salt.wei aab8a12801 ENH: add arachne engine for narrow internal solid infill
ConcentricGapFill pattern was used for internal narrow
solid infill. Use arachne engine instead to remove
gap fill inside the pattern and improve the extrusion path

Signed-off-by: salt.wei <salt.wei@bambulab.com>
Change-Id: I758d7c72eb71cc37026b7cebf746cc345014c3f5
(cherry picked from commit 0b6bacd21a091afc13d7b36a69e5b10f155bc6f8)
2022-08-26 09:25:59 +08:00

683 lines
29 KiB
C++

#include <assert.h>
#include <stdio.h>
#include <memory>
#include "../ClipperUtils.hpp"
#include "../Geometry.hpp"
#include "../Layer.hpp"
#include "../Print.hpp"
#include "../PrintConfig.hpp"
#include "../Surface.hpp"
#include "FillBase.hpp"
#include "FillRectilinear.hpp"
#include "FillConcentricInternal.hpp"
#define NARROW_INFILL_AREA_THRESHOLD 3
namespace Slic3r {
struct SurfaceFillParams
{
// Zero based extruder ID.
unsigned int extruder = 0;
// Infill pattern, adjusted for the density etc.
InfillPattern pattern = InfillPattern(0);
// FillBase
// in unscaled coordinates
coordf_t spacing = 0.;
// infill / perimeter overlap, in unscaled coordinates
coordf_t overlap = 0.;
// Angle as provided by the region config, in radians.
float angle = 0.f;
// Is bridging used for this fill? Bridging parameters may be used even if this->flow.bridge() is not set.
bool bridge;
// Non-negative for a bridge.
float bridge_angle = 0.f;
// FillParams
float density = 0.f;
// Don't adjust spacing to fill the space evenly.
// bool dont_adjust = false;
// Length of the infill anchor along the perimeter line.
// 1000mm is roughly the maximum length line that fits into a 32bit coord_t.
float anchor_length = 1000.f;
float anchor_length_max = 1000.f;
// width, height of extrusion, nozzle diameter, is bridge
// For the output, for fill generator.
Flow flow;
// For the output
ExtrusionRole extrusion_role = ExtrusionRole(0);
// Various print settings?
// Index of this entry in a linear vector.
size_t idx = 0;
bool operator<(const SurfaceFillParams &rhs) const {
#define RETURN_COMPARE_NON_EQUAL(KEY) if (this->KEY < rhs.KEY) return true; if (this->KEY > rhs.KEY) return false;
#define RETURN_COMPARE_NON_EQUAL_TYPED(TYPE, KEY) if (TYPE(this->KEY) < TYPE(rhs.KEY)) return true; if (TYPE(this->KEY) > TYPE(rhs.KEY)) return false;
// Sort first by decreasing bridging angle, so that the bridges are processed with priority when trimming one layer by the other.
if (this->bridge_angle > rhs.bridge_angle) return true;
if (this->bridge_angle < rhs.bridge_angle) return false;
RETURN_COMPARE_NON_EQUAL(extruder);
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, pattern);
RETURN_COMPARE_NON_EQUAL(spacing);
RETURN_COMPARE_NON_EQUAL(overlap);
RETURN_COMPARE_NON_EQUAL(angle);
RETURN_COMPARE_NON_EQUAL(density);
// RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_adjust);
RETURN_COMPARE_NON_EQUAL(anchor_length);
RETURN_COMPARE_NON_EQUAL(anchor_length_max);
RETURN_COMPARE_NON_EQUAL(flow.width());
RETURN_COMPARE_NON_EQUAL(flow.height());
RETURN_COMPARE_NON_EQUAL(flow.nozzle_diameter());
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, bridge);
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, extrusion_role);
return false;
}
bool operator==(const SurfaceFillParams &rhs) const {
return this->extruder == rhs.extruder &&
this->pattern == rhs.pattern &&
this->spacing == rhs.spacing &&
this->overlap == rhs.overlap &&
this->angle == rhs.angle &&
this->bridge == rhs.bridge &&
// this->bridge_angle == rhs.bridge_angle &&
this->density == rhs.density &&
// this->dont_adjust == rhs.dont_adjust &&
this->anchor_length == rhs.anchor_length &&
this->anchor_length_max == rhs.anchor_length_max &&
this->flow == rhs.flow &&
this->extrusion_role == rhs.extrusion_role;
}
};
struct SurfaceFill {
SurfaceFill(const SurfaceFillParams& params) : region_id(size_t(-1)), surface(stCount, ExPolygon()), params(params) {}
size_t region_id;
Surface surface;
ExPolygons expolygons;
SurfaceFillParams params;
};
// BBS: used to judge whether the internal solid infill area is narrow
static bool is_narrow_infill_area(const ExPolygon& expolygon)
{
ExPolygons offsets = offset_ex(expolygon, -scale_(NARROW_INFILL_AREA_THRESHOLD));
if (offsets.empty())
return true;
return false;
}
std::vector<SurfaceFill> group_fills(const Layer &layer)
{
std::vector<SurfaceFill> surface_fills;
// Fill in a map of a region & surface to SurfaceFillParams.
std::set<SurfaceFillParams> set_surface_params;
std::vector<std::vector<const SurfaceFillParams*>> region_to_surface_params(layer.regions().size(), std::vector<const SurfaceFillParams*>());
SurfaceFillParams params;
bool has_internal_voids = false;
const PrintObjectConfig& object_config = layer.object()->config();
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
const LayerRegion &layerm = *layer.regions()[region_id];
region_to_surface_params[region_id].assign(layerm.fill_surfaces.size(), nullptr);
for (const Surface &surface : layerm.fill_surfaces.surfaces)
if (surface.surface_type == stInternalVoid)
has_internal_voids = true;
else {
const PrintRegionConfig &region_config = layerm.region().config();
FlowRole extrusion_role = surface.is_top() ? frTopSolidInfill : (surface.is_solid() ? frSolidInfill : frInfill);
bool is_bridge = layer.id() > 0 && surface.is_bridge();
params.extruder = layerm.region().extruder(extrusion_role);
params.pattern = region_config.sparse_infill_pattern.value;
params.density = float(region_config.sparse_infill_density);
if (surface.is_solid()) {
params.density = 100.f;
//FIXME for non-thick bridges, shall we allow a bottom surface pattern?
params.pattern = (surface.is_external() && ! is_bridge) ?
(surface.is_top() ? region_config.top_surface_pattern.value : region_config.bottom_surface_pattern.value) :
region_config.top_surface_pattern == ipMonotonic ? ipMonotonic : ipRectilinear;
} else if (params.density <= 0)
continue;
params.extrusion_role =
is_bridge ?
erBridgeInfill :
(surface.is_solid() ?
(surface.is_top() ? erTopSolidInfill : (surface.is_bottom()? erBottomSurface : erSolidInfill)) :
erInternalInfill);
params.bridge_angle = float(surface.bridge_angle);
params.angle = float(Geometry::deg2rad(region_config.infill_direction.value));
// Calculate the actual flow we'll be using for this infill.
params.bridge = is_bridge || Fill::use_bridge_flow(params.pattern);
params.flow = params.bridge ?
//BBS: always enable thick bridge for internal bridge
layerm.bridging_flow(extrusion_role, (surface.is_bridge() && !surface.is_external()) || object_config.thick_bridges) :
layerm.flow(extrusion_role, (surface.thickness == -1) ? layer.height : surface.thickness);
// Calculate flow spacing for infill pattern generation.
if (surface.is_solid() || is_bridge) {
params.spacing = params.flow.spacing();
// Don't limit anchor length for solid or bridging infill.
params.anchor_length = 1000.f;
params.anchor_length_max = 1000.f;
} else {
// Internal infill. Calculating infill line spacing independent of the current layer height and 1st layer status,
// so that internall infill will be aligned over all layers of the current region.
params.spacing = layerm.region().flow(*layer.object(), frInfill, layer.object()->config().layer_height, false).spacing();
// Anchor a sparse infill to inner perimeters with the following anchor length:
params.anchor_length = float(Fill::infill_anchor * 0.01 * params.spacing);
params.anchor_length_max = Fill::infill_anchor_max;
params.anchor_length = std::min(params.anchor_length, params.anchor_length_max);
}
auto it_params = set_surface_params.find(params);
if (it_params == set_surface_params.end())
it_params = set_surface_params.insert(it_params, params);
region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()] = &(*it_params);
}
}
surface_fills.reserve(set_surface_params.size());
for (const SurfaceFillParams &params : set_surface_params) {
const_cast<SurfaceFillParams&>(params).idx = surface_fills.size();
surface_fills.emplace_back(params);
}
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
const LayerRegion &layerm = *layer.regions()[region_id];
for (const Surface &surface : layerm.fill_surfaces.surfaces)
if (surface.surface_type != stInternalVoid) {
const SurfaceFillParams *params = region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()];
if (params != nullptr) {
SurfaceFill &fill = surface_fills[params->idx];
if (fill.region_id == size_t(-1)) {
fill.region_id = region_id;
fill.surface = surface;
fill.expolygons.emplace_back(std::move(fill.surface.expolygon));
} else
fill.expolygons.emplace_back(surface.expolygon);
}
}
}
{
Polygons all_polygons;
for (SurfaceFill &fill : surface_fills)
if (! fill.expolygons.empty()) {
if (fill.expolygons.size() > 1 || ! all_polygons.empty()) {
Polygons polys = to_polygons(std::move(fill.expolygons));
// Make a union of polygons, use a safety offset, subtract the preceding polygons.
// Bridges are processed first (see SurfaceFill::operator<())
fill.expolygons = all_polygons.empty() ? union_safety_offset_ex(polys) : diff_ex(polys, all_polygons, ApplySafetyOffset::Yes);
append(all_polygons, std::move(polys));
} else if (&fill != &surface_fills.back())
append(all_polygons, to_polygons(fill.expolygons));
}
}
// we need to detect any narrow surfaces that might collapse
// when adding spacing below
// such narrow surfaces are often generated in sloping walls
// by bridge_over_infill() and combine_infill() as a result of the
// subtraction of the combinable area from the layer infill area,
// which leaves small areas near the perimeters
// we are going to grow such regions by overlapping them with the void (if any)
// TODO: detect and investigate whether there could be narrow regions without
// any void neighbors
if (has_internal_voids) {
// Internal voids are generated only if "infill_only_where_needed" or "infill_every_layers" are active.
coord_t distance_between_surfaces = 0;
Polygons surfaces_polygons;
Polygons voids;
int region_internal_infill = -1;
int region_solid_infill = -1;
int region_some_infill = -1;
for (SurfaceFill &surface_fill : surface_fills)
if (! surface_fill.expolygons.empty()) {
distance_between_surfaces = std::max(distance_between_surfaces, surface_fill.params.flow.scaled_spacing());
append((surface_fill.surface.surface_type == stInternalVoid) ? voids : surfaces_polygons, to_polygons(surface_fill.expolygons));
if (surface_fill.surface.surface_type == stInternalSolid)
region_internal_infill = (int)surface_fill.region_id;
if (surface_fill.surface.is_solid())
region_solid_infill = (int)surface_fill.region_id;
if (surface_fill.surface.surface_type != stInternalVoid)
region_some_infill = (int)surface_fill.region_id;
}
if (! voids.empty() && ! surfaces_polygons.empty()) {
// First clip voids by the printing polygons, as the voids were ignored by the loop above during mutual clipping.
voids = diff(voids, surfaces_polygons);
// Corners of infill regions, which would not be filled with an extrusion path with a radius of distance_between_surfaces/2
Polygons collapsed = diff(
surfaces_polygons,
opening(surfaces_polygons, float(distance_between_surfaces /2), float(distance_between_surfaces / 2 + ClipperSafetyOffset)));
//FIXME why the voids are added to collapsed here? First it is expensive, second the result may lead to some unwanted regions being
// added if two offsetted void regions merge.
// polygons_append(voids, collapsed);
ExPolygons extensions = intersection_ex(expand(collapsed, float(distance_between_surfaces)), voids, ApplySafetyOffset::Yes);
// Now find an internal infill SurfaceFill to add these extrusions to.
SurfaceFill *internal_solid_fill = nullptr;
unsigned int region_id = 0;
if (region_internal_infill != -1)
region_id = region_internal_infill;
else if (region_solid_infill != -1)
region_id = region_solid_infill;
else if (region_some_infill != -1)
region_id = region_some_infill;
const LayerRegion& layerm = *layer.regions()[region_id];
for (SurfaceFill &surface_fill : surface_fills)
if (surface_fill.surface.surface_type == stInternalSolid && std::abs(layer.height - surface_fill.params.flow.height()) < EPSILON) {
internal_solid_fill = &surface_fill;
break;
}
if (internal_solid_fill == nullptr) {
// Produce another solid fill.
params.extruder = layerm.region().extruder(frSolidInfill);
params.pattern = layerm.region().config().top_surface_pattern == ipMonotonic ? ipMonotonic : ipRectilinear;
params.density = 100.f;
params.extrusion_role = erInternalInfill;
params.angle = float(Geometry::deg2rad(layerm.region().config().infill_direction.value));
// calculate the actual flow we'll be using for this infill
params.flow = layerm.flow(frSolidInfill);
params.spacing = params.flow.spacing();
surface_fills.emplace_back(params);
surface_fills.back().surface.surface_type = stInternalSolid;
surface_fills.back().surface.thickness = layer.height;
surface_fills.back().expolygons = std::move(extensions);
} else {
append(extensions, std::move(internal_solid_fill->expolygons));
internal_solid_fill->expolygons = union_ex(extensions);
}
}
}
// BBS: detect narrow internal solid infill area and use ipConcentricInternal pattern instead
if (layer.object()->config().detect_narrow_internal_solid_infill) {
size_t surface_fills_size = surface_fills.size();
for (size_t i = 0; i < surface_fills_size; i++) {
if (surface_fills[i].surface.surface_type != stInternalSolid)
continue;
size_t expolygons_size = surface_fills[i].expolygons.size();
std::vector<size_t> narrow_expolygons_index;
narrow_expolygons_index.reserve(expolygons_size);
// BBS: get the index list of narrow expolygon
for (size_t j = 0; j < expolygons_size; j++)
if (is_narrow_infill_area(surface_fills[i].expolygons[j]))
narrow_expolygons_index.push_back(j);
if (narrow_expolygons_index.size() == 0) {
// BBS: has no narrow expolygon
continue;
}
else if (narrow_expolygons_index.size() == expolygons_size) {
// BBS: all expolygons are narrow, directly change the fill pattern
surface_fills[i].params.pattern = ipConcentricInternal;
}
else {
// BBS: some expolygons are narrow, spilit surface_fills[i] and rearrange the expolygons
params = surface_fills[i].params;
params.pattern = ipConcentricInternal;
surface_fills.emplace_back(params);
surface_fills.back().region_id = surface_fills[i].region_id;
surface_fills.back().surface.surface_type = stInternalSolid;
surface_fills.back().surface.thickness = surface_fills[i].surface.thickness;
for (size_t j = 0; j < narrow_expolygons_index.size(); j++) {
// BBS: move the narrow expolygons to new surface_fills.back();
surface_fills.back().expolygons.emplace_back(std::move(surface_fills[i].expolygons[narrow_expolygons_index[j]]));
}
for (int j = narrow_expolygons_index.size() - 1; j >= 0; j--) {
// BBS: delete the narrow expolygons from old surface_fills
surface_fills[i].expolygons.erase(surface_fills[i].expolygons.begin() + narrow_expolygons_index[j]);
}
}
}
}
return surface_fills;
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
void export_group_fills_to_svg(const char *path, const std::vector<SurfaceFill> &fills)
{
BoundingBox bbox;
for (const auto &fill : fills)
for (const auto &expoly : fill.expolygons)
bbox.merge(get_extents(expoly));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (const auto &fill : fills)
for (const auto &expoly : fill.expolygons)
svg.draw(expoly, surface_type_to_color_name(fill.surface.surface_type), transparency);
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
#endif
// friend to Layer
void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree)
{
for (LayerRegion *layerm : m_regions)
layerm->fills.clear();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
// this->export_region_fill_surfaces_to_svg_debug("10_fill-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
std::vector<SurfaceFill> surface_fills = group_fills(*this);
const Slic3r::BoundingBox bbox = this->object()->bounding_box();
const auto resolution = this->object()->print()->config().resolution.value;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRun = 0;
export_group_fills_to_svg(debug_out_path("Layer-fill_surfaces-10_fill-final-%d.svg", iRun ++).c_str(), surface_fills);
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
for (SurfaceFill &surface_fill : surface_fills) {
// Create the filler object.
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
f->set_bounding_box(bbox);
f->layer_id = this->id();
f->z = this->print_z;
f->angle = surface_fill.params.angle;
f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;
if (surface_fill.params.pattern == ipConcentricInternal) {
FillConcentricInternal *fill_concentric = dynamic_cast<FillConcentricInternal *>(f.get());
assert(fill_concentric != nullptr);
fill_concentric->print_config = &this->object()->print()->config();
fill_concentric->print_object_config = &this->object()->config();
}
// calculate flow spacing for infill pattern generation
bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.bridge;
double link_max_length = 0.;
if (! surface_fill.params.bridge) {
#if 0
link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
#else
if (surface_fill.params.density > 80.) // 80%
link_max_length = 3. * f->spacing;
#endif
}
// Maximum length of the perimeter segment linking two infill lines.
f->link_max_length = (coord_t)scale_(link_max_length);
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
f->loop_clipping = coord_t(scale_(surface_fill.params.flow.nozzle_diameter()) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
// apply half spacing using this flow's own spacing and generate infill
FillParams params;
params.density = float(0.01 * surface_fill.params.density);
params.dont_adjust = false; // surface_fill.params.dont_adjust;
params.anchor_length = surface_fill.params.anchor_length;
params.anchor_length_max = surface_fill.params.anchor_length_max;
params.resolution = resolution;
// BBS
params.flow = surface_fill.params.flow;
params.extrusion_role = surface_fill.params.extrusion_role;
params.using_internal_flow = using_internal_flow;
params.no_extrusion_overlap = surface_fill.params.overlap;
LayerRegion* layerm = this->m_regions[surface_fill.region_id];
for (ExPolygon& expoly : surface_fill.expolygons) {
f->no_overlap_expolygons = intersection_ex(layerm->fill_no_overlap_expolygons, ExPolygons() = { expoly });
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
f->spacing = surface_fill.params.spacing;
surface_fill.surface.expolygon = std::move(expoly);
// BBS: make fill
f->fill_surface_extrusion(&surface_fill.surface,
params,
m_regions[surface_fill.region_id]->fills.entities);
}
}
// add thin fill regions
// Unpacks the collection, creates multiple collections per path.
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
// Why the paths are unpacked?
for (LayerRegion *layerm : m_regions)
for (const ExtrusionEntity *thin_fill : layerm->thin_fills.entities) {
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
layerm->fills.entities.push_back(&collection);
collection.entities.push_back(thin_fill->clone());
}
#ifndef NDEBUG
for (LayerRegion *layerm : m_regions)
for (size_t i = 0; i < layerm->fills.entities.size(); ++ i)
assert(dynamic_cast<ExtrusionEntityCollection*>(layerm->fills.entities[i]) != nullptr);
#endif
}
// Create ironing extrusions over top surfaces.
void Layer::make_ironing()
{
// LayerRegion::slices contains surfaces marked with SurfaceType.
// Here we want to collect top surfaces extruded with the same extruder.
// A surface will be ironed with the same extruder to not contaminate the print with another material leaking from the nozzle.
// First classify regions based on the extruder used.
struct IroningParams {
int extruder = -1;
bool just_infill = false;
// Spacing of the ironing lines, also to calculate the extrusion flow from.
double line_spacing;
// Height of the extrusion, to calculate the extrusion flow from.
double height;
double speed;
double angle;
bool operator<(const IroningParams &rhs) const {
if (this->extruder < rhs.extruder)
return true;
if (this->extruder > rhs.extruder)
return false;
if (int(this->just_infill) < int(rhs.just_infill))
return true;
if (int(this->just_infill) > int(rhs.just_infill))
return false;
if (this->line_spacing < rhs.line_spacing)
return true;
if (this->line_spacing > rhs.line_spacing)
return false;
if (this->height < rhs.height)
return true;
if (this->height > rhs.height)
return false;
if (this->speed < rhs.speed)
return true;
if (this->speed > rhs.speed)
return false;
if (this->angle < rhs.angle)
return true;
if (this->angle > rhs.angle)
return false;
return false;
}
bool operator==(const IroningParams &rhs) const {
return this->extruder == rhs.extruder && this->just_infill == rhs.just_infill &&
this->line_spacing == rhs.line_spacing && this->height == rhs.height && this->speed == rhs.speed &&
this->angle == rhs.angle;
}
LayerRegion *layerm = nullptr;
// IdeaMaker: ironing
// ironing flowrate (5% percent)
// ironing speed (10 mm/sec)
// Kisslicer:
// iron off, Sweep, Group
// ironing speed: 15 mm/sec
// Cura:
// Pattern (zig-zag / concentric)
// line spacing (0.1mm)
// flow: from normal layer height. 10%
// speed: 20 mm/sec
};
std::vector<IroningParams> by_extruder;
double default_layer_height = this->object()->config().layer_height;
for (LayerRegion *layerm : m_regions)
if (! layerm->slices.empty()) {
IroningParams ironing_params;
const PrintRegionConfig &config = layerm->region().config();
if (config.ironing_type != IroningType::NoIroning &&
(config.ironing_type == IroningType::AllSolid ||
(config.top_shell_layers > 0 &&
(config.ironing_type == IroningType::TopSurfaces ||
(config.ironing_type == IroningType::TopmostOnly && layerm->layer()->upper_layer == nullptr))))) {
if (config.wall_filament == config.solid_infill_filament || config.wall_loops == 0) {
// Iron the whole face.
ironing_params.extruder = config.solid_infill_filament;
} else {
// Iron just the infill.
ironing_params.extruder = config.solid_infill_filament;
}
}
if (ironing_params.extruder != -1) {
//TODO just_infill is currently not used.
ironing_params.just_infill = false;
ironing_params.line_spacing = config.ironing_spacing;
ironing_params.height = default_layer_height * 0.01 * config.ironing_flow;
ironing_params.speed = config.ironing_speed;
ironing_params.angle = config.infill_direction * M_PI / 180.;
ironing_params.layerm = layerm;
by_extruder.emplace_back(ironing_params);
}
}
std::sort(by_extruder.begin(), by_extruder.end());
FillRectilinear fill;
FillParams fill_params;
fill.set_bounding_box(this->object()->bounding_box());
fill.layer_id = this->id();
fill.z = this->print_z;
fill.overlap = 0;
fill_params.density = 1.;
fill_params.monotonic = true;
for (size_t i = 0; i < by_extruder.size();) {
// Find span of regions equivalent to the ironing operation.
IroningParams &ironing_params = by_extruder[i];
size_t j = i;
for (++ j; j < by_extruder.size() && ironing_params == by_extruder[j]; ++ j) ;
// Create the ironing extrusions for regions <i, j)
ExPolygons ironing_areas;
double nozzle_dmr = this->object()->print()->config().nozzle_diameter.get_at(ironing_params.extruder - 1);
if (ironing_params.just_infill) {
//TODO just_infill is currently not used.
// Just infill.
} else {
// Infill and perimeter.
// Merge top surfaces with the same ironing parameters.
Polygons polys;
Polygons infills;
for (size_t k = i; k < j; ++ k) {
const IroningParams &ironing_params = by_extruder[k];
const PrintRegionConfig &region_config = ironing_params.layerm->region().config();
bool iron_everything = region_config.ironing_type == IroningType::AllSolid;
bool iron_completely = iron_everything;
if (iron_everything) {
// Check whether there is any non-solid hole in the regions.
bool internal_infill_solid = region_config.sparse_infill_density.value > 95.;
for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces)
if ((! internal_infill_solid && surface.surface_type == stInternal) || surface.surface_type == stInternalBridge || surface.surface_type == stInternalVoid) {
// Some fill region is not quite solid. Don't iron over the whole surface.
iron_completely = false;
break;
}
}
if (iron_completely) {
// Iron everything. This is likely only good for solid transparent objects.
for (const Surface &surface : ironing_params.layerm->slices.surfaces)
polygons_append(polys, surface.expolygon);
} else {
for (const Surface &surface : ironing_params.layerm->slices.surfaces)
if (surface.surface_type == stTop || (iron_everything && surface.surface_type == stBottom))
// stBottomBridge is not being ironed on purpose, as it would likely destroy the bridges.
polygons_append(polys, surface.expolygon);
}
if (iron_everything && ! iron_completely) {
// Add solid fill surfaces. This may not be ideal, as one will not iron perimeters touching these
// solid fill surfaces, but it is likely better than nothing.
for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternalSolid)
polygons_append(infills, surface.expolygon);
}
}
if (! infills.empty() || j > i + 1) {
// Ironing over more than a single region or over solid internal infill.
if (! infills.empty())
// For IroningType::AllSolid only:
// Add solid infill areas for layers, that contain some non-ironable infil (sparse infill, bridge infill).
append(polys, std::move(infills));
polys = union_safety_offset(polys);
}
// Trim the top surfaces with half the nozzle diameter.
ironing_areas = intersection_ex(polys, offset(this->lslices, - float(scale_(0.5 * nozzle_dmr))));
}
// Create the filler object.
fill.spacing = ironing_params.line_spacing;
fill.angle = float(ironing_params.angle + 0.25 * M_PI);
fill.link_max_length = (coord_t)scale_(3. * fill.spacing);
double extrusion_height = ironing_params.height * fill.spacing / nozzle_dmr;
float extrusion_width = Flow::rounded_rectangle_extrusion_width_from_spacing(float(nozzle_dmr), float(extrusion_height));
double flow_mm3_per_mm = nozzle_dmr * extrusion_height;
Surface surface_fill(stTop, ExPolygon());
for (ExPolygon &expoly : ironing_areas) {
surface_fill.expolygon = std::move(expoly);
Polylines polylines;
try {
polylines = fill.fill_surface(&surface_fill, fill_params);
} catch (InfillFailedException &) {
}
if (! polylines.empty()) {
// Save into layer.
ExtrusionEntityCollection *eec = nullptr;
ironing_params.layerm->fills.entities.push_back(eec = new ExtrusionEntityCollection());
// Don't sort the ironing infill lines as they are monotonicly ordered.
eec->no_sort = true;
extrusion_entities_append_paths(
eec->entities, std::move(polylines),
erIroning,
flow_mm3_per_mm, extrusion_width, float(extrusion_height));
}
}
// Regions up to j were processed.
i = j;
}
}
} // namespace Slic3r