProcessor::process_G92(const GCodeReader::GCodeLine& line)
{
float lengths_scale_factor = (m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f;
bool any_found = false;
if (line.has_x()) {
m_origin[X] = m_end_position[X] - line.x() * lengths_scale_factor;
any_found = true;
}
if (line.has_y()) {
m_origin[Y] = m_end_position[Y] - line.y() * lengths_scale_factor;
any_found = true;
}
if (line.has_z()) {
m_origin[Z] = m_end_position[Z] - line.z() * lengths_scale_factor;
any_found = true;
}
if (line.has_e()) {
// extruder coordinate can grow to the point where its float representation does not allow for proper addition with small increments,
// we set the value taken from the G92 line as the new current position for it
m_end_position[E] = line.e() * lengths_scale_factor;
any_found = true;
}
else
simulate_st_synchronize();
if (!any_found && !line.has_unknown_axis()) {
// The G92 may be called for axes that PrusaSlicer does not recognize, for example see GH issue #3510,
// where G92 A0 B0 is called although the extruder axis is till E.
for (unsigned char a = X; a <= E; ++a) {
m_origin[a] = m_end_position[a];
}
}
}
void GCodeProcessor::process_M1(const GCodeReader::GCodeLine& line)
{
simulate_st_synchronize();
}
void GCodeProcessor::process_M82(const GCodeReader::GCodeLine& line)
{
m_e_local_positioning_type = EPositioningType::Absolute;
}
void GCodeProcessor::process_M83(const GCodeReader::GCodeLine& line)
{
m_e_local_positioning_type = EPositioningType::Relative;
}
void GCodeProcessor::process_M104(const GCodeReader::GCodeLine& line)
{
float new_temp;
if (line.has_value('S', new_temp))
m_extruder_temps[m_extruder_id] = new_temp;
}
void GCodeProcessor::process_M106(const GCodeReader::GCodeLine& line)
{
//BBS: for Bambu machine ,we both use M106 P1 and M106 to indicate the part cooling fan
//So we must not ignore M106 P1
if (!line.has('P') || (line.has('P') && line.p() == 1.0f)) {
// The absence of P means the print cooling fan, so ignore anything else.
float new_fan_speed;
if (line.has_value('S', new_fan_speed))
m_fan_speed = (100.0f / 255.0f) * new_fan_speed;
else
m_fan_speed = 100.0f;
}
}
void GCodeProcessor::process_M107(const GCodeReader::GCodeLine& line)
{
m_fan_speed = 0.0f;
}
void GCodeProcessor::process_M108(const GCodeReader::GCodeLine& line)
{
// These M-codes are used by Sailfish to change active tool.
// They have to be processed otherwise toolchanges will be unrecognised
if (m_flavor != gcfSailfish)
return;
std::string cmd = line.raw();
size_t pos = cmd.find("T");
if (pos != std::string::npos)
process_T(cmd.substr(pos));
}
void GCodeProcessor::process_M109(const GCodeReader::GCodeLine& line)
{
float new_temp;
if (line.has_value('R', new_temp)) {
float val;
if (line.has_value('T', val)) {
size_t eid = static_cast<size_t>(val);
if (eid < m_extruder_temps.size())
m_extruder_temps[eid] = new_temp;
}
else
m_extruder_temps[m_extruder_id] = new_temp;
}
else if (line.has_value('S', new_temp))
m_extruder_temps[m_extruder_id] = new_temp;
}
void GCodeProcessor::process_M132(const GCodeReader::GCodeLine& line)
{
// This command is used by Makerbot to load the current home position from EEPROM
// see: https://github.com/makerbot/s3g/blob/master/doc/GCodeProtocol.md
if (line.has('X'))
m_origin[X] = 0.0f;
if (line.has('Y'))
m_origin[Y] = 0.0f;
if (line.has('Z'))
m_origin[Z] = 0.0f;
if (line.has('E'))
m_origin[E] = 0.0f;
}
void GCodeProcessor::process_M135(const GCodeReader::GCodeLine& line)
{
// These M-codes are used by MakerWare to change active tool.
// They have to be processed otherwise toolchanges will be unrecognised
if (m_flavor != gcfMakerWare)
return;
std::string cmd = line.raw();
size_t pos = cmd.find("T");
if (pos != std::string::npos)
process_T(cmd.substr(pos));
}
void GCodeProcessor::process_M140(const GCodeReader::GCodeLine& line)
{
float new_temp;
if (line.has_value('S', new_temp))
m_highest_bed_temp = m_highest_bed_temp < (int)new_temp ? (int)new_temp : m_highest_bed_temp;
}
void GCodeProcessor::process_M190(const GCodeReader::GCodeLine& line)
{
float new_temp;
if (line.has_value('S', new_temp))
m_highest_bed_temp = m_highest_bed_temp < (int)new_temp ? (int)new_temp : m_highest_bed_temp;
}
void GCodeProcessor::process_M191(const GCodeReader::GCodeLine& line)
{
float chamber_temp = 0;
const float wait_chamber_temp_time = 720.0;
// BBS: when chamber_temp>40,caculate time required for heating
if (line.has_value('S', chamber_temp) && chamber_temp > 40)
simulate_st_synchronize(wait_chamber_temp_time);
}
void GCodeProcessor::process_M201(const GCodeReader::GCodeLine& line)
{
// see http://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration
float factor = ((m_flavor != gcfRepRapSprinter && m_flavor != gcfRepRapFirmware) && m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f;
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
if (static_cast<PrintEstimatedStatistics::ETimeMode>(i) == PrintEstimatedStatistics::ETimeMode::Normal ||
m_time_processor.machine_envelope_processing_enabled) {
if (line.has_x())
set_option_value(m_time_processor.machine_limits.machine_max_acceleration_x, i, line.x() * factor);
if (line.has_y())
set_option_value(m_time_processor.machine_limits.machine_max_acceleration_y, i, line.y() * factor);
if (line.has_z())
set_option_value(m_time_processor.machine_limits.machine_max_acceleration_z, i, line.z() * factor);
if (line.has_e())
set_option_value(m_time_processor.machine_limits.machine_max_acceleration_e, i, line.e() * factor);
}
}
}
void GCodeProcessor::process_M203(const GCodeReader::GCodeLine& line)
{
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
if (m_flavor == gcfRepetier)
return;
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
// http://smoothieware.org/supported-g-codes
float factor = (m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware || m_flavor == gcfSmoothie || m_flavor == gcfKlipper) ? 1.0f : MMMIN_TO_MMSEC;
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
if (static_cast<PrintEstimatedStatistics::ETimeMode>(i) == PrintEstimatedStatistics::ETimeMode::Normal ||
m_time_processor.machine_envelope_processing_enabled) {
if (line.has_x())
set_option_value(m_time_processor.machine_limits.machine_max_speed_x, i, line.x() * factor);
if (line.has_y())
set_option_value(m_time_processor.machine_limits.machine_max_speed_y, i, line.y() * factor);
if (line.has_z())
set_option_value(m_time_processor.machine_limits.machine_max_speed_z, i, line.z() * factor);
if (line.has_e())
set_option_value(m_time_processor.machine_limits.machine_max_speed_e, i, line.e() * factor);
}
}
}
void GCodeProcessor::process_M204(const GCodeReader::GCodeLine& line)
{
float value;
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
if (static_cast<PrintEstimatedStatistics::ETimeMode>(i) == PrintEstimatedStatistics::ETimeMode::Normal ||
m_time_processor.machine_envelope_processing_enabled) {
if (line.has_value('S', value)) {
// Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware
// It is also generated by PrusaSlicer to control acceleration per extrusion type
// (perimeters, first layer etc) when 'Marlin (legacy)' flavor is used.
set_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
set_travel_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
if (line.has_value('T', value))
set_retract_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
}
else {
// New acceleration format, compatible with the upstream Marlin.
if (line.has_value('P', value))
set_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
if (line.has_value('R', value))
set_retract_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
if (line.has_value('T', value))
// Interpret the T value as the travel acceleration in the new Marlin format.
set_travel_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
}
}
}
}
void GCodeProcessor::process_M205(const GCodeReader::GCodeLine& line)
{
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
if (static_cast<PrintEstimatedStatistics::ETimeMode>(i) == PrintEstimatedStatistics::ETimeMode::Normal ||
m_time_processor.machine_envelope_processing_enabled) {
if (line.has_x()) {
float max_jerk = line.x();
set_option_value(m_time_processor.machine_limits.machine_max_jerk_x, i, max_jerk);
set_option_value(m_time_processor.machine_limits.machine_max_jerk_y, i, max_jerk);
}
if (line.has_y())
set_option_value(m_time_processor.machine_limits.machine_max_jerk_y, i, line.y());
if (line.has_z())
set_option_value(m_time_processor.machine_limits.machine_max_jerk_z, i, line.z());
if (line.has_e())
set_option_value(m_time_processor.machine_limits.machine_max_jerk_e, i, line.e());
float value;
if (line.has_value('S', value))
set_option_value(m_time_processor.machine_limits.machine_min_extruding_rate, i, value);
if (line.has_value('T', value))
set_option_value(m_time_processor.machine_limits.machine_min_travel_rate, i, value);
}
}
}
void GCodeProcessor::process_SET_VELOCITY_LIMIT(const GCodeReader::GCodeLine& line)
{
// handle SQUARE_CORNER_VELOCITY
std::regex pattern("\\sSQUARE_CORNER_VELOCITY\\s*=\\s*([0-9]*\\.*[0-9]*)");
std::smatch matches;
if (std::regex_search(line.raw(), matches, pattern) && matches.size() == 2) {
float _jerk = 0;
try
{
_jerk = std::stof(matches[1]);
}
catch (...){}
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
set_option_value(m_time_processor.machine_limits.machine_max_jerk_x, i, _jerk);
set_option_value(m_time_processor.machine_limits.machine_max_jerk_y, i, _jerk);
}
}
pattern = std::regex("\\sACCEL\\s*=\\s*([0-9]*\\.*[0-9]*)");
if (std::regex_search(line.raw(), matches, pattern) && matches.size() == 2) {
float _accl = 0;
try
{
_accl = std::stof(matches[1]);
}
catch (...) {}
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
set_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), _accl);
set_travel_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), _accl);
}
}
pattern = std::regex("\\sVELOCITY\\s*=\\s*([0-9]*\\.*[0-9]*)");
if (std::regex_search(line.raw(), matches, pattern) && matches.size() == 2) {
float _speed = 0;
try
{
_speed = std::stof(matches[1]);
}
catch (...) {}
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
set_option_value(m_time_processor.machine_limits.machine_max_speed_x, i, _speed);
set_option_value(m_time_processor.machine_limits.machine_max_speed_y, i, _speed);
}
}
}
void GCodeProcessor::process_M221(const GCodeReader::GCodeLine& line)
{
float value_s;
float value_t;
if (line.has_value('S', value_s) && !line.has_value('T', value_t)) {
value_s *= 0.01f;
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
m_time_processor.machines[i].extrude_factor_override_percentage = value_s;
}
}
}
void GCodeProcessor::process_M400(const GCodeReader::GCodeLine& line)
{
float value_s = 0.0;
float value_p = 0.0;
if (line.has_value('S', value_s) || line.has_value('P', value_p)) {
value_s += value_p * 0.001;
simulate_st_synchronize(value_s);
}
}
void GCodeProcessor::process_M401(const GCodeReader::GCodeLine& line)
{
if (m_flavor != gcfRepetier)
return;
for (unsigned char a = 0; a <= 3; ++a) {
m_cached_position.position[a] = m_start_position[a];
}
m_cached_position.feedrate = m_feedrate;
}
void GCodeProcessor::process_M402(const GCodeReader::GCodeLine& line)
{
if (m_flavor != gcfRepetier)
return;
// see for reference:
// https://github.com/repetier/Repetier-Firmware/blob/master/src/ArduinoAVR/Repetier/Printer.cpp
// void Printer::GoToMemoryPosition(bool x, bool y, bool z, bool e, float feed)
bool has_xyz = !(line.has('X') || line.has('Y') || line.has('Z'));
float p = FLT_MAX;
for (unsigned char a = X; a <= Z; ++a) {
if (has_xyz || line.has(a)) {
p = m_cached_position.position[a];
if (p != FLT_MAX)
m_start_position[a] = p;
}
}
p = m_cached_position.position[E];
if (p != FLT_MAX)
m_start_position[E] = p;
p = FLT_MAX;
if (!line.has_value(4, p))
p = m_cached_position.feedrate;
if (p != FLT_MAX)
m_feedrate = p;
}
void GCodeProcessor::process_M566(const GCodeReader::GCodeLine& line)
{
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
if (line.has_x())
set_option_value(m_time_processor.machine_limits.machine_max_jerk_x, i, line.x() * MMMIN_TO_MMSEC);
if (line.has_y())
set_option_value(m_time_processor.machine_limits.machine_max_jerk_y, i, line.y() * MMMIN_TO_MMSEC);
if (line.has_z())
set_option_value(m_time_processor.machine_limits.machine_max_jerk_z, i, line.z() * MMMIN_TO_MMSEC);
if (line.has_e())
set_option_value(m_time_processor.machine_limits.machine_max_jerk_e, i, line.e() * MMMIN_TO_MMSEC);
}
}
void GCodeProcessor::process_M702(const GCodeReader::GCodeLine& line)
{
if (line.has('C')) {
// MK3 MMU2 specific M code:
// M702 C is expected to be sent by the custom end G-code when finalizing a print.
// The MK3 unit shall unload and park the active filament into the MMU2 unit.
m_time_processor.extruder_unloaded = true;
simulate_st_synchronize(get_filament_unload_time(m_extruder_id));
}
}
void GCodeProcessor::process_T(const GCodeReader::GCodeLine& line)
{
process_T(line.cmd());
}
void GCodeProcessor::process_T(const std::string_view command)
{
if (command.length() > 1) {
int eid = 0;
if (! parse_number(command.substr(1), eid) || eid < 0 || eid > 254) {
//BBS: T255, T1000 and T1100 is used as special command for BBL machine and does not cost time. return directly
if ((m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware) && (command == "Tx" || command == "Tc" || command == "T?" ||
eid == 1000 || eid == 1100 || eid == 255))
return;
// T-1 is a valid gcode line for RepRap Firmwares (used to deselects all tools)
if ((m_flavor != gcfRepRapFirmware && m_flavor != gcfRepRapSprinter) || eid != -1)
BOOST_LOG_TRIVIAL(error) << "Invalid T command (" << command << ").";
} else {
unsigned char id = static_cast<unsigned char>(eid);
if (m_extruder_id != id) {
if (id >= m_result.extruders_count)
BOOST_LOG_TRIVIAL(error) << "Invalid T command (" << command << ").";
else {
m_last_extruder_id = m_extruder_id;
process_filaments(CustomGCode::ToolChange);
m_extruder_id = id;
m_cp_color.current = m_extruder_colors[id];
//BBS: increase filament change times
m_result.lock();
m_result.print_statistics.total_filamentchanges++;
m_result.unlock();
// Specific to the MK3 MMU2:
// The initial value of extruder_unloaded is set to true indicating
// that the filament is parked in the MMU2 unit and there is nothing to be unloaded yet.
float extra_time = get_filament_unload_time(static_cast<size_t>(m_last_extruder_id));
m_time_processor.extruder_unloaded = false;
extra_time += get_filament_load_time(static_cast<size_t>(m_extruder_id));
simulate_st_synchronize(extra_time);
}
// store tool change move
store_move_vertex(EMoveType::Tool_change);
}
}
}
}
void GCodeProcessor::store_move_vertex(EMoveType type, EMovePathType path_type)
{
m_last_line_id = (type == EMoveType::Color_change || type == EMoveType::Pause_Print || type == EMoveType::Custom_GCode) ?
m_line_id + 1 :
((type == EMoveType::Seam) ? m_last_line_id : m_line_id);
//BBS: apply plate's and extruder's offset to arc interpolation points
if (path_type == EMovePathType::Arc_move_cw ||
path_type == EMovePathType::Arc_move_ccw) {
for (size_t i = 0; i < m_interpolation_points.size(); i++)
m_interpolation_points[i] =
Vec3f(m_interpolation_points[i].x() + m_x_offset,
m_interpolation_points[i].y() + m_y_offset,
m_processing_start_custom_gcode ? m_first_layer_height : m_interpolation_points[i].z()) +
m_extruder_offsets[m_extruder_id];
}
m_result.moves.push_back({
m_last_line_id,
type,
m_extrusion_role,
m_extruder_id,
m_cp_color.current,
//BBS: add plate's offset to the rendering vertices
Vec3f(m_end_position[X] + m_x_offset, m_end_position[Y] + m_y_offset, m_processing_start_custom_gcode ? m_first_layer_height : m_end_position[Z]) + m_extruder_offsets[m_extruder_id],
static_cast<float>(m_end_position[E] - m_start_position[E]),
m_feedrate,
m_width,
m_height,
m_mm3_per_mm,
m_fan_speed,
m_extruder_temps[m_extruder_id],
static_cast<float>(m_result.moves.size()),
static_cast<float>(m_layer_id), //layer_duration: set later
//BBS: add arc move related data
path_type,
Vec3f(m_arc_center(0, 0) + m_x_offset, m_arc_center(1, 0) + m_y_offset, m_arc_center(2, 0)) + m_extruder_offsets[m_extruder_id],
m_interpolation_points,
});
// stores stop time placeholders for later use
if (type == EMoveType::Color_change || type == EMoveType::Pause_Print) {
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
TimeMachine& machine = m_time_processor.machines[i];
if (!machine.enabled)
continue;
machine.stop_times.push_back({ m_g1_line_id, 0.0f });
}
}
}
void GCodeProcessor::set_extrusion_role(ExtrusionRole role)
{
m_used_filaments.process_role_cache(this);
m_extrusion_role = role;
}
float GCodeProcessor::minimum_feedrate(PrintEstimatedStatistics::ETimeMode mode, float feedrate) const
{
if (m_time_processor.machine_limits.machine_min_extruding_rate.empty())
return feedrate;
return std::max(feedrate, get_option_value(m_time_processor.machine_limits.machine_min_extruding_rate, static_cast<size_t>(mode)));
}
float GCodeProcessor::minimum_travel_feedrate(PrintEstimatedStatistics::ETimeMode mode, float feedrate) const
{
if (m_time_processor.machine_limits.machine_min_travel_rate.empty())
return feedrate;
return std::max(feedrate, get_option_value(m_time_processor.machine_limits.machine_min_travel_rate, static_cast<size_t>(mode)));
}
float GCodeProcessor::get_axis_max_feedrate(PrintEstimatedStatistics::ETimeMode mode, Axis axis) const
{
switch (axis)
{
case X: { return get_option_value(m_time_processor.machine_limits.machine_max_speed_x, static_cast<size_t>(mode)); }
case Y: { return get_option_value(m_time_processor.machine_limits.machine_max_speed_y, static_cast<size_t>(mode)); }
case Z: { return get_option_value(m_time_processor.machine_limits.machine_max_speed_z, static_cast<size_t>(mode)); }
case E: { return get_option_value(m_time_processor.machine_limits.machine_max_speed_e, static_cast<size_t>(mode)); }
default: { return 0.0f; }
}
}
float GCodeProcessor::get_axis_max_acceleration(PrintEstimatedStatistics::ETimeMode mode, Axis axis) const
{
switch (axis)
{
case X: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_x, static_cast<size_t>(mode)); }
case Y: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_y, static_cast<size_t>(mode)); }
case Z: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_z, static_cast<size_t>(mode)); }
case E: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_e, static_cast<size_t>(mode)); }
default: { return 0.0f; }
}
}
float GCodeProcessor::get_axis_max_jerk(PrintEstimatedStatistics::ETimeMode mode, Axis axis) const
{
switch (axis)
{
case X: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_x, static_cast<size_t>(mode)); }
case Y: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_y, static_cast<size_t>(mode)); }
case Z: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_z, static_cast<size_t>(mode)); }
case E: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_e, static_cast<size_t>(mode)); }
default: { return 0.0f; }
}
}
Vec3f GCodeProcessor::get_xyz_max_jerk(PrintEstimatedStatistics::ETimeMode mode) const
{
return Vec3f(get_option_value(m_time_processor.machine_limits.machine_max_jerk_x, static_cast<size_t>(mode)),
get_option_value(m_time_processor.machine_limits.machine_max_jerk_y, static_cast<size_t>(mode)),
get_option_value(m_time_processor.machine_limits.machine_max_jerk_z, static_cast<size_t>(mode)));
}
float GCodeProcessor::get_retract_acceleration(PrintEstimatedStatistics::ETimeMode mode) const
{
size_t id = static_cast<size_t>(mode);
return (id < m_time_processor.machines.size()) ? m_time_processor.machines[id].retract_acceleration : DEFAULT_RETRACT_ACCELERATION;
}
void GCodeProcessor::set_retract_acceleration(PrintEstimatedStatistics::ETimeMode mode, float value)
{
size_t id = static_cast<size_t>(mode);
if (id < m_time_processor.machines.size()) {
m_time_processor.machines[id].retract_acceleration = (m_time_processor.machines[id].max_retract_acceleration == 0.0f) ? value :
// Clamp the acceleration with the maximum.
std::min(value, m_time_processor.machines[id].max_retract_acceleration);
}
}
float GCodeProcessor::get_acceleration(PrintEstimatedStatistics::ETimeMode mode) const
{
size_t id = static_cast<size_t>(mode);
return (id < m_time_processor.machines.size()) ? m_time_processor.machines[id].acceleration : DEFAULT_ACCELERATION;
}
void GCodeProcessor::set_acceleration(PrintEstimatedStatistics::ETimeMode mode, float value)
{
size_t id = static_cast<size_t>(mode);
if (id < m_time_processor.machines.size()) {
m_time_processor.machines[id].acceleration = (m_time_processor.machines[id].max_acceleration == 0.0f) ? value :
// Clamp the acceleration with the maximum.
std::min(value, m_time_processor.machines[id].max_acceleration);
}
}
float GCodeProcessor::get_travel_acceleration(PrintEstimatedStatistics::ETimeMode mode) const
{
size_t id = static_cast<size_t>(mode);
return (id < m_time_processor.machines.size()) ? m_time_processor.machines[id].travel_acceleration : DEFAULT_TRAVEL_ACCELERATION;
}
void GCodeProcessor::set_travel_acceleration(PrintEstimatedStatistics::ETimeMode mode, float value)
{
size_t id = static_cast<size_t>(mode);
if (id < m_time_processor.machines.size()) {
m_time_processor.machines[id].travel_acceleration = (m_time_processor.machines[id].max_travel_acceleration == 0.0f) ? value :
// Clamp the acceleration with the maximum.
std::min(value, m_time_processor.machines[id].max_travel_acceleration);
}
}
float GCodeProcessor::get_filament_load_time(size_t extruder_id)
{
//BBS: change load time to machine config and all extruder has same value
return m_time_processor.extruder_unloaded ? 0.0f : m_time_processor.filament_load_times;
}
float GCodeProcessor::get_filament_unload_time(size_t extruder_id)
{
//BBS: change unload time to machine config and all extruder has same value
return m_time_processor.extruder_unloaded ? 0.0f : m_time_processor.filament_unload_times;
}
//BBS
int GCodeProcessor::get_filament_vitrification_temperature(size_t extrude_id)
{
if (extrude_id < m_result.filament_vitrification_temperature.size())
return m_result.filament_vitrification_temperature[extrude_id];
else
return 0;
}
void GCodeProcessor::process_custom_gcode_time(CustomGCode::Type code)
{
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
TimeMachine& machine = m_time_processor.machines[i];
if (!machine.enabled)
continue;
TimeMachine::CustomGCodeTime& gcode_time = machine.gcode_time;
gcode_time.needed = true;
//FIXME this simulates st_synchronize! is it correct?
// The estimated time may be longer than the real print time.
machine.simulate_st_synchronize();
if (gcode_time.cache != 0.0f) {
gcode_time.times.push_back({ code, gcode_time.cache });
gcode_time.cache = 0.0f;
}
}
}
void GCodeProcessor::process_filaments(CustomGCode::Type code)
{
if (code == CustomGCode::ColorChange)
m_used_filaments.process_color_change_cache();
if (code == CustomGCode::ToolChange) {
m_used_filaments.process_extruder_cache(this);
//BBS: reset remaining filament
m_remaining_volume = m_nozzle_volume;
}
}
void GCodeProcessor::simulate_st_synchronize(float additional_time)
{
for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) {
m_time_processor.machines[i].simulate_st_synchronize(additional_time);
}
}
void GCodeProcessor::update_estimated_times_stats()
{
auto update_mode = [this](PrintEstimatedStatistics::ETimeMode mode) {
PrintEstimatedStatistics::Mode& data = m_result.print_statistics.modes[static_cast<size_t>(mode)];
data.time = get_time(mode);
data.prepare_time = get_prepare_time(mode);
data.custom_gcode_times = get_custom_gcode_times(mode, true);
data.moves_times = get_moves_time(mode);
data.roles_times = get_roles_time(mode);
data.layers_times = get_layers_time(mode);
};
update_mode(PrintEstimatedStatistics::ETimeMode::Normal);
if (m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].enabled)
update_mode(PrintEstimatedStatistics::ETimeMode::Stealth);
else
m_result.print_statistics.modes[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].reset();
m_result.print_statistics.volumes_per_color_change = m_used_filaments.volumes_per_color_change;
m_result.print_statistics.volumes_per_extruder = m_used_filaments.volumes_per_extruder;
m_result.print_statistics.flush_per_filament = m_used_filaments.flush_per_filament;
m_result.print_statistics.used_filaments_per_role = m_used_filaments.filaments_per_role;
}
//BBS: ugly code...
void GCodeProcessor::update_slice_warnings()
{
m_result.warnings.clear();
auto get_used_extruders = [this]() {
std::vector<size_t> used_extruders;
used_extruders.reserve(m_used_filaments.volumes_per_extruder.size());
for (auto item : m_used_filaments.volumes_per_extruder) {
used_extruders.push_back(item.first);
}
return used_extruders;
};
auto used_extruders = get_used_extruders();
assert(!used_extruders.empty());
GCodeProcessorResult::SliceWarning warning;
warning.level = 1;
if (m_highest_bed_temp != 0) {
for (size_t i = 0; i < used_extruders.size(); i++) {
int temperature = get_filament_vitrification_temperature(used_extruders[i]);
if (temperature != 0 && m_highest_bed_temp > temperature)
warning.params.push_back(std::to_string(used_extruders[i]));
}
}
if (!warning.params.empty()) {
warning.msg = BED_TEMP_TOO_HIGH_THAN_FILAMENT;
warning.error_code = "1000C001";
m_result.warnings.push_back(warning);
}
//bbs:HRC checker
warning.params.clear();
warning.level=1;
int nozzle_hrc = m_result.nozzle_hrc;
if(nozzle_hrc <= 0)
nozzle_hrc = Nozzle_Type_To_HRC.find(m_result.nozzle_type)->second;
if (nozzle_hrc!=0) {
for (size_t i = 0; i < used_extruders.size(); i++) {
int HRC=0;
if (used_extruders[i] < m_result.required_nozzle_HRC.size())
HRC = m_result.required_nozzle_HRC[used_extruders[i]];
if (HRC != 0 && (nozzle_hrc<HRC))
warning.params.push_back(std::to_string(used_extruders[i]));
}
}
if (!warning.params.empty()) {
warning.msg = NOZZLE_HRC_CHECKER;
warning.error_code = "1000C002";
m_result.warnings.push_back(warning);
}
// bbs:HRC checker
warning.params.clear();
warning.level = 1;
if (!m_result.support_traditional_timelapse) {
warning.msg = NOT_SUPPORT_TRADITIONAL_TIMELAPSE;
warning.error_code = "1000C003";
m_result.warnings.push_back(warning);
}
if (m_result.timelapse_warning_code != 0) {
if (m_result.timelapse_warning_code & 1) {
warning.msg = NOT_GENERATE_TIMELAPSE;
warning.error_code = "1001C001";
m_result.warnings.push_back(warning);
}
if ((m_result.timelapse_warning_code >> 1) & 1) {
warning.msg = NOT_GENERATE_TIMELAPSE;
warning.error_code = "1001C002";
m_result.warnings.push_back(warning);
}
}
m_result.warnings.shrink_to_fit();
}
} /* namespace Slic3r */