OrcaSlicer/src/slic3r/GUI/GCodeViewer.cpp
Vojtech Bubnik cc44089440 New BuildVolume class was created, which detects build volume type (rectangular,
circular, convex, concave) and performs efficient collision detection agains these build
volumes. As of now, collision detection is performed against a convex
hull of a concave build volume for efficency.

GCodeProcessor::Result renamed out of GCodeProcessor to GCodeProcessorResult,
so it could be forward declared.

Plater newly exports BuildVolume, not Bed3D. Bed3D is a rendering class,
while BuildVolume is a purely geometric class.

Reduced usage of global wxGetApp, the Bed3D is passed as a parameter
to View3D/Preview/GLCanvas.

Convex hull code was extracted from Geometry.cpp/hpp to Geometry/ConvexHulll.cpp,hpp.
New test inside_convex_polygon().
New efficent point inside polygon test: Decompose convex hull
to bottom / top parts and use the decomposition to detect point inside
a convex polygon in O(log n). decompose_convex_polygon_top_bottom(),
inside_convex_polygon().

New Circle constructing functions: circle_ransac() and circle_taubin_newton().

New polygon_is_convex() test with unit tests.
2021-11-16 10:15:51 +01:00

4267 lines
191 KiB
C++

#include "libslic3r/libslic3r.h"
#include "GCodeViewer.hpp"
#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/LocalesUtils.hpp"
#include "libslic3r/PresetBundle.hpp"
#include "GUI_App.hpp"
#include "MainFrame.hpp"
#include "Plater.hpp"
#include "Camera.hpp"
#include "I18N.hpp"
#include "GUI_Utils.hpp"
#include "GUI.hpp"
#include "DoubleSlider.hpp"
#include "GLCanvas3D.hpp"
#include "GLToolbar.hpp"
#include "GUI_Preview.hpp"
#include "GUI_ObjectManipulation.hpp"
#include <imgui/imgui_internal.h>
#include <GL/glew.h>
#include <boost/log/trivial.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/nowide/cstdio.hpp>
#include <boost/nowide/fstream.hpp>
#include <wx/progdlg.h>
#include <wx/numformatter.h>
#include <array>
#include <algorithm>
#include <chrono>
namespace Slic3r {
namespace GUI {
static unsigned char buffer_id(EMoveType type) {
return static_cast<unsigned char>(type) - static_cast<unsigned char>(EMoveType::Retract);
}
static EMoveType buffer_type(unsigned char id) {
return static_cast<EMoveType>(static_cast<unsigned char>(EMoveType::Retract) + id);
}
static std::array<float, 4> decode_color(const std::string& color) {
static const float INV_255 = 1.0f / 255.0f;
std::array<float, 4> ret = { 0.0f, 0.0f, 0.0f, 1.0f };
const char* c = color.data() + 1;
if (color.size() == 7 && color.front() == '#') {
for (size_t j = 0; j < 3; ++j) {
int digit1 = hex_digit_to_int(*c++);
int digit2 = hex_digit_to_int(*c++);
if (digit1 == -1 || digit2 == -1)
break;
ret[j] = float(digit1 * 16 + digit2) * INV_255;
}
}
return ret;
}
static std::vector<std::array<float, 4>> decode_colors(const std::vector<std::string>& colors) {
std::vector<std::array<float, 4>> output(colors.size(), { 0.0f, 0.0f, 0.0f, 1.0f });
for (size_t i = 0; i < colors.size(); ++i) {
output[i] = decode_color(colors[i]);
}
return output;
}
static float round_to_nearest_percent(float value)
{
return std::round(value * 100.f) * 0.01f;
}
void GCodeViewer::VBuffer::reset()
{
// release gpu memory
if (!vbos.empty()) {
glsafe(::glDeleteBuffers(static_cast<GLsizei>(vbos.size()), static_cast<const GLuint*>(vbos.data())));
vbos.clear();
}
sizes.clear();
count = 0;
}
#if ENABLE_SEAMS_USING_MODELS
void GCodeViewer::InstanceVBuffer::Ranges::reset()
{
for (Range& range : ranges) {
// release gpu memory
if (range.vbo > 0)
glsafe(::glDeleteBuffers(1, &range.vbo));
}
ranges.clear();
}
void GCodeViewer::InstanceVBuffer::reset()
{
s_ids.clear();
buffer.clear();
render_ranges.reset();
}
#endif // ENABLE_SEAMS_USING_MODELS
void GCodeViewer::IBuffer::reset()
{
// release gpu memory
if (ibo > 0) {
glsafe(::glDeleteBuffers(1, &ibo));
ibo = 0;
}
vbo = 0;
count = 0;
}
bool GCodeViewer::Path::matches(const GCodeProcessorResult::MoveVertex& move) const
{
auto matches_percent = [](float value1, float value2, float max_percent) {
return std::abs(value2 - value1) / value1 <= max_percent;
};
switch (move.type)
{
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract:
case EMoveType::Seam:
case EMoveType::Extrude: {
// use rounding to reduce the number of generated paths
return type == move.type && extruder_id == move.extruder_id && cp_color_id == move.cp_color_id && role == move.extrusion_role &&
move.position.z() <= sub_paths.front().first.position.z() && feedrate == move.feedrate && fan_speed == move.fan_speed &&
height == round_to_nearest_percent(move.height) && width == round_to_nearest_percent(move.width) &&
matches_percent(volumetric_rate, move.volumetric_rate(), 0.05f);
}
case EMoveType::Travel: {
return type == move.type && feedrate == move.feedrate && extruder_id == move.extruder_id && cp_color_id == move.cp_color_id;
}
default: { return false; }
}
}
#if ENABLE_SEAMS_USING_MODELS
void GCodeViewer::TBuffer::Model::reset()
{
instances.reset();
}
#endif // ENABLE_SEAMS_USING_MODELS
void GCodeViewer::TBuffer::reset()
{
vertices.reset();
for (IBuffer& buffer : indices) {
buffer.reset();
}
indices.clear();
paths.clear();
render_paths.clear();
#if ENABLE_SEAMS_USING_MODELS
model.reset();
#endif // ENABLE_SEAMS_USING_MODELS
}
void GCodeViewer::TBuffer::add_path(const GCodeProcessorResult::MoveVertex& move, unsigned int b_id, size_t i_id, size_t s_id)
{
Path::Endpoint endpoint = { b_id, i_id, s_id, move.position };
// use rounding to reduce the number of generated paths
paths.push_back({ move.type, move.extrusion_role, move.delta_extruder,
round_to_nearest_percent(move.height), round_to_nearest_percent(move.width),
move.feedrate, move.fan_speed, move.temperature,
move.volumetric_rate(), move.extruder_id, move.cp_color_id, { { endpoint, endpoint } } });
}
GCodeViewer::Color GCodeViewer::Extrusions::Range::get_color_at(float value) const
{
// Input value scaled to the colors range
const float step = step_size();
const float global_t = (step != 0.0f) ? std::max(0.0f, value - min) / step : 0.0f; // lower limit of 0.0f
const size_t color_max_idx = Range_Colors.size() - 1;
// Compute the two colors just below (low) and above (high) the input value
const size_t color_low_idx = std::clamp<size_t>(static_cast<size_t>(global_t), 0, color_max_idx);
const size_t color_high_idx = std::clamp<size_t>(color_low_idx + 1, 0, color_max_idx);
// Compute how far the value is between the low and high colors so that they can be interpolated
const float local_t = std::clamp(global_t - static_cast<float>(color_low_idx), 0.0f, 1.0f);
// Interpolate between the low and high colors to find exactly which color the input value should get
Color ret = { 0.0f, 0.0f, 0.0f, 1.0f };
for (unsigned int i = 0; i < 3; ++i) {
ret[i] = lerp(Range_Colors[color_low_idx][i], Range_Colors[color_high_idx][i], local_t);
}
return ret;
}
GCodeViewer::SequentialRangeCap::~SequentialRangeCap() {
if (ibo > 0)
glsafe(::glDeleteBuffers(1, &ibo));
}
void GCodeViewer::SequentialRangeCap::reset() {
if (ibo > 0)
glsafe(::glDeleteBuffers(1, &ibo));
buffer = nullptr;
ibo = 0;
vbo = 0;
color = { 0.0f, 0.0f, 0.0f, 1.0f };
}
void GCodeViewer::SequentialView::Marker::init()
{
m_model.init_from(stilized_arrow(16, 2.0f, 4.0f, 1.0f, 8.0f));
m_model.set_color(-1, { 1.0f, 1.0f, 1.0f, 0.5f });
}
void GCodeViewer::SequentialView::Marker::set_world_position(const Vec3f& position)
{
m_world_position = position;
m_world_transform = (Geometry::assemble_transform((position + m_z_offset * Vec3f::UnitZ()).cast<double>()) * Geometry::assemble_transform(m_model.get_bounding_box().size().z() * Vec3d::UnitZ(), { M_PI, 0.0, 0.0 })).cast<float>();
}
void GCodeViewer::SequentialView::Marker::render() const
{
if (!m_visible)
return;
GLShaderProgram* shader = wxGetApp().get_shader("gouraud_light");
if (shader == nullptr)
return;
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
shader->start_using();
shader->set_uniform("emission_factor", 0.0f);
glsafe(::glPushMatrix());
glsafe(::glMultMatrixf(m_world_transform.data()));
m_model.render();
glsafe(::glPopMatrix());
shader->stop_using();
glsafe(::glDisable(GL_BLEND));
static float last_window_width = 0.0f;
static size_t last_text_length = 0;
ImGuiWrapper& imgui = *wxGetApp().imgui();
Size cnv_size = wxGetApp().plater()->get_current_canvas3D()->get_canvas_size();
imgui.set_next_window_pos(0.5f * static_cast<float>(cnv_size.get_width()), static_cast<float>(cnv_size.get_height()), ImGuiCond_Always, 0.5f, 1.0f);
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::SetNextWindowBgAlpha(0.25f);
imgui.begin(std::string("ToolPosition"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove);
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, _u8L("Tool position") + ":");
ImGui::SameLine();
char buf[1024];
#if ENABLE_FIX_SEAMS_SYNCH
const Vec3f position = m_world_position + m_world_offset;
sprintf(buf, "X: %.3f, Y: %.3f, Z: %.3f", position.x(), position.y(), position.z());
#else
sprintf(buf, "X: %.3f, Y: %.3f, Z: %.3f", m_world_position.x(), m_world_position.y(), m_world_position.z());
#endif // ENABLE_FIX_SEAMS_SYNCH
imgui.text(std::string(buf));
// force extra frame to automatically update window size
float width = ImGui::GetWindowWidth();
size_t length = strlen(buf);
if (width != last_window_width || length != last_text_length) {
last_window_width = width;
last_text_length = length;
#if ENABLE_ENHANCED_IMGUI_SLIDER_FLOAT
imgui.set_requires_extra_frame();
#else
wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
wxGetApp().plater()->get_current_canvas3D()->request_extra_frame();
#endif // ENABLE_ENHANCED_IMGUI_SLIDER_FLOAT
}
imgui.end();
ImGui::PopStyleVar();
}
void GCodeViewer::SequentialView::GCodeWindow::load_gcode(const std::string& filename, std::vector<size_t> &&lines_ends)
{
assert(! m_file.is_open());
if (m_file.is_open())
return;
m_filename = filename;
m_lines_ends = std::move(lines_ends);
m_selected_line_id = 0;
m_last_lines_size = 0;
try
{
m_file.open(boost::filesystem::path(m_filename));
}
catch (...)
{
BOOST_LOG_TRIVIAL(error) << "Unable to map file " << m_filename << ". Cannot show G-code window.";
reset();
}
}
void GCodeViewer::SequentialView::GCodeWindow::render(float top, float bottom, uint64_t curr_line_id) const
{
auto update_lines = [this](uint64_t start_id, uint64_t end_id) {
std::vector<Line> ret;
ret.reserve(end_id - start_id + 1);
for (uint64_t id = start_id; id <= end_id; ++id) {
// read line from file
const size_t start = id == 1 ? 0 : m_lines_ends[id - 2];
const size_t len = m_lines_ends[id - 1] - start;
std::string gline(m_file.data() + start, len);
std::string command;
std::string parameters;
std::string comment;
// extract comment
std::vector<std::string> tokens;
boost::split(tokens, gline, boost::is_any_of(";"), boost::token_compress_on);
command = tokens.front();
if (tokens.size() > 1)
comment = ";" + tokens.back();
// extract gcode command and parameters
if (!command.empty()) {
boost::split(tokens, command, boost::is_any_of(" "), boost::token_compress_on);
command = tokens.front();
if (tokens.size() > 1) {
for (size_t i = 1; i < tokens.size(); ++i) {
parameters += " " + tokens[i];
}
}
}
ret.push_back({ command, parameters, comment });
}
return ret;
};
static const ImVec4 LINE_NUMBER_COLOR = ImGuiWrapper::COL_ORANGE_LIGHT;
static const ImVec4 SELECTION_RECT_COLOR = ImGuiWrapper::COL_ORANGE_DARK;
static const ImVec4 COMMAND_COLOR = { 0.8f, 0.8f, 0.0f, 1.0f };
static const ImVec4 PARAMETERS_COLOR = { 1.0f, 1.0f, 1.0f, 1.0f };
static const ImVec4 COMMENT_COLOR = { 0.7f, 0.7f, 0.7f, 1.0f };
if (!m_visible || m_filename.empty() || m_lines_ends.empty() || curr_line_id == 0)
return;
// window height
const float wnd_height = bottom - top;
// number of visible lines
const float text_height = ImGui::CalcTextSize("0").y;
const ImGuiStyle& style = ImGui::GetStyle();
const uint64_t lines_count = static_cast<uint64_t>((wnd_height - 2.0f * style.WindowPadding.y + style.ItemSpacing.y) / (text_height + style.ItemSpacing.y));
if (lines_count == 0)
return;
// visible range
const uint64_t half_lines_count = lines_count / 2;
uint64_t start_id = (curr_line_id >= half_lines_count) ? curr_line_id - half_lines_count : 0;
uint64_t end_id = start_id + lines_count - 1;
if (end_id >= static_cast<uint64_t>(m_lines_ends.size())) {
end_id = static_cast<uint64_t>(m_lines_ends.size()) - 1;
start_id = end_id - lines_count + 1;
}
// updates list of lines to show, if needed
if (m_selected_line_id != curr_line_id || m_last_lines_size != end_id - start_id + 1) {
try
{
*const_cast<std::vector<Line>*>(&m_lines) = update_lines(start_id, end_id);
}
catch (...)
{
BOOST_LOG_TRIVIAL(error) << "Error while loading from file " << m_filename << ". Cannot show G-code window.";
return;
}
*const_cast<uint64_t*>(&m_selected_line_id) = curr_line_id;
*const_cast<size_t*>(&m_last_lines_size) = m_lines.size();
}
// line number's column width
const float id_width = ImGui::CalcTextSize(std::to_string(end_id).c_str()).x;
ImGuiWrapper& imgui = *wxGetApp().imgui();
imgui.set_next_window_pos(0.0f, top, ImGuiCond_Always, 0.0f, 0.0f);
imgui.set_next_window_size(0.0f, wnd_height, ImGuiCond_Always);
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::SetNextWindowBgAlpha(0.6f);
imgui.begin(std::string("G-code"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove);
// center the text in the window by pushing down the first line
const float f_lines_count = static_cast<float>(lines_count);
ImGui::SetCursorPosY(0.5f * (wnd_height - f_lines_count * text_height - (f_lines_count - 1.0f) * style.ItemSpacing.y));
// render text lines
for (uint64_t id = start_id; id <= end_id; ++id) {
const Line& line = m_lines[id - start_id];
// rect around the current selected line
if (id == curr_line_id) {
const float pos_y = ImGui::GetCursorScreenPos().y;
const float half_ItemSpacing_y = 0.5f * style.ItemSpacing.y;
const float half_padding_x = 0.5f * style.WindowPadding.x;
ImGui::GetWindowDrawList()->AddRect({ half_padding_x, pos_y - half_ItemSpacing_y },
{ ImGui::GetCurrentWindow()->Size.x - half_padding_x, pos_y + text_height + half_ItemSpacing_y },
ImGui::GetColorU32(SELECTION_RECT_COLOR));
}
// render line number
const std::string id_str = std::to_string(id);
// spacer to right align text
ImGui::Dummy({ id_width - ImGui::CalcTextSize(id_str.c_str()).x, text_height });
ImGui::SameLine(0.0f, 0.0f);
ImGui::PushStyleColor(ImGuiCol_Text, LINE_NUMBER_COLOR);
imgui.text(id_str);
ImGui::PopStyleColor();
if (!line.command.empty() || !line.comment.empty())
ImGui::SameLine();
// render command
if (!line.command.empty()) {
ImGui::PushStyleColor(ImGuiCol_Text, COMMAND_COLOR);
imgui.text(line.command);
ImGui::PopStyleColor();
}
// render parameters
if (!line.parameters.empty()) {
ImGui::SameLine(0.0f, 0.0f);
ImGui::PushStyleColor(ImGuiCol_Text, PARAMETERS_COLOR);
imgui.text(line.parameters);
ImGui::PopStyleColor();
}
// render comment
if (!line.comment.empty()) {
if (!line.command.empty())
ImGui::SameLine(0.0f, 0.0f);
ImGui::PushStyleColor(ImGuiCol_Text, COMMENT_COLOR);
imgui.text(line.comment);
ImGui::PopStyleColor();
}
}
imgui.end();
ImGui::PopStyleVar();
}
void GCodeViewer::SequentialView::GCodeWindow::stop_mapping_file()
{
if (m_file.is_open())
m_file.close();
}
void GCodeViewer::SequentialView::render(float legend_height) const
{
marker.render();
float bottom = wxGetApp().plater()->get_current_canvas3D()->get_canvas_size().get_height();
if (wxGetApp().is_editor())
bottom -= wxGetApp().plater()->get_view_toolbar().get_height();
gcode_window.render(legend_height, bottom, static_cast<uint64_t>(gcode_ids[current.last]));
}
const std::vector<GCodeViewer::Color> GCodeViewer::Extrusion_Role_Colors {{
{ 0.90f, 0.70f, 0.70f, 1.0f }, // erNone
{ 1.00f, 0.90f, 0.30f, 1.0f }, // erPerimeter
{ 1.00f, 0.49f, 0.22f, 1.0f }, // erExternalPerimeter
{ 0.12f, 0.12f, 1.00f, 1.0f }, // erOverhangPerimeter
{ 0.69f, 0.19f, 0.16f, 1.0f }, // erInternalInfill
{ 0.59f, 0.33f, 0.80f, 1.0f }, // erSolidInfill
{ 0.94f, 0.25f, 0.25f, 1.0f }, // erTopSolidInfill
{ 1.00f, 0.55f, 0.41f, 1.0f }, // erIroning
{ 0.30f, 0.50f, 0.73f, 1.0f }, // erBridgeInfill
{ 1.00f, 1.00f, 1.00f, 1.0f }, // erGapFill
{ 0.00f, 0.53f, 0.43f, 1.0f }, // erSkirt
{ 0.00f, 1.00f, 0.00f, 1.0f }, // erSupportMaterial
{ 0.00f, 0.50f, 0.00f, 1.0f }, // erSupportMaterialInterface
{ 0.70f, 0.89f, 0.67f, 1.0f }, // erWipeTower
{ 0.37f, 0.82f, 0.58f, 1.0f }, // erCustom
{ 0.00f, 0.00f, 0.00f, 1.0f } // erMixed
}};
const std::vector<GCodeViewer::Color> GCodeViewer::Options_Colors {{
{ 0.803f, 0.135f, 0.839f, 1.0f }, // Retractions
{ 0.287f, 0.679f, 0.810f, 1.0f }, // Unretractions
{ 0.900f, 0.900f, 0.900f, 1.0f }, // Seams
{ 0.758f, 0.744f, 0.389f, 1.0f }, // ToolChanges
{ 0.856f, 0.582f, 0.546f, 1.0f }, // ColorChanges
{ 0.322f, 0.942f, 0.512f, 1.0f }, // PausePrints
{ 0.886f, 0.825f, 0.262f, 1.0f } // CustomGCodes
}};
const std::vector<GCodeViewer::Color> GCodeViewer::Travel_Colors {{
{ 0.219f, 0.282f, 0.609f, 1.0f }, // Move
{ 0.112f, 0.422f, 0.103f, 1.0f }, // Extrude
{ 0.505f, 0.064f, 0.028f, 1.0f } // Retract
}};
const std::vector<GCodeViewer::Color> GCodeViewer::Range_Colors {{
{ 0.043f, 0.173f, 0.478f, 1.0f }, // bluish
{ 0.075f, 0.349f, 0.522f, 1.0f },
{ 0.110f, 0.533f, 0.569f, 1.0f },
{ 0.016f, 0.839f, 0.059f, 1.0f },
{ 0.667f, 0.949f, 0.000f, 1.0f },
{ 0.988f, 0.975f, 0.012f, 1.0f },
{ 0.961f, 0.808f, 0.039f, 1.0f },
{ 0.890f, 0.533f, 0.125f, 1.0f },
{ 0.820f, 0.408f, 0.188f, 1.0f },
{ 0.761f, 0.322f, 0.235f, 1.0f },
{ 0.581f, 0.149f, 0.087f, 1.0f } // reddish
}};
const GCodeViewer::Color GCodeViewer::Wipe_Color = { 1.0f, 1.0f, 0.0f, 1.0f };
const GCodeViewer::Color GCodeViewer::Neutral_Color = { 0.25f, 0.25f, 0.25f, 1.0f };
GCodeViewer::GCodeViewer()
{
#if !ENABLE_SEAMS_USING_MODELS
// initializes non OpenGL data of TBuffers
// OpenGL data are initialized into render().init_gl_data()
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& buffer = m_buffers[i];
switch (buffer_type(i))
{
default: { break; }
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract:
case EMoveType::Seam: {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Point;
buffer.vertices.format = VBuffer::EFormat::Position;
break;
}
case EMoveType::Wipe:
case EMoveType::Extrude: {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Triangle;
buffer.vertices.format = VBuffer::EFormat::PositionNormal3;
break;
}
case EMoveType::Travel: {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Line;
buffer.vertices.format = VBuffer::EFormat::PositionNormal1;
break;
}
}
}
set_toolpath_move_type_visible(EMoveType::Extrude, true);
#endif // !ENABLE_SEAMS_USING_MODELS
m_extrusions.reset_role_visibility_flags();
// m_sequential_view.skip_invisible_moves = true;
}
#if ENABLE_SEAMS_USING_MODELS
void GCodeViewer::init()
{
if (m_gl_data_initialized)
return;
// initializes opengl data of TBuffers
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& buffer = m_buffers[i];
EMoveType type = buffer_type(i);
switch (type)
{
default: { break; }
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract:
case EMoveType::Seam: {
#if ENABLE_SEAMS_USING_BATCHED_MODELS
if (wxGetApp().is_gl_version_greater_or_equal_to(3, 3)) {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::InstancedModel;
buffer.shader = "gouraud_light_instanced";
buffer.model.model.init_from(diamond(16));
buffer.model.color = option_color(type);
buffer.model.instances.format = InstanceVBuffer::EFormat::InstancedModel;
}
else {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::BatchedModel;
buffer.vertices.format = VBuffer::EFormat::PositionNormal3;
buffer.shader = "gouraud_light";
buffer.model.data = diamond(16);
buffer.model.color = option_color(type);
buffer.model.instances.format = InstanceVBuffer::EFormat::BatchedModel;
}
break;
#else
if (wxGetApp().is_gl_version_greater_or_equal_to(3, 3)) {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Model;
buffer.shader = "gouraud_light_instanced";
buffer.model.model.init_from(diamond(16));
buffer.model.color = option_color(type);
}
else {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Point;
buffer.vertices.format = VBuffer::EFormat::Position;
buffer.shader = wxGetApp().is_glsl_version_greater_or_equal_to(1, 20) ? "options_120" : "options_110";
}
break;
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
}
case EMoveType::Wipe:
case EMoveType::Extrude: {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Triangle;
buffer.vertices.format = VBuffer::EFormat::PositionNormal3;
buffer.shader = "gouraud_light";
break;
}
case EMoveType::Travel: {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Line;
buffer.vertices.format = VBuffer::EFormat::PositionNormal1;
buffer.shader = "toolpaths_lines";
break;
}
}
set_toolpath_move_type_visible(EMoveType::Extrude, true);
}
// initializes tool marker
m_sequential_view.marker.init();
// initializes point sizes
std::array<int, 2> point_sizes;
::glGetIntegerv(GL_ALIASED_POINT_SIZE_RANGE, point_sizes.data());
m_detected_point_sizes = { static_cast<float>(point_sizes[0]), static_cast<float>(point_sizes[1]) };
m_gl_data_initialized = true;
}
#endif // ENABLE_SEAMS_USING_MODELS
void GCodeViewer::load(const GCodeProcessorResult& gcode_result, const Print& print, bool initialized)
{
// avoid processing if called with the same gcode_result
if (m_last_result_id == gcode_result.id)
return;
m_last_result_id = gcode_result.id;
// release gpu memory, if used
reset();
m_sequential_view.gcode_window.load_gcode(gcode_result.filename,
// Stealing out lines_ends should be safe because this gcode_result is processed only once (see the 1st if in this function).
std::move(const_cast<std::vector<size_t>&>(gcode_result.lines_ends)));
if (wxGetApp().is_gcode_viewer())
m_custom_gcode_per_print_z = gcode_result.custom_gcode_per_print_z;
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
m_max_print_height = gcode_result.max_print_height;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
load_toolpaths(gcode_result);
if (m_layers.empty())
return;
m_settings_ids = gcode_result.settings_ids;
m_filament_diameters = gcode_result.filament_diameters;
m_filament_densities = gcode_result.filament_densities;
if (wxGetApp().is_editor())
load_shells(print, initialized);
else {
Pointfs bed_shape;
std::string texture;
std::string model;
if (!gcode_result.bed_shape.empty()) {
// bed shape detected in the gcode
bed_shape = gcode_result.bed_shape;
const auto bundle = wxGetApp().preset_bundle;
if (bundle != nullptr && !m_settings_ids.printer.empty()) {
const Preset* preset = bundle->printers.find_preset(m_settings_ids.printer);
if (preset != nullptr) {
model = PresetUtils::system_printer_bed_model(*preset);
texture = PresetUtils::system_printer_bed_texture(*preset);
}
}
}
else {
// adjust printbed size in dependence of toolpaths bbox
const double margin = 10.0;
const Vec2d min(m_paths_bounding_box.min.x() - margin, m_paths_bounding_box.min.y() - margin);
const Vec2d max(m_paths_bounding_box.max.x() + margin, m_paths_bounding_box.max.y() + margin);
const Vec2d size = max - min;
bed_shape = {
{ min.x(), min.y() },
{ max.x(), min.y() },
{ max.x(), min.y() + 0.442265 * size.y()},
{ max.x() - 10.0, min.y() + 0.4711325 * size.y()},
{ max.x() + 10.0, min.y() + 0.5288675 * size.y()},
{ max.x(), min.y() + 0.557735 * size.y()},
{ max.x(), max.y() },
{ min.x() + 0.557735 * size.x(), max.y()},
{ min.x() + 0.5288675 * size.x(), max.y() - 10.0},
{ min.x() + 0.4711325 * size.x(), max.y() + 10.0},
{ min.x() + 0.442265 * size.x(), max.y()},
{ min.x(), max.y() } };
}
wxGetApp().plater()->set_bed_shape(bed_shape, gcode_result.max_print_height, texture, model, gcode_result.bed_shape.empty());
}
m_print_statistics = gcode_result.print_statistics;
if (m_time_estimate_mode != PrintEstimatedStatistics::ETimeMode::Normal) {
const float time = m_print_statistics.modes[static_cast<size_t>(m_time_estimate_mode)].time;
if (time == 0.0f ||
short_time(get_time_dhms(time)) == short_time(get_time_dhms(m_print_statistics.modes[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].time)))
m_time_estimate_mode = PrintEstimatedStatistics::ETimeMode::Normal;
}
}
void GCodeViewer::refresh(const GCodeProcessorResult& gcode_result, const std::vector<std::string>& str_tool_colors)
{
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (m_moves_count == 0)
return;
wxBusyCursor busy;
if (m_view_type == EViewType::Tool && !gcode_result.extruder_colors.empty())
// update tool colors from config stored in the gcode
m_tool_colors = decode_colors(gcode_result.extruder_colors);
else
// update tool colors
m_tool_colors = decode_colors(str_tool_colors);
// ensure there are enough colors defined
while (m_tool_colors.size() < std::max(size_t(1), gcode_result.extruders_count))
m_tool_colors.push_back(decode_color("#FF8000"));
// update ranges for coloring / legend
m_extrusions.reset_ranges();
for (size_t i = 0; i < m_moves_count; ++i) {
// skip first vertex
if (i == 0)
continue;
const GCodeProcessorResult::MoveVertex& curr = gcode_result.moves[i];
switch (curr.type)
{
case EMoveType::Extrude:
{
m_extrusions.ranges.height.update_from(round_to_nearest_percent(curr.height));
m_extrusions.ranges.width.update_from(round_to_nearest_percent(curr.width));
m_extrusions.ranges.fan_speed.update_from(curr.fan_speed);
m_extrusions.ranges.temperature.update_from(curr.temperature);
m_extrusions.ranges.volumetric_rate.update_from(round_to_nearest_percent(curr.volumetric_rate()));
[[fallthrough]];
}
case EMoveType::Travel:
{
if (m_buffers[buffer_id(curr.type)].visible)
m_extrusions.ranges.feedrate.update_from(curr.feedrate);
break;
}
default: { break; }
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.refresh_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// update buffers' render paths
refresh_render_paths();
log_memory_used("Refreshed G-code extrusion paths, ");
}
void GCodeViewer::refresh_render_paths()
{
refresh_render_paths(false, false);
}
void GCodeViewer::update_shells_color_by_extruder(const DynamicPrintConfig* config)
{
if (config != nullptr)
m_shells.volumes.update_colors_by_extruder(config);
}
void GCodeViewer::reset()
{
m_moves_count = 0;
for (TBuffer& buffer : m_buffers) {
buffer.reset();
}
m_paths_bounding_box = BoundingBoxf3();
m_max_bounding_box = BoundingBoxf3();
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
m_max_print_height = 0.0f;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
m_tool_colors = std::vector<Color>();
m_extruders_count = 0;
m_extruder_ids = std::vector<unsigned char>();
m_filament_diameters = std::vector<float>();
m_filament_densities = std::vector<float>();
m_extrusions.reset_ranges();
m_shells.volumes.clear();
m_layers.reset();
m_layers_z_range = { 0, 0 };
m_roles = std::vector<ExtrusionRole>();
m_print_statistics.reset();
m_custom_gcode_per_print_z = std::vector<CustomGCode::Item>();
m_sequential_view.gcode_window.reset();
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.reset_all();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
m_contained_in_bed = true;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
}
void GCodeViewer::render()
{
#if !ENABLE_SEAMS_USING_MODELS
auto init_gl_data = [this]() {
// initializes opengl data of TBuffers
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& buffer = m_buffers[i];
EMoveType type = buffer_type(i);
switch (type)
{
default: { break; }
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract:
case EMoveType::Seam: {
if (wxGetApp().is_gl_version_greater_or_equal_to(3, 3)) {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Model;
buffer.shader = "gouraud_light_instanced";
buffer.model.model.init_from(diamond(16));
buffer.model.color = option_color(type);
}
else {
buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Point;
buffer.vertices.format = VBuffer::EFormat::Position;
buffer.shader = wxGetApp().is_glsl_version_greater_or_equal_to(1, 20) ? "options_120" : "options_110";
}
break;
}
case EMoveType::Wipe:
case EMoveType::Extrude: {
buffer.shader = "gouraud_light";
break;
}
case EMoveType::Travel: {
buffer.shader = "toolpaths_lines";
break;
}
}
}
// initializes tool marker
m_sequential_view.marker.init();
// initializes point sizes
std::array<int, 2> point_sizes;
::glGetIntegerv(GL_ALIASED_POINT_SIZE_RANGE, point_sizes.data());
m_detected_point_sizes = { static_cast<float>(point_sizes[0]), static_cast<float>(point_sizes[1]) };
m_gl_data_initialized = true;
};
#endif // !ENABLE_SEAMS_USING_MODELS
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.reset_opengl();
#if ENABLE_SEAMS_USING_MODELS
m_statistics.total_instances_gpu_size = 0;
#endif // ENABLE_SEAMS_USING_MODELS
#endif // ENABLE_GCODE_VIEWER_STATISTICS
#if !ENABLE_SEAMS_USING_MODELS
// OpenGL data must be initialized after the glContext has been created.
// This is ensured when this method is called by GLCanvas3D::_render_gcode().
if (!m_gl_data_initialized)
init_gl_data();
#endif // !ENABLE_SEAMS_USING_MODELS
if (m_roles.empty())
return;
glsafe(::glEnable(GL_DEPTH_TEST));
render_toolpaths();
render_shells();
float legend_height = 0.0f;
render_legend(legend_height);
if (m_sequential_view.current.last != m_sequential_view.endpoints.last) {
m_sequential_view.marker.set_world_position(m_sequential_view.current_position);
#if ENABLE_FIX_SEAMS_SYNCH
m_sequential_view.marker.set_world_offset(m_sequential_view.current_offset);
#endif // ENABLE_FIX_SEAMS_SYNCH
m_sequential_view.render(legend_height);
}
#if ENABLE_GCODE_VIEWER_STATISTICS
render_statistics();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
bool GCodeViewer::can_export_toolpaths() const
{
return has_data() && m_buffers[buffer_id(EMoveType::Extrude)].render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle;
}
void GCodeViewer::update_sequential_view_current(unsigned int first, unsigned int last)
{
auto is_visible = [this](unsigned int id) {
for (const TBuffer& buffer : m_buffers) {
if (buffer.visible) {
for (const Path& path : buffer.paths) {
if (path.sub_paths.front().first.s_id <= id && id <= path.sub_paths.back().last.s_id)
return true;
}
}
}
return false;
};
const int first_diff = static_cast<int>(first) - static_cast<int>(m_sequential_view.last_current.first);
const int last_diff = static_cast<int>(last) - static_cast<int>(m_sequential_view.last_current.last);
unsigned int new_first = first;
unsigned int new_last = last;
if (m_sequential_view.skip_invisible_moves) {
while (!is_visible(new_first)) {
if (first_diff > 0)
++new_first;
else
--new_first;
}
while (!is_visible(new_last)) {
if (last_diff > 0)
++new_last;
else
--new_last;
}
}
m_sequential_view.current.first = new_first;
m_sequential_view.current.last = new_last;
m_sequential_view.last_current = m_sequential_view.current;
refresh_render_paths(true, true);
if (new_first != first || new_last != last)
wxGetApp().plater()->update_preview_moves_slider();
}
bool GCodeViewer::is_toolpath_move_type_visible(EMoveType type) const
{
size_t id = static_cast<size_t>(buffer_id(type));
return (id < m_buffers.size()) ? m_buffers[id].visible : false;
}
void GCodeViewer::set_toolpath_move_type_visible(EMoveType type, bool visible)
{
size_t id = static_cast<size_t>(buffer_id(type));
if (id < m_buffers.size())
m_buffers[id].visible = visible;
}
unsigned int GCodeViewer::get_options_visibility_flags() const
{
auto set_flag = [](unsigned int flags, unsigned int flag, bool active) {
return active ? (flags | (1 << flag)) : flags;
};
unsigned int flags = 0;
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Travel), is_toolpath_move_type_visible(EMoveType::Travel));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Wipe), is_toolpath_move_type_visible(EMoveType::Wipe));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Retractions), is_toolpath_move_type_visible(EMoveType::Retract));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Unretractions), is_toolpath_move_type_visible(EMoveType::Unretract));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Seams), is_toolpath_move_type_visible(EMoveType::Seam));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ToolChanges), is_toolpath_move_type_visible(EMoveType::Tool_change));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ColorChanges), is_toolpath_move_type_visible(EMoveType::Color_change));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::PausePrints), is_toolpath_move_type_visible(EMoveType::Pause_Print));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::CustomGCodes), is_toolpath_move_type_visible(EMoveType::Custom_GCode));
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Shells), m_shells.visible);
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ToolMarker), m_sequential_view.marker.is_visible());
flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Legend), is_legend_enabled());
return flags;
}
void GCodeViewer::set_options_visibility_from_flags(unsigned int flags)
{
auto is_flag_set = [flags](unsigned int flag) {
return (flags & (1 << flag)) != 0;
};
set_toolpath_move_type_visible(EMoveType::Travel, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Travel)));
set_toolpath_move_type_visible(EMoveType::Wipe, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Wipe)));
set_toolpath_move_type_visible(EMoveType::Retract, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Retractions)));
set_toolpath_move_type_visible(EMoveType::Unretract, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Unretractions)));
set_toolpath_move_type_visible(EMoveType::Seam, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Seams)));
set_toolpath_move_type_visible(EMoveType::Tool_change, is_flag_set(static_cast<unsigned int>(Preview::OptionType::ToolChanges)));
set_toolpath_move_type_visible(EMoveType::Color_change, is_flag_set(static_cast<unsigned int>(Preview::OptionType::ColorChanges)));
set_toolpath_move_type_visible(EMoveType::Pause_Print, is_flag_set(static_cast<unsigned int>(Preview::OptionType::PausePrints)));
set_toolpath_move_type_visible(EMoveType::Custom_GCode, is_flag_set(static_cast<unsigned int>(Preview::OptionType::CustomGCodes)));
m_shells.visible = is_flag_set(static_cast<unsigned int>(Preview::OptionType::Shells));
m_sequential_view.marker.set_visible(is_flag_set(static_cast<unsigned int>(Preview::OptionType::ToolMarker)));
enable_legend(is_flag_set(static_cast<unsigned int>(Preview::OptionType::Legend)));
}
void GCodeViewer::set_layers_z_range(const std::array<unsigned int, 2>& layers_z_range)
{
bool keep_sequential_current_first = layers_z_range[0] >= m_layers_z_range[0];
bool keep_sequential_current_last = layers_z_range[1] <= m_layers_z_range[1];
m_layers_z_range = layers_z_range;
refresh_render_paths(keep_sequential_current_first, keep_sequential_current_last);
wxGetApp().plater()->update_preview_moves_slider();
}
void GCodeViewer::export_toolpaths_to_obj(const char* filename) const
{
if (filename == nullptr)
return;
if (!has_data())
return;
wxBusyCursor busy;
// the data needed is contained into the Extrude TBuffer
const TBuffer& t_buffer = m_buffers[buffer_id(EMoveType::Extrude)];
if (!t_buffer.has_data())
return;
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Triangle)
return;
// collect color information to generate materials
std::vector<Color> colors;
for (const RenderPath& path : t_buffer.render_paths) {
colors.push_back(path.color);
}
std::sort(colors.begin(), colors.end());
colors.erase(std::unique(colors.begin(), colors.end()), colors.end());
// save materials file
boost::filesystem::path mat_filename(filename);
mat_filename.replace_extension("mtl");
CNumericLocalesSetter locales_setter;
FILE* fp = boost::nowide::fopen(mat_filename.string().c_str(), "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "GCodeViewer::export_toolpaths_to_obj: Couldn't open " << mat_filename.string().c_str() << " for writing";
return;
}
fprintf(fp, "# G-Code Toolpaths Materials\n");
fprintf(fp, "# Generated by %s-%s based on Slic3r\n", SLIC3R_APP_NAME, SLIC3R_VERSION);
unsigned int colors_count = 1;
for (const Color& color : colors) {
fprintf(fp, "\nnewmtl material_%d\n", colors_count++);
fprintf(fp, "Ka 1 1 1\n");
fprintf(fp, "Kd %g %g %g\n", color[0], color[1], color[2]);
fprintf(fp, "Ks 0 0 0\n");
}
fclose(fp);
// save geometry file
fp = boost::nowide::fopen(filename, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "GCodeViewer::export_toolpaths_to_obj: Couldn't open " << filename << " for writing";
return;
}
fprintf(fp, "# G-Code Toolpaths\n");
fprintf(fp, "# Generated by %s-%s based on Slic3r\n", SLIC3R_APP_NAME, SLIC3R_VERSION);
fprintf(fp, "\nmtllib ./%s\n", mat_filename.filename().string().c_str());
const size_t floats_per_vertex = t_buffer.vertices.vertex_size_floats();
std::vector<Vec3f> out_vertices;
std::vector<Vec3f> out_normals;
struct VerticesOffset
{
unsigned int vbo;
size_t offset;
};
std::vector<VerticesOffset> vertices_offsets;
vertices_offsets.push_back({ t_buffer.vertices.vbos.front(), 0 });
// get vertices/normals data from vertex buffers on gpu
for (size_t i = 0; i < t_buffer.vertices.vbos.size(); ++i) {
const size_t floats_count = t_buffer.vertices.sizes[i] / sizeof(float);
VertexBuffer vertices(floats_count);
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, t_buffer.vertices.vbos[i]));
glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, 0, static_cast<GLsizeiptr>(t_buffer.vertices.sizes[i]), static_cast<void*>(vertices.data())));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
const size_t vertices_count = floats_count / floats_per_vertex;
for (size_t j = 0; j < vertices_count; ++j) {
const size_t base = j * floats_per_vertex;
out_vertices.push_back({ vertices[base + 0], vertices[base + 1], vertices[base + 2] });
out_normals.push_back({ vertices[base + 3], vertices[base + 4], vertices[base + 5] });
}
if (i < t_buffer.vertices.vbos.size() - 1)
vertices_offsets.push_back({ t_buffer.vertices.vbos[i + 1], vertices_offsets.back().offset + vertices_count });
}
// save vertices to file
fprintf(fp, "\n# vertices\n");
for (const Vec3f& v : out_vertices) {
fprintf(fp, "v %g %g %g\n", v.x(), v.y(), v.z());
}
// save normals to file
fprintf(fp, "\n# normals\n");
for (const Vec3f& n : out_normals) {
fprintf(fp, "vn %g %g %g\n", n.x(), n.y(), n.z());
}
size_t i = 0;
for (const Color& color : colors) {
// save material triangles to file
fprintf(fp, "\nusemtl material_%zu\n", i + 1);
fprintf(fp, "# triangles material %zu\n", i + 1);
for (const RenderPath& render_path : t_buffer.render_paths) {
if (render_path.color != color)
continue;
const IBuffer& ibuffer = t_buffer.indices[render_path.ibuffer_id];
size_t vertices_offset = 0;
for (size_t j = 0; j < vertices_offsets.size(); ++j) {
const VerticesOffset& offset = vertices_offsets[j];
if (offset.vbo == ibuffer.vbo) {
vertices_offset = offset.offset;
break;
}
}
// get indices data from index buffer on gpu
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibuffer.ibo));
for (size_t j = 0; j < render_path.sizes.size(); ++j) {
IndexBuffer indices(render_path.sizes[j]);
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>(render_path.offsets[j]),
static_cast<GLsizeiptr>(render_path.sizes[j] * sizeof(IBufferType)), static_cast<void*>(indices.data())));
const size_t triangles_count = render_path.sizes[j] / 3;
for (size_t k = 0; k < triangles_count; ++k) {
const size_t base = k * 3;
const size_t v1 = 1 + static_cast<size_t>(indices[base + 0]) + vertices_offset;
const size_t v2 = 1 + static_cast<size_t>(indices[base + 1]) + vertices_offset;
const size_t v3 = 1 + static_cast<size_t>(indices[base + 2]) + vertices_offset;
if (v1 != v2)
// do not export dummy triangles
fprintf(fp, "f %zu//%zu %zu//%zu %zu//%zu\n", v1, v1, v2, v2, v3, v3);
}
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
++i;
}
fclose(fp);
}
void GCodeViewer::load_toolpaths(const GCodeProcessorResult& gcode_result)
{
// max index buffer size, in bytes
static const size_t IBUFFER_THRESHOLD_BYTES = 64 * 1024 * 1024;
auto log_memory_usage = [this](const std::string& label, const std::vector<MultiVertexBuffer>& vertices, const std::vector<MultiIndexBuffer>& indices) {
int64_t vertices_size = 0;
for (const MultiVertexBuffer& buffers : vertices) {
for (const VertexBuffer& buffer : buffers) {
vertices_size += SLIC3R_STDVEC_MEMSIZE(buffer, float);
}
}
int64_t indices_size = 0;
for (const MultiIndexBuffer& buffers : indices) {
for (const IndexBuffer& buffer : buffers) {
indices_size += SLIC3R_STDVEC_MEMSIZE(buffer, IBufferType);
}
}
log_memory_used(label, vertices_size + indices_size);
};
// format data into the buffers to be rendered as points
auto add_vertices_as_point = [](const GCodeProcessorResult::MoveVertex& curr, VertexBuffer& vertices) {
vertices.push_back(curr.position.x());
vertices.push_back(curr.position.y());
vertices.push_back(curr.position.z());
};
auto add_indices_as_point = [](const GCodeProcessorResult::MoveVertex& curr, TBuffer& buffer,
unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
buffer.add_path(curr, ibuffer_id, indices.size(), move_id);
indices.push_back(static_cast<IBufferType>(indices.size()));
};
// format data into the buffers to be rendered as lines
auto add_vertices_as_line = [](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, VertexBuffer& vertices) {
// x component of the normal to the current segment (the normal is parallel to the XY plane)
const float normal_x = (curr.position - prev.position).normalized().y();
auto add_vertex = [&vertices, normal_x](const GCodeProcessorResult::MoveVertex& vertex) {
// add position
vertices.push_back(vertex.position.x());
vertices.push_back(vertex.position.y());
vertices.push_back(vertex.position.z());
// add normal x component
vertices.push_back(normal_x);
};
// add previous vertex
add_vertex(prev);
// add current vertex
add_vertex(curr);
};
auto add_indices_as_line = [](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, TBuffer& buffer,
unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
if (buffer.paths.empty() || prev.type != curr.type || !buffer.paths.back().matches(curr)) {
// add starting index
indices.push_back(static_cast<IBufferType>(indices.size()));
buffer.add_path(curr, ibuffer_id, indices.size() - 1, move_id - 1);
buffer.paths.back().sub_paths.front().first.position = prev.position;
}
Path& last_path = buffer.paths.back();
if (last_path.sub_paths.front().first.i_id != last_path.sub_paths.back().last.i_id) {
// add previous index
indices.push_back(static_cast<IBufferType>(indices.size()));
}
// add current index
indices.push_back(static_cast<IBufferType>(indices.size()));
last_path.sub_paths.back().last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
};
// format data into the buffers to be rendered as solid
auto add_vertices_as_solid = [](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, TBuffer& buffer, unsigned int vbuffer_id, VertexBuffer& vertices, size_t move_id) {
auto store_vertex = [](VertexBuffer& vertices, const Vec3f& position, const Vec3f& normal) {
// append position
vertices.push_back(position.x());
vertices.push_back(position.y());
vertices.push_back(position.z());
// append normal
vertices.push_back(normal.x());
vertices.push_back(normal.y());
vertices.push_back(normal.z());
};
if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
buffer.add_path(curr, vbuffer_id, vertices.size(), move_id - 1);
buffer.paths.back().sub_paths.back().first.position = prev.position;
}
Path& last_path = buffer.paths.back();
const Vec3f dir = (curr.position - prev.position).normalized();
const Vec3f right = Vec3f(dir.y(), -dir.x(), 0.0f).normalized();
const Vec3f left = -right;
const Vec3f up = right.cross(dir);
const Vec3f down = -up;
const float half_width = 0.5f * last_path.width;
const float half_height = 0.5f * last_path.height;
const Vec3f prev_pos = prev.position - half_height * up;
const Vec3f curr_pos = curr.position - half_height * up;
const Vec3f d_up = half_height * up;
const Vec3f d_down = -half_height * up;
const Vec3f d_right = half_width * right;
const Vec3f d_left = -half_width * right;
// vertices 1st endpoint
if (last_path.vertices_count() == 1 || vertices.empty()) {
// 1st segment or restart into a new vertex buffer
// ===============================================
store_vertex(vertices, prev_pos + d_up, up);
store_vertex(vertices, prev_pos + d_right, right);
store_vertex(vertices, prev_pos + d_down, down);
store_vertex(vertices, prev_pos + d_left, left);
}
else {
// any other segment
// =================
store_vertex(vertices, prev_pos + d_right, right);
store_vertex(vertices, prev_pos + d_left, left);
}
// vertices 2nd endpoint
store_vertex(vertices, curr_pos + d_up, up);
store_vertex(vertices, curr_pos + d_right, right);
store_vertex(vertices, curr_pos + d_down, down);
store_vertex(vertices, curr_pos + d_left, left);
last_path.sub_paths.back().last = { vbuffer_id, vertices.size(), move_id, curr.position };
};
auto add_indices_as_solid = [&](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, const GCodeProcessorResult::MoveVertex* next,
TBuffer& buffer, size_t& vbuffer_size, unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
static Vec3f prev_dir;
static Vec3f prev_up;
static float sq_prev_length;
auto store_triangle = [](IndexBuffer& indices, IBufferType i1, IBufferType i2, IBufferType i3) {
indices.push_back(i1);
indices.push_back(i2);
indices.push_back(i3);
};
auto append_dummy_cap = [store_triangle](IndexBuffer& indices, IBufferType id) {
store_triangle(indices, id, id, id);
store_triangle(indices, id, id, id);
};
auto convert_vertices_offset = [](size_t vbuffer_size, const std::array<int, 8>& v_offsets) {
std::array<IBufferType, 8> ret = {
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[0]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[1]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[2]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[3]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[4]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[5]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[6]),
static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[7])
};
return ret;
};
auto append_starting_cap_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
store_triangle(indices, v_offsets[0], v_offsets[2], v_offsets[1]);
store_triangle(indices, v_offsets[0], v_offsets[3], v_offsets[2]);
};
auto append_stem_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
store_triangle(indices, v_offsets[0], v_offsets[1], v_offsets[4]);
store_triangle(indices, v_offsets[1], v_offsets[5], v_offsets[4]);
store_triangle(indices, v_offsets[1], v_offsets[2], v_offsets[5]);
store_triangle(indices, v_offsets[2], v_offsets[6], v_offsets[5]);
store_triangle(indices, v_offsets[2], v_offsets[3], v_offsets[6]);
store_triangle(indices, v_offsets[3], v_offsets[7], v_offsets[6]);
store_triangle(indices, v_offsets[3], v_offsets[0], v_offsets[7]);
store_triangle(indices, v_offsets[0], v_offsets[4], v_offsets[7]);
};
auto append_ending_cap_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
store_triangle(indices, v_offsets[4], v_offsets[6], v_offsets[7]);
store_triangle(indices, v_offsets[4], v_offsets[5], v_offsets[6]);
};
if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
buffer.add_path(curr, ibuffer_id, indices.size(), move_id - 1);
buffer.paths.back().sub_paths.back().first.position = prev.position;
}
Path& last_path = buffer.paths.back();
const Vec3f dir = (curr.position - prev.position).normalized();
const Vec3f right = Vec3f(dir.y(), -dir.x(), 0.0f).normalized();
const Vec3f up = right.cross(dir);
const float sq_length = (curr.position - prev.position).squaredNorm();
const std::array<IBufferType, 8> first_seg_v_offsets = convert_vertices_offset(vbuffer_size, { 0, 1, 2, 3, 4, 5, 6, 7 });
const std::array<IBufferType, 8> non_first_seg_v_offsets = convert_vertices_offset(vbuffer_size, { -4, 0, -2, 1, 2, 3, 4, 5 });
const bool is_first_segment = (last_path.vertices_count() == 1);
if (is_first_segment || vbuffer_size == 0) {
// 1st segment or restart into a new vertex buffer
// ===============================================
if (is_first_segment)
// starting cap triangles
append_starting_cap_triangles(indices, first_seg_v_offsets);
// dummy triangles outer corner cap
append_dummy_cap(indices, vbuffer_size);
// stem triangles
append_stem_triangles(indices, first_seg_v_offsets);
vbuffer_size += 8;
}
else {
// any other segment
// =================
float displacement = 0.0f;
const float cos_dir = prev_dir.dot(dir);
if (cos_dir > -0.9998477f) {
// if the angle between adjacent segments is smaller than 179 degrees
const Vec3f med_dir = (prev_dir + dir).normalized();
const float half_width = 0.5f * last_path.width;
displacement = half_width * ::tan(::acos(std::clamp(dir.dot(med_dir), -1.0f, 1.0f)));
}
const float sq_displacement = sqr(displacement);
const bool can_displace = displacement > 0.0f && sq_displacement < sq_prev_length && sq_displacement < sq_length;
const bool is_right_turn = prev_up.dot(prev_dir.cross(dir)) <= 0.0f;
// whether the angle between adjacent segments is greater than 45 degrees
const bool is_sharp = cos_dir < 0.7071068f;
bool right_displaced = false;
bool left_displaced = false;
if (!is_sharp && can_displace) {
if (is_right_turn)
left_displaced = true;
else
right_displaced = true;
}
// triangles outer corner cap
if (is_right_turn) {
if (left_displaced)
// dummy triangles
append_dummy_cap(indices, vbuffer_size);
else {
store_triangle(indices, vbuffer_size - 4, vbuffer_size + 1, vbuffer_size - 1);
store_triangle(indices, vbuffer_size + 1, vbuffer_size - 2, vbuffer_size - 1);
}
}
else {
if (right_displaced)
// dummy triangles
append_dummy_cap(indices, vbuffer_size);
else {
store_triangle(indices, vbuffer_size - 4, vbuffer_size - 3, vbuffer_size + 0);
store_triangle(indices, vbuffer_size - 3, vbuffer_size - 2, vbuffer_size + 0);
}
}
// stem triangles
append_stem_triangles(indices, non_first_seg_v_offsets);
vbuffer_size += 6;
}
if (next != nullptr && (curr.type != next->type || !last_path.matches(*next)))
// ending cap triangles
append_ending_cap_triangles(indices, is_first_segment ? first_seg_v_offsets : non_first_seg_v_offsets);
last_path.sub_paths.back().last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
prev_dir = dir;
prev_up = up;
sq_prev_length = sq_length;
};
#if ENABLE_SEAMS_USING_MODELS
// format data into the buffers to be rendered as instanced model
auto add_model_instance = [](const GCodeProcessorResult::MoveVertex& curr, InstanceBuffer& instances, InstanceIdBuffer& instances_ids, size_t move_id) {
// append position
instances.push_back(curr.position.x());
instances.push_back(curr.position.y());
instances.push_back(curr.position.z());
// append width
instances.push_back(curr.width);
// append height
instances.push_back(curr.height);
// append id
instances_ids.push_back(move_id);
};
#if ENABLE_SEAMS_USING_BATCHED_MODELS
// format data into the buffers to be rendered as batched model
auto add_vertices_as_model_batch = [](const GCodeProcessorResult::MoveVertex& curr, const GLModel::InitializationData& data, VertexBuffer& vertices, InstanceBuffer& instances, InstanceIdBuffer& instances_ids, size_t move_id) {
const double width = static_cast<double>(1.5f * curr.width);
const double height = static_cast<double>(1.5f * curr.height);
const Transform3d trafo = Geometry::assemble_transform((curr.position - 0.5f * curr.height * Vec3f::UnitZ()).cast<double>(), Vec3d::Zero(), { width, width, height });
const Eigen::Matrix<double, 3, 3, Eigen::DontAlign> normal_matrix = trafo.matrix().template block<3, 3>(0, 0).inverse().transpose();
for (const auto& entity : data.entities) {
// append vertices
for (size_t i = 0; i < entity.positions.size(); ++i) {
// append position
const Vec3d position = trafo * entity.positions[i].cast<double>();
vertices.push_back(static_cast<float>(position.x()));
vertices.push_back(static_cast<float>(position.y()));
vertices.push_back(static_cast<float>(position.z()));
// append normal
const Vec3d normal = normal_matrix * entity.normals[i].cast<double>();
vertices.push_back(static_cast<float>(normal.x()));
vertices.push_back(static_cast<float>(normal.y()));
vertices.push_back(static_cast<float>(normal.z()));
}
}
// append instance position
instances.push_back(curr.position.x());
instances.push_back(curr.position.y());
instances.push_back(curr.position.z());
// append instance id
instances_ids.push_back(move_id);
};
auto add_indices_as_model_batch = [](const GLModel::InitializationData& data, IndexBuffer& indices, IBufferType base_index) {
for (const auto& entity : data.entities) {
for (size_t i = 0; i < entity.indices.size(); ++i) {
indices.push_back(static_cast<IBufferType>(entity.indices[i] + base_index));
}
}
};
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
#endif // ENABLE_SEAMS_USING_MODELS
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
m_statistics.results_size = SLIC3R_STDVEC_MEMSIZE(gcode_result.moves, GCodeProcessorResult::MoveVertex);
m_statistics.results_time = gcode_result.time;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
m_moves_count = gcode_result.moves.size();
if (m_moves_count == 0)
return;
m_extruders_count = gcode_result.extruders_count;
unsigned int progress_count = 0;
static const unsigned int progress_threshold = 1000;
wxProgressDialog* progress_dialog = wxGetApp().is_gcode_viewer() ?
new wxProgressDialog(_L("Generating toolpaths"), "...",
100, wxGetApp().plater(), wxPD_AUTO_HIDE | wxPD_APP_MODAL) : nullptr;
wxBusyCursor busy;
// extract approximate paths bounding box from result
for (const GCodeProcessorResult::MoveVertex& move : gcode_result.moves) {
if (wxGetApp().is_gcode_viewer())
// for the gcode viewer we need to take in account all moves to correctly size the printbed
m_paths_bounding_box.merge(move.position.cast<double>());
else {
if (move.type == EMoveType::Extrude && move.extrusion_role != erCustom && move.width != 0.0f && move.height != 0.0f)
m_paths_bounding_box.merge(move.position.cast<double>());
}
}
// set approximate max bounding box (take in account also the tool marker)
m_max_bounding_box = m_paths_bounding_box;
m_max_bounding_box.merge(m_paths_bounding_box.max + m_sequential_view.marker.get_bounding_box().size().z() * Vec3d::UnitZ());
if (wxGetApp().is_editor())
m_contained_in_bed = wxGetApp().plater()->build_volume().all_paths_inside(gcode_result, m_paths_bounding_box);
#if ENABLE_FIX_SEAMS_SYNCH
m_sequential_view.gcode_ids.clear();
for (size_t i = 0; i < gcode_result.moves.size(); ++i) {
const GCodeProcessorResult::MoveVertex& move = gcode_result.moves[i];
if (move.type != EMoveType::Seam)
m_sequential_view.gcode_ids.push_back(move.gcode_id);
}
#else
for (const GCodeProcessorResult::MoveVertex& move : gcode_result.moves) {
m_sequential_view.gcode_ids.push_back(move.gcode_id);
}
#endif // ENABLE_FIX_SEAMS_SYNCH
std::vector<MultiVertexBuffer> vertices(m_buffers.size());
std::vector<MultiIndexBuffer> indices(m_buffers.size());
#if ENABLE_SEAMS_USING_MODELS
std::vector<InstanceBuffer> instances(m_buffers.size());
std::vector<InstanceIdBuffer> instances_ids(m_buffers.size());
#endif // ENABLE_SEAMS_USING_MODELS
#if ENABLE_FIX_SEAMS_SYNCH
std::vector<InstancesOffsets> instances_offsets(m_buffers.size());
#endif // ENABLE_FIX_SEAMS_SYNCH
std::vector<float> options_zs;
#if ENABLE_FIX_SEAMS_SYNCH
size_t seams_count = 0;
std::vector<size_t> seams_ids;
#endif // ENABLE_FIX_SEAMS_SYNCH
// toolpaths data -> extract vertices from result
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessorResult::MoveVertex& curr = gcode_result.moves[i];
#if ENABLE_FIX_SEAMS_SYNCH
if (curr.type == EMoveType::Seam) {
++seams_count;
seams_ids.push_back(i);
}
size_t move_id = i - seams_count;
#endif // ENABLE_FIX_SEAMS_SYNCH
// skip first vertex
if (i == 0)
continue;
const GCodeProcessorResult::MoveVertex& prev = gcode_result.moves[i - 1];
// update progress dialog
++progress_count;
if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
progress_dialog->Update(int(100.0f * float(i) / (2.0f * float(m_moves_count))),
_L("Generating vertex buffer") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
progress_dialog->Fit();
progress_count = 0;
}
const unsigned char id = buffer_id(curr.type);
TBuffer& t_buffer = m_buffers[id];
MultiVertexBuffer& v_multibuffer = vertices[id];
#if ENABLE_SEAMS_USING_MODELS
InstanceBuffer& inst_buffer = instances[id];
InstanceIdBuffer& inst_id_buffer = instances_ids[id];
#if ENABLE_FIX_SEAMS_SYNCH
InstancesOffsets& inst_offsets = instances_offsets[id];
#endif // ENABLE_FIX_SEAMS_SYNCH
#endif // ENABLE_SEAMS_USING_MODELS
// ensure there is at least one vertex buffer
if (v_multibuffer.empty())
v_multibuffer.push_back(VertexBuffer());
// if adding the vertices for the current segment exceeds the threshold size of the current vertex buffer
// add another vertex buffer
#if ENABLE_SEAMS_USING_BATCHED_MODELS
size_t vertices_size_to_add = (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) ? t_buffer.model.data.vertices_size_bytes() : t_buffer.max_vertices_per_segment_size_bytes();
if (v_multibuffer.back().size() * sizeof(float) > t_buffer.vertices.max_size_bytes() - vertices_size_to_add) {
#else
if (v_multibuffer.back().size() * sizeof(float) > t_buffer.vertices.max_size_bytes() - t_buffer.max_vertices_per_segment_size_bytes()) {
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
v_multibuffer.push_back(VertexBuffer());
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
Path& last_path = t_buffer.paths.back();
if (prev.type == curr.type && last_path.matches(curr))
#if ENABLE_FIX_SEAMS_SYNCH
last_path.add_sub_path(prev, static_cast<unsigned int>(v_multibuffer.size()) - 1, 0, move_id - 1);
#else
last_path.add_sub_path(prev, static_cast<unsigned int>(v_multibuffer.size()) - 1, 0, i - 1);
#endif // ENABLE_FIX_SEAMS_SYNCH
}
}
VertexBuffer& v_buffer = v_multibuffer.back();
switch (t_buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: { add_vertices_as_point(curr, v_buffer); break; }
case TBuffer::ERenderPrimitiveType::Line: { add_vertices_as_line(prev, curr, v_buffer); break; }
#if ENABLE_FIX_SEAMS_SYNCH
case TBuffer::ERenderPrimitiveType::Triangle: { add_vertices_as_solid(prev, curr, t_buffer, static_cast<unsigned int>(v_multibuffer.size()) - 1, v_buffer, move_id); break; }
#else
case TBuffer::ERenderPrimitiveType::Triangle: { add_vertices_as_solid(prev, curr, t_buffer, static_cast<unsigned int>(v_multibuffer.size()) - 1, v_buffer, i); break; }
#endif // ENABLE_FIX_SEAMS_SYNCH
#if ENABLE_SEAMS_USING_MODELS
#if ENABLE_SEAMS_USING_BATCHED_MODELS
case TBuffer::ERenderPrimitiveType::InstancedModel:
{
#if ENABLE_FIX_SEAMS_SYNCH
add_model_instance(curr, inst_buffer, inst_id_buffer, move_id);
inst_offsets.push_back(prev.position - curr.position);
#else
add_model_instance(curr, inst_buffer, inst_id_buffer, i);
#endif // ENABLE_FIX_SEAMS_SYNCH
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.instances_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
break;
}
case TBuffer::ERenderPrimitiveType::BatchedModel:
{
#if ENABLE_FIX_SEAMS_SYNCH
add_vertices_as_model_batch(curr, t_buffer.model.data, v_buffer, inst_buffer, inst_id_buffer, move_id);
inst_offsets.push_back(prev.position - curr.position);
#else
add_vertices_as_model_batch(curr, t_buffer.model.data, v_buffer, inst_buffer, inst_id_buffer, i);
#endif // ENABLE_FIX_SEAMS_SYNCH
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.batched_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
break;
}
#else
case TBuffer::ERenderPrimitiveType::Model:
{
#if ENABLE_FIX_SEAMS_SYNCH
add_model_instance(curr, inst_buffer, inst_id_buffer, move_id);
#else
add_model_instance(curr, inst_buffer, inst_id_buffer, i);
#endif // ENABLE_FIX_SEAMS_SYNCH
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.instances_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
break;
}
#endif // ENABLE_SEAMS_USING_MODELS
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
}
// collect options zs for later use
if (curr.type == EMoveType::Pause_Print || curr.type == EMoveType::Custom_GCode) {
const float* const last_z = options_zs.empty() ? nullptr : &options_zs.back();
if (last_z == nullptr || curr.position[2] < *last_z - EPSILON || *last_z + EPSILON < curr.position[2])
options_zs.emplace_back(curr.position[2]);
}
}
// smooth toolpaths corners for the given TBuffer using triangles
#if ENABLE_FIX_SEAMS_SYNCH
auto smooth_triangle_toolpaths_corners = [&gcode_result, &seams_ids](const TBuffer& t_buffer, MultiVertexBuffer& v_multibuffer) {
#else
auto smooth_triangle_toolpaths_corners = [&gcode_result](const TBuffer& t_buffer, MultiVertexBuffer& v_multibuffer) {
#endif // ENABLE_FIX_SEAMS_SYNCH
auto extract_position_at = [](const VertexBuffer& vertices, size_t offset) {
return Vec3f(vertices[offset + 0], vertices[offset + 1], vertices[offset + 2]);
};
auto update_position_at = [](VertexBuffer& vertices, size_t offset, const Vec3f& position) {
vertices[offset + 0] = position.x();
vertices[offset + 1] = position.y();
vertices[offset + 2] = position.z();
};
auto match_right_vertices = [&](const Path::Sub_Path& prev_sub_path, const Path::Sub_Path& next_sub_path,
size_t curr_s_id, size_t vertex_size_floats, const Vec3f& displacement_vec) {
if (&prev_sub_path == &next_sub_path) { // previous and next segment are both contained into to the same vertex buffer
VertexBuffer& vbuffer = v_multibuffer[prev_sub_path.first.b_id];
// offset into the vertex buffer of the next segment 1st vertex
const size_t next_1st_offset = (prev_sub_path.last.s_id - curr_s_id) * 6 * vertex_size_floats;
// offset into the vertex buffer of the right vertex of the previous segment
const size_t prev_right_offset = prev_sub_path.last.i_id - next_1st_offset - 3 * vertex_size_floats;
// new position of the right vertices
const Vec3f shared_vertex = extract_position_at(vbuffer, prev_right_offset) + displacement_vec;
// update previous segment
update_position_at(vbuffer, prev_right_offset, shared_vertex);
// offset into the vertex buffer of the right vertex of the next segment
const size_t next_right_offset = next_sub_path.last.i_id - next_1st_offset;
// update next segment
update_position_at(vbuffer, next_right_offset, shared_vertex);
}
else { // previous and next segment are contained into different vertex buffers
VertexBuffer& prev_vbuffer = v_multibuffer[prev_sub_path.first.b_id];
VertexBuffer& next_vbuffer = v_multibuffer[next_sub_path.first.b_id];
// offset into the previous vertex buffer of the right vertex of the previous segment
const size_t prev_right_offset = prev_sub_path.last.i_id - 3 * vertex_size_floats;
// new position of the right vertices
const Vec3f shared_vertex = extract_position_at(prev_vbuffer, prev_right_offset) + displacement_vec;
// update previous segment
update_position_at(prev_vbuffer, prev_right_offset, shared_vertex);
// offset into the next vertex buffer of the right vertex of the next segment
const size_t next_right_offset = next_sub_path.first.i_id + 1 * vertex_size_floats;
// update next segment
update_position_at(next_vbuffer, next_right_offset, shared_vertex);
}
};
auto match_left_vertices = [&](const Path::Sub_Path& prev_sub_path, const Path::Sub_Path& next_sub_path,
size_t curr_s_id, size_t vertex_size_floats, const Vec3f& displacement_vec) {
if (&prev_sub_path == &next_sub_path) { // previous and next segment are both contained into to the same vertex buffer
VertexBuffer& vbuffer = v_multibuffer[prev_sub_path.first.b_id];
// offset into the vertex buffer of the next segment 1st vertex
const size_t next_1st_offset = (prev_sub_path.last.s_id - curr_s_id) * 6 * vertex_size_floats;
// offset into the vertex buffer of the left vertex of the previous segment
const size_t prev_left_offset = prev_sub_path.last.i_id - next_1st_offset - 1 * vertex_size_floats;
// new position of the left vertices
const Vec3f shared_vertex = extract_position_at(vbuffer, prev_left_offset) + displacement_vec;
// update previous segment
update_position_at(vbuffer, prev_left_offset, shared_vertex);
// offset into the vertex buffer of the left vertex of the next segment
const size_t next_left_offset = next_sub_path.last.i_id - next_1st_offset + 1 * vertex_size_floats;
// update next segment
update_position_at(vbuffer, next_left_offset, shared_vertex);
}
else { // previous and next segment are contained into different vertex buffers
VertexBuffer& prev_vbuffer = v_multibuffer[prev_sub_path.first.b_id];
VertexBuffer& next_vbuffer = v_multibuffer[next_sub_path.first.b_id];
// offset into the previous vertex buffer of the left vertex of the previous segment
const size_t prev_left_offset = prev_sub_path.last.i_id - 1 * vertex_size_floats;
// new position of the left vertices
const Vec3f shared_vertex = extract_position_at(prev_vbuffer, prev_left_offset) + displacement_vec;
// update previous segment
update_position_at(prev_vbuffer, prev_left_offset, shared_vertex);
// offset into the next vertex buffer of the left vertex of the next segment
const size_t next_left_offset = next_sub_path.first.i_id + 3 * vertex_size_floats;
// update next segment
update_position_at(next_vbuffer, next_left_offset, shared_vertex);
}
};
#if ENABLE_FIX_SEAMS_SYNCH
auto extract_move_id = [&seams_ids](size_t id) {
for (int i = seams_ids.size() - 1; i >= 0; --i) {
if (seams_ids[i] < id + i + 1)
return id + (size_t)i + 1;
}
return id;
};
#endif // ENABLE_FIX_SEAMS_SYNCH
size_t vertex_size_floats = t_buffer.vertices.vertex_size_floats();
for (const Path& path : t_buffer.paths) {
// the two segments of the path sharing the current vertex may belong
// to two different vertex buffers
size_t prev_sub_path_id = 0;
size_t next_sub_path_id = 0;
const size_t path_vertices_count = path.vertices_count();
const float half_width = 0.5f * path.width;
for (size_t j = 1; j < path_vertices_count - 1; ++j) {
size_t curr_s_id = path.sub_paths.front().first.s_id + j;
#if ENABLE_FIX_SEAMS_SYNCH
size_t move_id = extract_move_id(curr_s_id);
const Vec3f& prev = gcode_result.moves[move_id - 1].position;
const Vec3f& curr = gcode_result.moves[move_id].position;
const Vec3f& next = gcode_result.moves[move_id + 1].position;
#else
const Vec3f& prev = gcode_result.moves[curr_s_id - 1].position;
const Vec3f& curr = gcode_result.moves[curr_s_id].position;
const Vec3f& next = gcode_result.moves[curr_s_id + 1].position;
#endif // ENABLE_FIX_SEAMS_SYNCH
// select the subpaths which contains the previous/next segments
if (!path.sub_paths[prev_sub_path_id].contains(curr_s_id))
++prev_sub_path_id;
if (!path.sub_paths[next_sub_path_id].contains(curr_s_id + 1))
++next_sub_path_id;
const Path::Sub_Path& prev_sub_path = path.sub_paths[prev_sub_path_id];
const Path::Sub_Path& next_sub_path = path.sub_paths[next_sub_path_id];
const Vec3f prev_dir = (curr - prev).normalized();
const Vec3f prev_right = Vec3f(prev_dir.y(), -prev_dir.x(), 0.0f).normalized();
const Vec3f prev_up = prev_right.cross(prev_dir);
const Vec3f next_dir = (next - curr).normalized();
const bool is_right_turn = prev_up.dot(prev_dir.cross(next_dir)) <= 0.0f;
const float cos_dir = prev_dir.dot(next_dir);
// whether the angle between adjacent segments is greater than 45 degrees
const bool is_sharp = cos_dir < 0.7071068f;
float displacement = 0.0f;
if (cos_dir > -0.9998477f) {
// if the angle between adjacent segments is smaller than 179 degrees
Vec3f med_dir = (prev_dir + next_dir).normalized();
displacement = half_width * ::tan(::acos(std::clamp(next_dir.dot(med_dir), -1.0f, 1.0f)));
}
const float sq_prev_length = (curr - prev).squaredNorm();
const float sq_next_length = (next - curr).squaredNorm();
const float sq_displacement = sqr(displacement);
const bool can_displace = displacement > 0.0f && sq_displacement < sq_prev_length && sq_displacement < sq_next_length;
if (can_displace) {
// displacement to apply to the vertices to match
Vec3f displacement_vec = displacement * prev_dir;
// matches inner corner vertices
if (is_right_turn)
match_right_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, -displacement_vec);
else
match_left_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, -displacement_vec);
if (!is_sharp) {
// matches outer corner vertices
if (is_right_turn)
match_left_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, displacement_vec);
else
match_right_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, displacement_vec);
}
}
}
}
};
#if ENABLE_GCODE_VIEWER_STATISTICS
auto load_vertices_time = std::chrono::high_resolution_clock::now();
m_statistics.load_vertices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
// smooth toolpaths corners for TBuffers using triangles
for (size_t i = 0; i < m_buffers.size(); ++i) {
const TBuffer& t_buffer = m_buffers[i];
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
smooth_triangle_toolpaths_corners(t_buffer, vertices[i]);
}
}
#if ENABLE_FIX_SEAMS_SYNCH
// dismiss, no more needed
std::vector<size_t>().swap(seams_ids);
#endif // ENABLE_FIX_SEAMS_SYNCH
for (MultiVertexBuffer& v_multibuffer : vertices) {
for (VertexBuffer& v_buffer : v_multibuffer) {
v_buffer.shrink_to_fit();
}
}
// move the wipe toolpaths half height up to render them on proper position
MultiVertexBuffer& wipe_vertices = vertices[buffer_id(EMoveType::Wipe)];
for (VertexBuffer& v_buffer : wipe_vertices) {
for (size_t i = 2; i < v_buffer.size(); i += 3) {
v_buffer[i] += 0.5f * GCodeProcessor::Wipe_Height;
}
}
// send vertices data to gpu, where needed
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& t_buffer = m_buffers[i];
#if ENABLE_SEAMS_USING_MODELS
#if ENABLE_SEAMS_USING_BATCHED_MODELS
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::InstancedModel) {
const InstanceBuffer& inst_buffer = instances[i];
if (!inst_buffer.empty()) {
t_buffer.model.instances.buffer = inst_buffer;
t_buffer.model.instances.s_ids = instances_ids[i];
#if ENABLE_FIX_SEAMS_SYNCH
t_buffer.model.instances.offsets = instances_offsets[i];
#endif // ENABLE_FIX_SEAMS_SYNCH
}
}
else {
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) {
const InstanceBuffer& inst_buffer = instances[i];
if (!inst_buffer.empty()) {
t_buffer.model.instances.buffer = inst_buffer;
t_buffer.model.instances.s_ids = instances_ids[i];
#if ENABLE_FIX_SEAMS_SYNCH
t_buffer.model.instances.offsets = instances_offsets[i];
#endif // ENABLE_FIX_SEAMS_SYNCH
}
}
#else
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Model) {
const InstanceBuffer& inst_buffer = instances[i];
if (!inst_buffer.empty()) {
t_buffer.model.instances.buffer = inst_buffer;
t_buffer.model.instances.s_ids = instances_ids[i];
#if ENABLE_FIX_SEAMS_SYNCH
t_buffer.model.instances.offsets = instances_offsets[i];
#endif // ENABLE_FIX_SEAMS_SYNCH
}
}
else {
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
#endif // ENABLE_SEAMS_USING_MODELS
const MultiVertexBuffer& v_multibuffer = vertices[i];
for (const VertexBuffer& v_buffer : v_multibuffer) {
const size_t size_elements = v_buffer.size();
const size_t size_bytes = size_elements * sizeof(float);
const size_t vertices_count = size_elements / t_buffer.vertices.vertex_size_floats();
t_buffer.vertices.count += vertices_count;
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.total_vertices_gpu_size += static_cast<int64_t>(size_bytes);
m_statistics.max_vbuffer_gpu_size = std::max(m_statistics.max_vbuffer_gpu_size, static_cast<int64_t>(size_bytes));
++m_statistics.vbuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
GLuint id = 0;
glsafe(::glGenBuffers(1, &id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, id));
glsafe(::glBufferData(GL_ARRAY_BUFFER, size_bytes, v_buffer.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
t_buffer.vertices.vbos.push_back(static_cast<unsigned int>(id));
t_buffer.vertices.sizes.push_back(size_bytes);
}
#if ENABLE_SEAMS_USING_MODELS
}
#endif // ENABLE_SEAMS_USING_MODELS
}
#if ENABLE_GCODE_VIEWER_STATISTICS
auto smooth_vertices_time = std::chrono::high_resolution_clock::now();
m_statistics.smooth_vertices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - load_vertices_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
log_memory_usage("Loaded G-code generated vertex buffers ", vertices, indices);
// dismiss vertices data, no more needed
std::vector<MultiVertexBuffer>().swap(vertices);
#if ENABLE_SEAMS_USING_MODELS
std::vector<InstanceBuffer>().swap(instances);
std::vector<InstanceIdBuffer>().swap(instances_ids);
#endif // ENABLE_SEAMS_USING_MODELS
// toolpaths data -> extract indices from result
// paths may have been filled while extracting vertices,
// so reset them, they will be filled again while extracting indices
for (TBuffer& buffer : m_buffers) {
buffer.paths.clear();
}
// variable used to keep track of the current vertex buffers index and size
using CurrVertexBuffer = std::pair<unsigned int, size_t>;
std::vector<CurrVertexBuffer> curr_vertex_buffers(m_buffers.size(), { 0, 0 });
// variable used to keep track of the vertex buffers ids
using VboIndexList = std::vector<unsigned int>;
std::vector<VboIndexList> vbo_indices(m_buffers.size());
#if ENABLE_FIX_SEAMS_SYNCH
seams_count = 0;
#endif // ENABLE_FIX_SEAMS_SYNCH
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessorResult::MoveVertex& curr = gcode_result.moves[i];
#if ENABLE_FIX_SEAMS_SYNCH
if (curr.type == EMoveType::Seam)
++seams_count;
size_t move_id = i - seams_count;
#endif // ENABLE_FIX_SEAMS_SYNCH
// skip first vertex
if (i == 0)
continue;
const GCodeProcessorResult::MoveVertex& prev = gcode_result.moves[i - 1];
const GCodeProcessorResult::MoveVertex* next = nullptr;
if (i < m_moves_count - 1)
next = &gcode_result.moves[i + 1];
++progress_count;
if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
progress_dialog->Update(int(100.0f * float(m_moves_count + i) / (2.0f * float(m_moves_count))),
_L("Generating index buffers") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
progress_dialog->Fit();
progress_count = 0;
}
const unsigned char id = buffer_id(curr.type);
TBuffer& t_buffer = m_buffers[id];
MultiIndexBuffer& i_multibuffer = indices[id];
CurrVertexBuffer& curr_vertex_buffer = curr_vertex_buffers[id];
VboIndexList& vbo_index_list = vbo_indices[id];
// ensure there is at least one index buffer
if (i_multibuffer.empty()) {
i_multibuffer.push_back(IndexBuffer());
#if ENABLE_SEAMS_USING_MODELS
if (!t_buffer.vertices.vbos.empty())
#endif // ENABLE_SEAMS_USING_MODELS
vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
}
// if adding the indices for the current segment exceeds the threshold size of the current index buffer
// create another index buffer
#if ENABLE_SEAMS_USING_BATCHED_MODELS
size_t indiced_size_to_add = (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) ? t_buffer.model.data.indices_size_bytes() : t_buffer.max_indices_per_segment_size_bytes();
if (i_multibuffer.back().size() * sizeof(IBufferType) >= IBUFFER_THRESHOLD_BYTES - indiced_size_to_add) {
#else
if (i_multibuffer.back().size() * sizeof(IBufferType) >= IBUFFER_THRESHOLD_BYTES - t_buffer.max_indices_per_segment_size_bytes()) {
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
i_multibuffer.push_back(IndexBuffer());
vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
#if ENABLE_SEAMS_USING_BATCHED_MODELS
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point &&
t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::BatchedModel) {
#else
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point) {
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
Path& last_path = t_buffer.paths.back();
#if ENABLE_FIX_SEAMS_SYNCH
last_path.add_sub_path(prev, static_cast<unsigned int>(i_multibuffer.size()) - 1, 0, move_id - 1);
#else
last_path.add_sub_path(prev, static_cast<unsigned int>(i_multibuffer.size()) - 1, 0, i - 1);
#endif // ENABLE_FIX_SEAMS_SYNCH
}
}
// if adding the vertices for the current segment exceeds the threshold size of the current vertex buffer
// create another index buffer
#if ENABLE_SEAMS_USING_BATCHED_MODELS
size_t vertices_size_to_add = (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) ? t_buffer.model.data.vertices_size_bytes() : t_buffer.max_vertices_per_segment_size_bytes();
if (curr_vertex_buffer.second * t_buffer.vertices.vertex_size_bytes() > t_buffer.vertices.max_size_bytes() - vertices_size_to_add) {
#else
if (curr_vertex_buffer.second * t_buffer.vertices.vertex_size_bytes() > t_buffer.vertices.max_size_bytes() - t_buffer.max_vertices_per_segment_size_bytes()) {
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
i_multibuffer.push_back(IndexBuffer());
++curr_vertex_buffer.first;
curr_vertex_buffer.second = 0;
vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
#if ENABLE_SEAMS_USING_BATCHED_MODELS
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point &&
t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::BatchedModel) {
#else
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point) {
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
Path& last_path = t_buffer.paths.back();
#if ENABLE_FIX_SEAMS_SYNCH
last_path.add_sub_path(prev, static_cast<unsigned int>(i_multibuffer.size()) - 1, 0, move_id - 1);
#else
last_path.add_sub_path(prev, static_cast<unsigned int>(i_multibuffer.size()) - 1, 0, i - 1);
#endif // ENABLE_FIX_SEAMS_SYNCH
}
}
IndexBuffer& i_buffer = i_multibuffer.back();
switch (t_buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: {
#if ENABLE_FIX_SEAMS_SYNCH
add_indices_as_point(curr, t_buffer, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, move_id);
#else
add_indices_as_point(curr, t_buffer, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
#endif // ENABLE_FIX_SEAMS_SYNCH
curr_vertex_buffer.second += t_buffer.max_vertices_per_segment();
break;
}
case TBuffer::ERenderPrimitiveType::Line: {
#if ENABLE_FIX_SEAMS_SYNCH
add_indices_as_line(prev, curr, t_buffer, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, move_id);
#else
add_indices_as_line(prev, curr, t_buffer, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
#endif // ENABLE_FIX_SEAMS_SYNCH
curr_vertex_buffer.second += t_buffer.max_vertices_per_segment();
break;
}
case TBuffer::ERenderPrimitiveType::Triangle: {
#if ENABLE_FIX_SEAMS_SYNCH
add_indices_as_solid(prev, curr, next, t_buffer, curr_vertex_buffer.second, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, move_id);
#else
add_indices_as_solid(prev, curr, next, t_buffer, curr_vertex_buffer.second, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
#endif // ENABLE_FIX_SEAMS_SYNCH
break;
}
#if ENABLE_SEAMS_USING_BATCHED_MODELS
case TBuffer::ERenderPrimitiveType::BatchedModel: {
add_indices_as_model_batch(t_buffer.model.data, i_buffer, curr_vertex_buffer.second);
curr_vertex_buffer.second += t_buffer.model.data.vertices_count();
break;
}
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
default: { break; }
}
}
for (MultiIndexBuffer& i_multibuffer : indices) {
for (IndexBuffer& i_buffer : i_multibuffer) {
i_buffer.shrink_to_fit();
}
}
// toolpaths data -> send indices data to gpu
for (size_t i = 0; i < m_buffers.size(); ++i) {
TBuffer& t_buffer = m_buffers[i];
#if ENABLE_SEAMS_USING_MODELS
#if ENABLE_SEAMS_USING_BATCHED_MODELS
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::InstancedModel) {
#else
if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Model) {
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
#endif // ENABLE_SEAMS_USING_MODELS
const MultiIndexBuffer& i_multibuffer = indices[i];
for (const IndexBuffer& i_buffer : i_multibuffer) {
const size_t size_elements = i_buffer.size();
const size_t size_bytes = size_elements * sizeof(IBufferType);
// stores index buffer informations into TBuffer
t_buffer.indices.push_back(IBuffer());
IBuffer& ibuf = t_buffer.indices.back();
ibuf.count = size_elements;
ibuf.vbo = vbo_indices[i][t_buffer.indices.size() - 1];
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.total_indices_gpu_size += static_cast<int64_t>(size_bytes);
m_statistics.max_ibuffer_gpu_size = std::max(m_statistics.max_ibuffer_gpu_size, static_cast<int64_t>(size_bytes));
++m_statistics.ibuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
glsafe(::glGenBuffers(1, &ibuf.ibo));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibuf.ibo));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, size_bytes, i_buffer.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
#if ENABLE_SEAMS_USING_MODELS
}
#endif // ENABLE_SEAMS_USING_MODELS
}
if (progress_dialog != nullptr) {
progress_dialog->Update(100, "");
progress_dialog->Fit();
}
#if ENABLE_GCODE_VIEWER_STATISTICS
for (const TBuffer& buffer : m_buffers) {
m_statistics.paths_size += SLIC3R_STDVEC_MEMSIZE(buffer.paths, Path);
}
auto update_segments_count = [&](EMoveType type, int64_t& count) {
unsigned int id = buffer_id(type);
const MultiIndexBuffer& buffers = indices[id];
int64_t indices_count = 0;
for (const IndexBuffer& buffer : buffers) {
indices_count += buffer.size();
}
const TBuffer& t_buffer = m_buffers[id];
if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle)
indices_count -= static_cast<int64_t>(12 * t_buffer.paths.size()); // remove the starting + ending caps = 4 triangles
count += indices_count / t_buffer.indices_per_segment();
};
update_segments_count(EMoveType::Travel, m_statistics.travel_segments_count);
update_segments_count(EMoveType::Wipe, m_statistics.wipe_segments_count);
update_segments_count(EMoveType::Extrude, m_statistics.extrude_segments_count);
m_statistics.load_indices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - smooth_vertices_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
log_memory_usage("Loaded G-code generated indices buffers ", vertices, indices);
// dismiss indices data, no more needed
std::vector<MultiIndexBuffer>().swap(indices);
// layers zs / roles / extruder ids -> extract from result
size_t last_travel_s_id = 0;
#if ENABLE_FIX_SEAMS_SYNCH
seams_count = 0;
#endif // ENABLE_FIX_SEAMS_SYNCH
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessorResult::MoveVertex& move = gcode_result.moves[i];
#if ENABLE_FIX_SEAMS_SYNCH
if (move.type == EMoveType::Seam)
++seams_count;
size_t move_id = i - seams_count;
#endif // ENABLE_FIX_SEAMS_SYNCH
if (move.type == EMoveType::Extrude) {
// layers zs
const double* const last_z = m_layers.empty() ? nullptr : &m_layers.get_zs().back();
const double z = static_cast<double>(move.position.z());
if (last_z == nullptr || z < *last_z - EPSILON || *last_z + EPSILON < z)
#if ENABLE_FIX_SEAMS_SYNCH
m_layers.append(z, { last_travel_s_id, move_id });
#else
m_layers.append(z, { last_travel_s_id, i });
#endif // ENABLE_FIX_SEAMS_SYNCH
else
#if ENABLE_FIX_SEAMS_SYNCH
m_layers.get_endpoints().back().last = move_id;
#else
m_layers.get_endpoints().back().last = i;
#endif // ENABLE_FIX_SEAMS_SYNCH
// extruder ids
m_extruder_ids.emplace_back(move.extruder_id);
// roles
if (i > 0)
m_roles.emplace_back(move.extrusion_role);
}
else if (move.type == EMoveType::Travel) {
#if ENABLE_FIX_SEAMS_SYNCH
if (move_id - last_travel_s_id > 1 && !m_layers.empty())
m_layers.get_endpoints().back().last = move_id;
last_travel_s_id = move_id;
#else
if (i - last_travel_s_id > 1 && !m_layers.empty())
m_layers.get_endpoints().back().last = i;
last_travel_s_id = i;
#endif // ENABLE_FIX_SEAMS_SYNCH
}
}
// roles -> remove duplicates
std::sort(m_roles.begin(), m_roles.end());
m_roles.erase(std::unique(m_roles.begin(), m_roles.end()), m_roles.end());
m_roles.shrink_to_fit();
// extruder ids -> remove duplicates
std::sort(m_extruder_ids.begin(), m_extruder_ids.end());
m_extruder_ids.erase(std::unique(m_extruder_ids.begin(), m_extruder_ids.end()), m_extruder_ids.end());
m_extruder_ids.shrink_to_fit();
// set layers z range
if (!m_layers.empty())
m_layers_z_range = { 0, static_cast<unsigned int>(m_layers.size() - 1) };
// change color of paths whose layer contains option points
if (!options_zs.empty()) {
TBuffer& extrude_buffer = m_buffers[buffer_id(EMoveType::Extrude)];
for (Path& path : extrude_buffer.paths) {
const float z = path.sub_paths.front().first.position.z();
if (std::find_if(options_zs.begin(), options_zs.end(), [z](float f) { return f - EPSILON <= z && z <= f + EPSILON; }) != options_zs.end())
path.cp_color_id = 255 - path.cp_color_id;
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
m_statistics.load_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (progress_dialog != nullptr)
progress_dialog->Destroy();
}
void GCodeViewer::load_shells(const Print& print, bool initialized)
{
if (print.objects().empty())
// no shells, return
return;
// adds objects' volumes
int object_id = 0;
for (const PrintObject* obj : print.objects()) {
const ModelObject* model_obj = obj->model_object();
std::vector<int> instance_ids(model_obj->instances.size());
for (int i = 0; i < (int)model_obj->instances.size(); ++i) {
instance_ids[i] = i;
}
m_shells.volumes.load_object(model_obj, object_id, instance_ids, "object", initialized);
++object_id;
}
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptFFF) {
// adds wipe tower's volume
const double max_z = print.objects()[0]->model_object()->get_model()->bounding_box().max(2);
const PrintConfig& config = print.config();
const size_t extruders_count = config.nozzle_diameter.size();
if (extruders_count > 1 && config.wipe_tower && !config.complete_objects) {
const float depth = print.wipe_tower_data(extruders_count).depth;
const float brim_width = print.wipe_tower_data(extruders_count).brim_width;
m_shells.volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
!print.is_step_done(psWipeTower), brim_width, initialized);
}
}
// remove modifiers
while (true) {
GLVolumePtrs::iterator it = std::find_if(m_shells.volumes.volumes.begin(), m_shells.volumes.volumes.end(), [](GLVolume* volume) { return volume->is_modifier; });
if (it != m_shells.volumes.volumes.end()) {
delete (*it);
m_shells.volumes.volumes.erase(it);
}
else
break;
}
for (GLVolume* volume : m_shells.volumes.volumes) {
volume->zoom_to_volumes = false;
volume->color[3] = 0.25f;
volume->force_native_color = true;
volume->set_render_color();
}
}
void GCodeViewer::refresh_render_paths(bool keep_sequential_current_first, bool keep_sequential_current_last) const
{
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
auto extrusion_color = [this](const Path& path) {
Color color;
switch (m_view_type)
{
case EViewType::FeatureType: { color = Extrusion_Role_Colors[static_cast<unsigned int>(path.role)]; break; }
case EViewType::Height: { color = m_extrusions.ranges.height.get_color_at(path.height); break; }
case EViewType::Width: { color = m_extrusions.ranges.width.get_color_at(path.width); break; }
case EViewType::Feedrate: { color = m_extrusions.ranges.feedrate.get_color_at(path.feedrate); break; }
case EViewType::FanSpeed: { color = m_extrusions.ranges.fan_speed.get_color_at(path.fan_speed); break; }
case EViewType::Temperature: { color = m_extrusions.ranges.temperature.get_color_at(path.temperature); break; }
case EViewType::VolumetricRate: { color = m_extrusions.ranges.volumetric_rate.get_color_at(path.volumetric_rate); break; }
case EViewType::Tool: { color = m_tool_colors[path.extruder_id]; break; }
case EViewType::ColorPrint: {
if (path.cp_color_id >= static_cast<unsigned char>(m_tool_colors.size()))
color = { 0.5f, 0.5f, 0.5f, 1.0f };
else
color = m_tool_colors[path.cp_color_id];
break;
}
default: { color = { 1.0f, 1.0f, 1.0f, 1.0f }; break; }
}
return color;
};
auto travel_color = [](const Path& path) {
return (path.delta_extruder < 0.0f) ? Travel_Colors[2] /* Retract */ :
((path.delta_extruder > 0.0f) ? Travel_Colors[1] /* Extrude */ :
Travel_Colors[0] /* Move */);
};
auto is_in_layers_range = [this](const Path& path, size_t min_id, size_t max_id) {
auto in_layers_range = [this, min_id, max_id](size_t id) {
return m_layers.get_endpoints_at(min_id).first <= id && id <= m_layers.get_endpoints_at(max_id).last;
};
return in_layers_range(path.sub_paths.front().first.s_id) || in_layers_range(path.sub_paths.back().last.s_id);
};
auto is_travel_in_layers_range = [this](size_t path_id, size_t min_id, size_t max_id) {
const TBuffer& buffer = m_buffers[buffer_id(EMoveType::Travel)];
if (path_id >= buffer.paths.size())
return false;
Path path = buffer.paths[path_id];
size_t first = path_id;
size_t last = path_id;
// check adjacent paths
while (first > 0 && path.sub_paths.front().first.position.isApprox(buffer.paths[first - 1].sub_paths.back().last.position)) {
--first;
path.sub_paths.front().first = buffer.paths[first].sub_paths.front().first;
}
while (last < buffer.paths.size() - 1 && path.sub_paths.back().last.position.isApprox(buffer.paths[last + 1].sub_paths.front().first.position)) {
++last;
path.sub_paths.back().last = buffer.paths[last].sub_paths.back().last;
}
const size_t min_s_id = m_layers.get_endpoints_at(min_id).first;
const size_t max_s_id = m_layers.get_endpoints_at(max_id).last;
return (min_s_id <= path.sub_paths.front().first.s_id && path.sub_paths.front().first.s_id <= max_s_id) ||
(min_s_id <= path.sub_paths.back().last.s_id && path.sub_paths.back().last.s_id <= max_s_id);
};
#if ENABLE_GCODE_VIEWER_STATISTICS
Statistics* statistics = const_cast<Statistics*>(&m_statistics);
statistics->render_paths_size = 0;
#if ENABLE_SEAMS_USING_MODELS
statistics->models_instances_size = 0;
#endif // ENABLE_SEAMS_USING_MODELS
#endif // ENABLE_GCODE_VIEWER_STATISTICS
const bool top_layer_only = get_app_config()->get("seq_top_layer_only") == "1";
SequentialView::Endpoints global_endpoints = { m_moves_count , 0 };
SequentialView::Endpoints top_layer_endpoints = global_endpoints;
SequentialView* sequential_view = const_cast<SequentialView*>(&m_sequential_view);
if (top_layer_only || !keep_sequential_current_first) sequential_view->current.first = 0;
if (!keep_sequential_current_last) sequential_view->current.last = m_moves_count;
// first pass: collect visible paths and update sequential view data
std::vector<std::tuple<unsigned char, unsigned int, unsigned int, unsigned int>> paths;
for (size_t b = 0; b < m_buffers.size(); ++b) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[b]);
// reset render paths
buffer.render_paths.clear();
if (!buffer.visible)
continue;
#if ENABLE_SEAMS_USING_MODELS
#if ENABLE_SEAMS_USING_BATCHED_MODELS
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::InstancedModel ||
buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) {
#else
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Model) {
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
for (size_t id : buffer.model.instances.s_ids) {
if (id < m_layers.get_endpoints_at(m_layers_z_range[0]).first || m_layers.get_endpoints_at(m_layers_z_range[1]).last < id)
continue;
global_endpoints.first = std::min(global_endpoints.first, id);
global_endpoints.last = std::max(global_endpoints.last, id);
if (top_layer_only) {
if (id < m_layers.get_endpoints_at(m_layers_z_range[1]).first || m_layers.get_endpoints_at(m_layers_z_range[1]).last < id)
continue;
top_layer_endpoints.first = std::min(top_layer_endpoints.first, id);
top_layer_endpoints.last = std::max(top_layer_endpoints.last, id);
}
}
}
else {
#endif // ENABLE_SEAMS_USING_MODELS
for (size_t i = 0; i < buffer.paths.size(); ++i) {
const Path& path = buffer.paths[i];
if (path.type == EMoveType::Travel) {
if (!is_travel_in_layers_range(i, m_layers_z_range[0], m_layers_z_range[1]))
continue;
}
else if (!is_in_layers_range(path, m_layers_z_range[0], m_layers_z_range[1]))
continue;
if (path.type == EMoveType::Extrude && !is_visible(path))
continue;
// store valid path
for (size_t j = 0; j < path.sub_paths.size(); ++j) {
paths.push_back({ static_cast<unsigned char>(b), path.sub_paths[j].first.b_id, static_cast<unsigned int>(i), static_cast<unsigned int>(j) });
}
global_endpoints.first = std::min(global_endpoints.first, path.sub_paths.front().first.s_id);
global_endpoints.last = std::max(global_endpoints.last, path.sub_paths.back().last.s_id);
if (top_layer_only) {
if (path.type == EMoveType::Travel) {
if (is_travel_in_layers_range(i, m_layers_z_range[1], m_layers_z_range[1])) {
top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.sub_paths.front().first.s_id);
top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.sub_paths.back().last.s_id);
}
}
else if (is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1])) {
top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.sub_paths.front().first.s_id);
top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.sub_paths.back().last.s_id);
}
}
}
#if ENABLE_SEAMS_USING_MODELS
}
#endif // ENABLE_SEAMS_USING_MODELS
}
// update current sequential position
sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, global_endpoints.first, global_endpoints.last) : global_endpoints.first;
sequential_view->current.last = keep_sequential_current_last ? std::clamp(sequential_view->current.last, global_endpoints.first, global_endpoints.last) : global_endpoints.last;
// get the world position from the vertex buffer
bool found = false;
for (const TBuffer& buffer : m_buffers) {
#if ENABLE_SEAMS_USING_MODELS
#if ENABLE_SEAMS_USING_BATCHED_MODELS
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::InstancedModel ||
buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) {
#else
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Model) {
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
for (size_t i = 0; i < buffer.model.instances.s_ids.size(); ++i) {
if (buffer.model.instances.s_ids[i] == m_sequential_view.current.last) {
size_t offset = i * buffer.model.instances.instance_size_floats();
sequential_view->current_position.x() = buffer.model.instances.buffer[offset + 0];
sequential_view->current_position.y() = buffer.model.instances.buffer[offset + 1];
sequential_view->current_position.z() = buffer.model.instances.buffer[offset + 2];
#if ENABLE_FIX_SEAMS_SYNCH
sequential_view->current_offset = buffer.model.instances.offsets[i];
#endif // ENABLE_FIX_SEAMS_SYNCH
found = true;
break;
}
}
}
else {
#endif // ENABLE_SEAMS_USING_MODELS
// searches the path containing the current position
for (const Path& path : buffer.paths) {
if (path.contains(m_sequential_view.current.last)) {
const int sub_path_id = path.get_id_of_sub_path_containing(m_sequential_view.current.last);
if (sub_path_id != -1) {
const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
unsigned int offset = static_cast<unsigned int>(m_sequential_view.current.last - sub_path.first.s_id);
if (offset > 0) {
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Line)
offset = 2 * offset - 1;
else if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
unsigned int indices_count = buffer.indices_per_segment();
offset = indices_count * (offset - 1) + (indices_count - 2);
if (sub_path_id == 0)
offset += 6; // add 2 triangles for starting cap
}
}
offset += static_cast<unsigned int>(sub_path.first.i_id);
// gets the vertex index from the index buffer on gpu
const IBuffer& i_buffer = buffer.indices[sub_path.first.b_id];
unsigned int index = 0;
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>(offset * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&index)));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
// gets the position from the vertices buffer on gpu
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, i_buffer.vbo));
glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, static_cast<GLintptr>(index * buffer.vertices.vertex_size_bytes()), static_cast<GLsizeiptr>(3 * sizeof(float)), static_cast<void*>(sequential_view->current_position.data())));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
#if ENABLE_FIX_SEAMS_SYNCH
sequential_view->current_offset = Vec3f::Zero();
#endif // ENABLE_FIX_SEAMS_SYNCH
found = true;
break;
}
}
}
#if ENABLE_SEAMS_USING_MODELS
}
#endif // ENABLE_SEAMS_USING_MODELS
if (found)
break;
}
// second pass: filter paths by sequential data and collect them by color
RenderPath* render_path = nullptr;
for (const auto& [tbuffer_id, ibuffer_id, path_id, sub_path_id] : paths) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[tbuffer_id]);
const Path& path = buffer.paths[path_id];
const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
if (m_sequential_view.current.last < sub_path.first.s_id || sub_path.last.s_id < m_sequential_view.current.first)
continue;
Color color;
switch (path.type)
{
case EMoveType::Tool_change:
case EMoveType::Color_change:
case EMoveType::Pause_Print:
case EMoveType::Custom_GCode:
case EMoveType::Retract:
case EMoveType::Unretract:
case EMoveType::Seam: { color = option_color(path.type); break; }
case EMoveType::Extrude: {
if (!top_layer_only ||
m_sequential_view.current.last == global_endpoints.last ||
is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1]))
color = extrusion_color(path);
else
color = Neutral_Color;
break;
}
case EMoveType::Travel: {
if (!top_layer_only || m_sequential_view.current.last == global_endpoints.last || is_travel_in_layers_range(path_id, m_layers_z_range[1], m_layers_z_range[1]))
color = (m_view_type == EViewType::Feedrate || m_view_type == EViewType::Tool || m_view_type == EViewType::ColorPrint) ? extrusion_color(path) : travel_color(path);
else
color = Neutral_Color;
break;
}
case EMoveType::Wipe: { color = Wipe_Color; break; }
default: { color = { 0.0f, 0.0f, 0.0f, 1.0f }; break; }
}
RenderPath key{ tbuffer_id, color, static_cast<unsigned int>(ibuffer_id), path_id };
if (render_path == nullptr || !RenderPathPropertyEqual()(*render_path, key))
render_path = const_cast<RenderPath*>(&(*buffer.render_paths.emplace(key).first));
unsigned int delta_1st = 0;
if (sub_path.first.s_id < m_sequential_view.current.first && m_sequential_view.current.first <= sub_path.last.s_id)
delta_1st = static_cast<unsigned int>(m_sequential_view.current.first - sub_path.first.s_id);
unsigned int size_in_indices = 0;
switch (buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: {
size_in_indices = buffer.indices_per_segment();
break;
}
case TBuffer::ERenderPrimitiveType::Line:
case TBuffer::ERenderPrimitiveType::Triangle: {
unsigned int segments_count = std::min(m_sequential_view.current.last, sub_path.last.s_id) - std::max(m_sequential_view.current.first, sub_path.first.s_id);
size_in_indices = buffer.indices_per_segment() * segments_count;
break;
}
default: { break; }
}
if (size_in_indices == 0)
continue;
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
if (sub_path_id == 0 && delta_1st == 0)
size_in_indices += 6; // add 2 triangles for starting cap
if (sub_path_id == path.sub_paths.size() - 1 && path.sub_paths.back().last.s_id <= m_sequential_view.current.last)
size_in_indices += 6; // add 2 triangles for ending cap
if (delta_1st > 0)
size_in_indices -= 6; // remove 2 triangles for corner cap
}
render_path->sizes.push_back(size_in_indices);
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
delta_1st *= buffer.indices_per_segment();
if (delta_1st > 0) {
delta_1st += 6; // skip 2 triangles for corner cap
if (sub_path_id == 0)
delta_1st += 6; // skip 2 triangles for starting cap
}
}
render_path->offsets.push_back(static_cast<size_t>((sub_path.first.i_id + delta_1st) * sizeof(IBufferType)));
#if 0
// check sizes and offsets against index buffer size on gpu
GLint buffer_size;
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer->indices[render_path->ibuffer_id].ibo));
glsafe(::glGetBufferParameteriv(GL_ELEMENT_ARRAY_BUFFER, GL_BUFFER_SIZE, &buffer_size));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (render_path->offsets.back() + render_path->sizes.back() * sizeof(IBufferType) > buffer_size)
BOOST_LOG_TRIVIAL(error) << "GCodeViewer::refresh_render_paths: Invalid render path data";
#endif
}
#if ENABLE_SEAMS_USING_MODELS
#if ENABLE_SEAMS_USING_BATCHED_MODELS
// second pass: for buffers using instanced and batched models, update the instances render ranges
#else
// second pass: for buffers using instanced models, update the instances render ranges
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
for (size_t b = 0; b < m_buffers.size(); ++b) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[b]);
#if ENABLE_SEAMS_USING_BATCHED_MODELS
if (buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::InstancedModel &&
buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::BatchedModel)
#else
if (buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Model)
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
continue;
buffer.model.instances.render_ranges.reset();
if (!buffer.visible || buffer.model.instances.s_ids.empty())
continue;
buffer.model.instances.render_ranges.ranges.push_back({ 0, 0, 0, buffer.model.color });
bool has_second_range = top_layer_only && m_sequential_view.current.last != m_sequential_view.global.last;
if (has_second_range)
buffer.model.instances.render_ranges.ranges.push_back({ 0, 0, 0, Neutral_Color });
if (m_sequential_view.current.first <= buffer.model.instances.s_ids.back() && buffer.model.instances.s_ids.front() <= m_sequential_view.current.last) {
for (size_t id : buffer.model.instances.s_ids) {
if (has_second_range) {
#if ENABLE_FIX_PREVIEW_OPTIONS_Z
if (id < m_sequential_view.endpoints.first) {
#else
if (id <= m_sequential_view.endpoints.first) {
#endif // ENABLE_FIX_PREVIEW_OPTIONS_Z
++buffer.model.instances.render_ranges.ranges.front().offset;
if (id <= m_sequential_view.current.first)
++buffer.model.instances.render_ranges.ranges.back().offset;
else
++buffer.model.instances.render_ranges.ranges.back().count;
}
else if (id <= m_sequential_view.current.last)
++buffer.model.instances.render_ranges.ranges.front().count;
else
break;
}
else {
if (id <= m_sequential_view.current.first)
++buffer.model.instances.render_ranges.ranges.front().offset;
else if (id <= m_sequential_view.current.last)
++buffer.model.instances.render_ranges.ranges.front().count;
else
break;
}
}
}
}
#endif // ENABLE_SEAMS_USING_MODELS
// set sequential data to their final value
sequential_view->endpoints = top_layer_only ? top_layer_endpoints : global_endpoints;
sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, sequential_view->endpoints.first, sequential_view->endpoints.last) : sequential_view->endpoints.first;
#if ENABLE_SEAMS_USING_MODELS
sequential_view->global = global_endpoints;
#endif // ENABLE_SEAMS_USING_MODELS
// updates sequential range caps
std::array<SequentialRangeCap, 2>* sequential_range_caps = const_cast<std::array<SequentialRangeCap, 2>*>(&m_sequential_range_caps);
(*sequential_range_caps)[0].reset();
(*sequential_range_caps)[1].reset();
if (m_sequential_view.current.first != m_sequential_view.current.last) {
for (const auto& [tbuffer_id, ibuffer_id, path_id, sub_path_id] : paths) {
TBuffer& buffer = const_cast<TBuffer&>(m_buffers[tbuffer_id]);
if (buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Triangle)
continue;
const Path& path = buffer.paths[path_id];
const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
if (m_sequential_view.current.last <= sub_path.first.s_id || sub_path.last.s_id <= m_sequential_view.current.first)
continue;
// update cap for first endpoint of current range
if (m_sequential_view.current.first > sub_path.first.s_id) {
SequentialRangeCap& cap = (*sequential_range_caps)[0];
const IBuffer& i_buffer = buffer.indices[ibuffer_id];
cap.buffer = &buffer;
cap.vbo = i_buffer.vbo;
// calculate offset into the index buffer
unsigned int offset = sub_path.first.i_id;
offset += 6; // add 2 triangles for corner cap
offset += static_cast<unsigned int>(m_sequential_view.current.first - sub_path.first.s_id) * buffer.indices_per_segment();
if (sub_path_id == 0)
offset += 6; // add 2 triangles for starting cap
// extract indices from index buffer
std::array<IBufferType, 6> indices{ 0, 0, 0, 0, 0, 0 };
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 0) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[0])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 7) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[1])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 1) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[2])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 13) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[4])));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
indices[3] = indices[0];
indices[5] = indices[1];
// send indices to gpu
glsafe(::glGenBuffers(1, &cap.ibo));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(IBufferType), indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
// extract color from render path
size_t offset_bytes = offset * sizeof(IBufferType);
for (const RenderPath& render_path : buffer.render_paths) {
if (render_path.ibuffer_id == ibuffer_id) {
for (size_t j = 0; j < render_path.offsets.size(); ++j) {
if (render_path.contains(offset_bytes)) {
cap.color = render_path.color;
break;
}
}
}
}
}
// update cap for last endpoint of current range
if (m_sequential_view.current.last < sub_path.last.s_id) {
SequentialRangeCap& cap = (*sequential_range_caps)[1];
const IBuffer& i_buffer = buffer.indices[ibuffer_id];
cap.buffer = &buffer;
cap.vbo = i_buffer.vbo;
// calculate offset into the index buffer
unsigned int offset = sub_path.first.i_id;
offset += 6; // add 2 triangles for corner cap
offset += static_cast<unsigned int>(m_sequential_view.current.last - 1 - sub_path.first.s_id) * buffer.indices_per_segment();
if (sub_path_id == 0)
offset += 6; // add 2 triangles for starting cap
// extract indices from index buffer
std::array<IBufferType, 6> indices{ 0, 0, 0, 0, 0, 0 };
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 2) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[0])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 4) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[1])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 10) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[2])));
glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 16) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[5])));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
indices[3] = indices[0];
indices[4] = indices[2];
// send indices to gpu
glsafe(::glGenBuffers(1, &cap.ibo));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, 6 * sizeof(IBufferType), indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
// extract color from render path
size_t offset_bytes = offset * sizeof(IBufferType);
for (const RenderPath& render_path : buffer.render_paths) {
if (render_path.ibuffer_id == ibuffer_id) {
for (size_t j = 0; j < render_path.offsets.size(); ++j) {
if (render_path.contains(offset_bytes)) {
cap.color = render_path.color;
break;
}
}
}
}
}
if ((*sequential_range_caps)[0].is_renderable() && (*sequential_range_caps)[1].is_renderable())
break;
}
}
wxGetApp().plater()->enable_preview_moves_slider(!paths.empty());
#if ENABLE_GCODE_VIEWER_STATISTICS
for (const TBuffer& buffer : m_buffers) {
statistics->render_paths_size += SLIC3R_STDUNORDEREDSET_MEMSIZE(buffer.render_paths, RenderPath);
for (const RenderPath& path : buffer.render_paths) {
statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.sizes, unsigned int);
statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.offsets, size_t);
}
#if ENABLE_SEAMS_USING_MODELS
statistics->models_instances_size += SLIC3R_STDVEC_MEMSIZE(buffer.model.instances.buffer, float);
statistics->models_instances_size += SLIC3R_STDVEC_MEMSIZE(buffer.model.instances.s_ids, size_t);
statistics->models_instances_size += SLIC3R_STDVEC_MEMSIZE(buffer.model.instances.render_ranges.ranges, InstanceVBuffer::Ranges::Range);
#endif // ENABLE_SEAMS_USING_MODELS
}
statistics->refresh_paths_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
void GCodeViewer::render_toolpaths()
{
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
float point_size = 20.0f;
#else
float point_size = 0.8f;
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
std::array<float, 4> light_intensity = { 0.25f, 0.70f, 0.75f, 0.75f };
const Camera& camera = wxGetApp().plater()->get_camera();
double zoom = camera.get_zoom();
const std::array<int, 4>& viewport = camera.get_viewport();
float near_plane_height = camera.get_type() == Camera::EType::Perspective ? static_cast<float>(viewport[3]) / (2.0f * static_cast<float>(2.0 * std::tan(0.5 * Geometry::deg2rad(camera.get_fov())))) :
static_cast<float>(viewport[3]) * 0.0005;
#if ENABLE_GCODE_VIEWER_STATISTICS
auto render_as_points = [this, zoom, point_size, near_plane_height]
#else
auto render_as_points = [zoom, point_size, near_plane_height]
#endif // ENABLE_GCODE_VIEWER_STATISTICS
(const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
shader.set_uniform("use_fixed_screen_size", 1);
#else
shader.set_uniform("use_fixed_screen_size", 0);
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
shader.set_uniform("zoom", zoom);
shader.set_uniform("percent_outline_radius", 0.0f);
shader.set_uniform("percent_center_radius", 0.33f);
shader.set_uniform("point_size", point_size);
shader.set_uniform("near_plane_height", near_plane_height);
glsafe(::glEnable(GL_VERTEX_PROGRAM_POINT_SIZE));
glsafe(::glEnable(GL_POINT_SPRITE));
for (const RenderPath& path : buffer.render_paths) {
if (path.ibuffer_id == ibuffer_id) {
shader.set_uniform("uniform_color", path.color);
glsafe(::glMultiDrawElements(GL_POINTS, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_multi_points_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
glsafe(::glDisable(GL_POINT_SPRITE));
glsafe(::glDisable(GL_VERTEX_PROGRAM_POINT_SIZE));
};
#if ENABLE_GCODE_VIEWER_STATISTICS
auto render_as_lines = [this, light_intensity]
#else
auto render_as_lines = [light_intensity]
#endif // ENABLE_GCODE_VIEWER_STATISTICS
(const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
shader.set_uniform("light_intensity", light_intensity);
for (const RenderPath& path : buffer.render_paths) {
if (path.ibuffer_id == ibuffer_id) {
shader.set_uniform("uniform_color", path.color);
glsafe(::glMultiDrawElements(GL_LINES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_multi_lines_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
};
#if ENABLE_GCODE_VIEWER_STATISTICS
auto render_as_triangles = [this]
#else
auto render_as_triangles = []
#endif // ENABLE_GCODE_VIEWER_STATISTICS
(const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
for (const RenderPath& path : buffer.render_paths) {
if (path.ibuffer_id == ibuffer_id) {
shader.set_uniform("uniform_color", path.color);
glsafe(::glMultiDrawElements(GL_TRIANGLES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_multi_triangles_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
};
#if ENABLE_SEAMS_USING_MODELS
#if ENABLE_GCODE_VIEWER_STATISTICS
auto render_as_instanced_model = [this]
#else
auto render_as_instanced_model = []
#endif // ENABLE_GCODE_VIEWER_STATISTICS
(TBuffer& buffer, GLShaderProgram & shader) {
for (auto& range : buffer.model.instances.render_ranges.ranges) {
if (range.vbo == 0 && range.count > 0) {
glsafe(::glGenBuffers(1, &range.vbo));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, range.vbo));
glsafe(::glBufferData(GL_ARRAY_BUFFER, range.count * buffer.model.instances.instance_size_bytes(), (const void*)&buffer.model.instances.buffer[range.offset * buffer.model.instances.instance_size_floats()], GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
if (range.vbo > 0) {
buffer.model.model.set_color(-1, range.color);
buffer.model.model.render_instanced(range.vbo, range.count);
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_instanced_models_calls_count;
m_statistics.total_instances_gpu_size += static_cast<int64_t>(range.count * buffer.model.instances.instance_size_bytes());
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
};
#if ENABLE_SEAMS_USING_BATCHED_MODELS
#if ENABLE_GCODE_VIEWER_STATISTICS
auto render_as_batched_model = [this](TBuffer& buffer, GLShaderProgram& shader) {
#else
auto render_as_batched_model = [](TBuffer& buffer, GLShaderProgram& shader) {
#endif // ENABLE_GCODE_VIEWER_STATISTICS
struct Range
{
unsigned int first;
unsigned int last;
bool intersects(const Range& other) const { return (other.last < first || other.first > last) ? false : true; }
};
Range buffer_range = { 0, 0 };
size_t indices_per_instance = buffer.model.data.indices_count();
for (size_t j = 0; j < buffer.indices.size(); ++j) {
const IBuffer& i_buffer = buffer.indices[j];
buffer_range.last = buffer_range.first + i_buffer.count / indices_per_instance;
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, i_buffer.vbo));
glsafe(::glVertexPointer(buffer.vertices.position_size_floats(), GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.position_offset_bytes()));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
bool has_normals = buffer.vertices.normal_size_floats() > 0;
if (has_normals) {
glsafe(::glNormalPointer(GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.normal_offset_bytes()));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
for (auto& range : buffer.model.instances.render_ranges.ranges) {
Range range_range = { range.offset, range.offset + range.count };
if (range_range.intersects(buffer_range)) {
shader.set_uniform("uniform_color", range.color);
unsigned int offset = (range_range.first > buffer_range.first) ? range_range.first - buffer_range.first : 0;
size_t offset_bytes = static_cast<size_t>(offset) * indices_per_instance * sizeof(IBufferType);
Range render_range = { std::max(range_range.first, buffer_range.first), std::min(range_range.last, buffer_range.last) };
size_t count = static_cast<size_t>(render_range.last - render_range.first) * indices_per_instance;
if (count > 0) {
glsafe(::glDrawElements(GL_TRIANGLES, (GLsizei)count, GL_UNSIGNED_SHORT, (const void*)offset_bytes));
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_batched_models_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
}
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (has_normals)
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
buffer_range.first = buffer_range.last;
}
};
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
#endif // ENABLE_SEAMS_USING_MODELS
auto line_width = [](double zoom) {
return (zoom < 5.0) ? 1.0 : (1.0 + 5.0 * (zoom - 5.0) / (100.0 - 5.0));
};
unsigned char begin_id = buffer_id(EMoveType::Retract);
unsigned char end_id = buffer_id(EMoveType::Count);
for (unsigned char i = begin_id; i < end_id; ++i) {
#if ENABLE_SEAMS_USING_MODELS
TBuffer& buffer = m_buffers[i];
#else
const TBuffer& buffer = m_buffers[i];
#endif // ENABLE_SEAMS_USING_MODELS
if (!buffer.visible || !buffer.has_data())
continue;
GLShaderProgram* shader = wxGetApp().get_shader(buffer.shader.c_str());
if (shader != nullptr) {
shader->start_using();
#if ENABLE_SEAMS_USING_MODELS
#if ENABLE_SEAMS_USING_BATCHED_MODELS
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::InstancedModel) {
#else
if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Model) {
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
shader->set_uniform("emission_factor", 0.25f);
render_as_instanced_model(buffer, *shader);
shader->set_uniform("emission_factor", 0.0f);
}
#if ENABLE_SEAMS_USING_BATCHED_MODELS
else if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::BatchedModel) {
shader->set_uniform("emission_factor", 0.25f);
render_as_batched_model(buffer, *shader);
shader->set_uniform("emission_factor", 0.0f);
}
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
else {
#endif // ENABLE_SEAMS_USING_MODELS
for (size_t j = 0; j < buffer.indices.size(); ++j) {
const IBuffer& i_buffer = buffer.indices[j];
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, i_buffer.vbo));
glsafe(::glVertexPointer(buffer.vertices.position_size_floats(), GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.position_offset_bytes()));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
bool has_normals = buffer.vertices.normal_size_floats() > 0;
if (has_normals) {
glsafe(::glNormalPointer(GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.normal_offset_bytes()));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
switch (buffer.render_primitive_type)
{
case TBuffer::ERenderPrimitiveType::Point: {
render_as_points(buffer, static_cast<unsigned int>(j), *shader);
break;
}
case TBuffer::ERenderPrimitiveType::Line: {
glsafe(::glLineWidth(static_cast<GLfloat>(line_width(zoom))));
render_as_lines(buffer, static_cast<unsigned int>(j), *shader);
break;
}
case TBuffer::ERenderPrimitiveType::Triangle: {
render_as_triangles(buffer, static_cast<unsigned int>(j), *shader);
break;
}
default: { break; }
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (has_normals)
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
#if ENABLE_SEAMS_USING_MODELS
}
#endif // ENABLE_SEAMS_USING_MODELS
shader->stop_using();
}
}
#if ENABLE_GCODE_VIEWER_STATISTICS
auto render_sequential_range_cap = [this]
#else
auto render_sequential_range_cap = []
#endif // ENABLE_GCODE_VIEWER_STATISTICS
(const SequentialRangeCap& cap) {
GLShaderProgram* shader = wxGetApp().get_shader(cap.buffer->shader.c_str());
if (shader != nullptr) {
shader->start_using();
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, cap.vbo));
glsafe(::glVertexPointer(cap.buffer->vertices.position_size_floats(), GL_FLOAT, cap.buffer->vertices.vertex_size_bytes(), (const void*)cap.buffer->vertices.position_offset_bytes()));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
bool has_normals = cap.buffer->vertices.normal_size_floats() > 0;
if (has_normals) {
glsafe(::glNormalPointer(GL_FLOAT, cap.buffer->vertices.vertex_size_bytes(), (const void*)cap.buffer->vertices.normal_offset_bytes()));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
}
shader->set_uniform("uniform_color", cap.color);
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
glsafe(::glDrawElements(GL_TRIANGLES, (GLsizei)cap.indices_count(), GL_UNSIGNED_SHORT, nullptr));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
#if ENABLE_GCODE_VIEWER_STATISTICS
++m_statistics.gl_triangles_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
if (has_normals)
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
shader->stop_using();
}
};
for (unsigned int i = 0; i < 2; ++i) {
if (m_sequential_range_caps[i].is_renderable())
render_sequential_range_cap(m_sequential_range_caps[i]);
}
}
void GCodeViewer::render_shells()
{
if (!m_shells.visible || m_shells.volumes.empty())
return;
GLShaderProgram* shader = wxGetApp().get_shader("gouraud_light");
if (shader == nullptr)
return;
// when the background processing is enabled, it may happen that the shells data have been loaded
// before opengl has been initialized for the preview canvas.
// when this happens, the volumes' data have not been sent to gpu yet.
for (GLVolume* v : m_shells.volumes.volumes) {
if (!v->indexed_vertex_array.has_VBOs())
v->finalize_geometry(true);
}
// glsafe(::glDepthMask(GL_FALSE));
shader->start_using();
m_shells.volumes.render(GLVolumeCollection::ERenderType::Transparent, true, wxGetApp().plater()->get_camera().get_view_matrix());
shader->stop_using();
// glsafe(::glDepthMask(GL_TRUE));
}
void GCodeViewer::render_legend(float& legend_height)
{
if (!m_legend_enabled)
return;
const Size cnv_size = wxGetApp().plater()->get_current_canvas3D()->get_canvas_size();
ImGuiWrapper& imgui = *wxGetApp().imgui();
imgui.set_next_window_pos(0.0f, 0.0f, ImGuiCond_Always);
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::SetNextWindowBgAlpha(0.6f);
const float max_height = 0.75f * static_cast<float>(cnv_size.get_height());
const float child_height = 0.3333f * max_height;
ImGui::SetNextWindowSizeConstraints({ 0.0f, 0.0f }, { -1.0f, max_height });
imgui.begin(std::string("Legend"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse | ImGuiWindowFlags_NoMove);
enum class EItemType : unsigned char
{
Rect,
Circle,
Hexagon,
Line
};
const PrintEstimatedStatistics::Mode& time_mode = m_print_statistics.modes[static_cast<size_t>(m_time_estimate_mode)];
bool show_estimated_time = time_mode.time > 0.0f && (m_view_type == EViewType::FeatureType ||
(m_view_type == EViewType::ColorPrint && !time_mode.custom_gcode_times.empty()));
const float icon_size = ImGui::GetTextLineHeight();
const float percent_bar_size = 2.0f * ImGui::GetTextLineHeight();
bool imperial_units = wxGetApp().app_config->get("use_inches") == "1";
#if ENABLE_SEAMS_USING_BATCHED_MODELS
auto append_item = [icon_size, percent_bar_size, &imgui, imperial_units](EItemType type, const Color& color, const std::string& label,
#else
auto append_item = [this, icon_size, percent_bar_size, &imgui, imperial_units](EItemType type, const Color& color, const std::string& label,
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
bool visible = true, const std::string& time = "", float percent = 0.0f, float max_percent = 0.0f, const std::array<float, 4>& offsets = { 0.0f, 0.0f, 0.0f, 0.0f },
double used_filament_m = 0.0, double used_filament_g = 0.0,
std::function<void()> callback = nullptr) {
if (!visible)
ImGui::PushStyleVar(ImGuiStyleVar_Alpha, 0.3333f);
ImDrawList* draw_list = ImGui::GetWindowDrawList();
ImVec2 pos = ImGui::GetCursorScreenPos();
switch (type) {
default:
case EItemType::Rect: {
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }));
break;
}
case EItemType::Circle: {
ImVec2 center(0.5f * (pos.x + pos.x + icon_size), 0.5f * (pos.y + pos.y + icon_size));
#if !ENABLE_SEAMS_USING_BATCHED_MODELS
if (m_buffers[buffer_id(EMoveType::Retract)].shader == "options_120") {
draw_list->AddCircleFilled(center, 0.5f * icon_size,
ImGui::GetColorU32({ 0.5f * color[0], 0.5f * color[1], 0.5f * color[2], 1.0f }), 16);
float radius = 0.5f * icon_size;
draw_list->AddCircleFilled(center, radius, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 16);
radius = 0.5f * icon_size * 0.01f * 33.0f;
draw_list->AddCircleFilled(center, radius, ImGui::GetColorU32({ 0.5f * color[0], 0.5f * color[1], 0.5f * color[2], 1.0f }), 16);
}
else
#endif // !ENABLE_SEAMS_USING_BATCHED_MODELS
draw_list->AddCircleFilled(center, 0.5f * icon_size, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 16);
break;
}
case EItemType::Hexagon: {
ImVec2 center(0.5f * (pos.x + pos.x + icon_size), 0.5f * (pos.y + pos.y + icon_size));
draw_list->AddNgonFilled(center, 0.5f * icon_size, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 6);
break;
}
case EItemType::Line: {
draw_list->AddLine({ pos.x + 1, pos.y + icon_size - 1 }, { pos.x + icon_size - 1, pos.y + 1 }, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 3.0f);
break;
}
}
// draw text
ImGui::Dummy({ icon_size, icon_size });
ImGui::SameLine();
if (callback != nullptr) {
if (ImGui::MenuItem(label.c_str()))
callback();
else {
// show tooltip
if (ImGui::IsItemHovered()) {
if (!visible)
ImGui::PopStyleVar();
ImGui::PushStyleColor(ImGuiCol_PopupBg, ImGuiWrapper::COL_WINDOW_BACKGROUND);
ImGui::BeginTooltip();
imgui.text(visible ? _u8L("Click to hide") : _u8L("Click to show"));
ImGui::EndTooltip();
ImGui::PopStyleColor();
if (!visible)
ImGui::PushStyleVar(ImGuiStyleVar_Alpha, 0.3333f);
// to avoid the tooltip to change size when moving the mouse
#if ENABLE_ENHANCED_IMGUI_SLIDER_FLOAT
imgui.set_requires_extra_frame();
#else
wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
wxGetApp().plater()->get_current_canvas3D()->request_extra_frame();
#endif // ENABLE_ENHANCED_IMGUI_SLIDER_FLOAT
}
}
if (!time.empty()) {
ImGui::SameLine(offsets[0]);
imgui.text(time);
ImGui::SameLine(offsets[1]);
pos = ImGui::GetCursorScreenPos();
const float width = std::max(1.0f, percent_bar_size * percent / max_percent);
draw_list->AddRectFilled({ pos.x, pos.y + 2.0f }, { pos.x + width, pos.y + icon_size - 2.0f },
ImGui::GetColorU32(ImGuiWrapper::COL_ORANGE_LIGHT));
ImGui::Dummy({ percent_bar_size, icon_size });
ImGui::SameLine();
char buf[64];
::sprintf(buf, "%.1f%%", 100.0f * percent);
ImGui::TextUnformatted((percent > 0.0f) ? buf : "");
ImGui::SameLine(offsets[2]);
::sprintf(buf, imperial_units ? "%.2f in" : "%.2f m", used_filament_m);
imgui.text(buf);
ImGui::SameLine(offsets[3]);
::sprintf(buf, "%.2f g", used_filament_g);
imgui.text(buf);
}
}
else {
imgui.text(label);
if (used_filament_m > 0.0) {
char buf[64];
ImGui::SameLine(offsets[0]);
::sprintf(buf, imperial_units ? "%.2f in" : "%.2f m", used_filament_m);
imgui.text(buf);
ImGui::SameLine(offsets[1]);
::sprintf(buf, "%.2f g", used_filament_g);
imgui.text(buf);
}
}
if (!visible)
ImGui::PopStyleVar();
};
auto append_range = [append_item](const Extrusions::Range& range, unsigned int decimals) {
auto append_range_item = [append_item](int i, float value, unsigned int decimals) {
char buf[1024];
::sprintf(buf, "%.*f", decimals, value);
append_item(EItemType::Rect, Range_Colors[i], buf);
};
if (range.count == 1)
// single item use case
append_range_item(0, range.min, decimals);
else if (range.count == 2) {
append_range_item(static_cast<int>(Range_Colors.size()) - 1, range.max, decimals);
append_range_item(0, range.min, decimals);
}
else {
const float step_size = range.step_size();
for (int i = static_cast<int>(Range_Colors.size()) - 1; i >= 0; --i) {
append_range_item(i, range.min + static_cast<float>(i) * step_size, decimals);
}
}
};
auto append_headers = [&imgui](const std::array<std::string, 5>& texts, const std::array<float, 4>& offsets) {
size_t i = 0;
for (; i < offsets.size(); i++) {
imgui.text(texts[i]);
ImGui::SameLine(offsets[i]);
}
imgui.text(texts[i]);
ImGui::Separator();
};
auto max_width = [](const std::vector<std::string>& items, const std::string& title, float extra_size = 0.0f) {
float ret = ImGui::CalcTextSize(title.c_str()).x;
for (const std::string& item : items) {
ret = std::max(ret, extra_size + ImGui::CalcTextSize(item.c_str()).x);
}
return ret;
};
auto calculate_offsets = [max_width](const std::vector<std::string>& labels, const std::vector<std::string>& times,
const std::array<std::string, 4>& titles, float extra_size = 0.0f) {
const ImGuiStyle& style = ImGui::GetStyle();
std::array<float, 4> ret = { 0.0f, 0.0f, 0.0f, 0.0f };
ret[0] = max_width(labels, titles[0], extra_size) + 3.0f * style.ItemSpacing.x;
for (size_t i = 1; i < titles.size(); i++)
ret[i] = ret[i-1] + max_width(times, titles[i]) + style.ItemSpacing.x;
return ret;
};
auto color_print_ranges = [this](unsigned char extruder_id, const std::vector<CustomGCode::Item>& custom_gcode_per_print_z) {
std::vector<std::pair<Color, std::pair<double, double>>> ret;
ret.reserve(custom_gcode_per_print_z.size());
for (const auto& item : custom_gcode_per_print_z) {
if (extruder_id + 1 != static_cast<unsigned char>(item.extruder))
continue;
if (item.type != ColorChange)
continue;
const std::vector<double> zs = m_layers.get_zs();
auto lower_b = std::lower_bound(zs.begin(), zs.end(), item.print_z - Slic3r::DoubleSlider::epsilon());
if (lower_b == zs.end())
continue;
const double current_z = *lower_b;
const double previous_z = (lower_b == zs.begin()) ? 0.0 : *(--lower_b);
// to avoid duplicate values, check adding values
if (ret.empty() || !(ret.back().second.first == previous_z && ret.back().second.second == current_z))
ret.push_back({ decode_color(item.color), { previous_z, current_z } });
}
return ret;
};
auto upto_label = [](double z) {
char buf[64];
::sprintf(buf, "%.2f", z);
return _u8L("up to") + " " + std::string(buf) + " " + _u8L("mm");
};
auto above_label = [](double z) {
char buf[64];
::sprintf(buf, "%.2f", z);
return _u8L("above") + " " + std::string(buf) + " " + _u8L("mm");
};
auto fromto_label = [](double z1, double z2) {
char buf1[64];
::sprintf(buf1, "%.2f", z1);
char buf2[64];
::sprintf(buf2, "%.2f", z2);
return _u8L("from") + " " + std::string(buf1) + " " + _u8L("to") + " " + std::string(buf2) + " " + _u8L("mm");
};
auto role_time_and_percent = [time_mode](ExtrusionRole role) {
auto it = std::find_if(time_mode.roles_times.begin(), time_mode.roles_times.end(), [role](const std::pair<ExtrusionRole, float>& item) { return role == item.first; });
return (it != time_mode.roles_times.end()) ? std::make_pair(it->second, it->second / time_mode.time) : std::make_pair(0.0f, 0.0f);
};
auto used_filament_per_role = [this, imperial_units](ExtrusionRole role) {
auto it = m_print_statistics.used_filaments_per_role.find(role);
if (it == m_print_statistics.used_filaments_per_role.end())
return std::make_pair(0.0, 0.0);
double koef = imperial_units ? 1000.0 / ObjectManipulation::in_to_mm : 1.0;
return std::make_pair(it->second.first * koef, it->second.second);
};
// data used to properly align items in columns when showing time
std::array<float, 4> offsets = { 0.0f, 0.0f, 0.0f, 0.0f };
std::vector<std::string> labels;
std::vector<std::string> times;
std::vector<float> percents;
std::vector<double> used_filaments_m;
std::vector<double> used_filaments_g;
float max_percent = 0.0f;
if (m_view_type == EViewType::FeatureType) {
// calculate offsets to align time/percentage data
for (size_t i = 0; i < m_roles.size(); ++i) {
ExtrusionRole role = m_roles[i];
if (role < erCount) {
labels.push_back(_u8L(ExtrusionEntity::role_to_string(role)));
auto [time, percent] = role_time_and_percent(role);
times.push_back((time > 0.0f) ? short_time(get_time_dhms(time)) : "");
percents.push_back(percent);
max_percent = std::max(max_percent, percent);
auto [used_filament_m, used_filament_g] = used_filament_per_role(role);
used_filaments_m.push_back(used_filament_m);
used_filaments_g.push_back(used_filament_g);
}
}
std::string longest_percentage_string;
for (double item : percents) {
char buffer[64];
::sprintf(buffer, "%.2f %%", item);
if (::strlen(buffer) > longest_percentage_string.length())
longest_percentage_string = buffer;
}
longest_percentage_string += " ";
if (_u8L("Percentage").length() > longest_percentage_string.length())
longest_percentage_string = _u8L("Percentage");
std::string longest_used_filament_string;
for (double item : used_filaments_m) {
char buffer[64];
::sprintf(buffer, imperial_units ? "%.2f in" : "%.2f m", item);
if (::strlen(buffer) > longest_used_filament_string.length())
longest_used_filament_string = buffer;
}
offsets = calculate_offsets(labels, times, { _u8L("Feature type"), _u8L("Time"), longest_percentage_string, longest_used_filament_string }, icon_size);
}
// get used filament (meters and grams) from used volume in respect to the active extruder
auto get_used_filament_from_volume = [this, imperial_units](double volume, int extruder_id) {
double koef = imperial_units ? 1.0 / ObjectManipulation::in_to_mm : 0.001;
std::pair<double, double> ret = { koef * volume / (PI * sqr(0.5 * m_filament_diameters[extruder_id])),
volume * m_filament_densities[extruder_id] * 0.001 };
return ret;
};
if (m_view_type == EViewType::Tool) {
// calculate used filaments data
for (size_t extruder_id : m_extruder_ids) {
if (m_print_statistics.volumes_per_extruder.find(extruder_id) == m_print_statistics.volumes_per_extruder.end())
continue;
double volume = m_print_statistics.volumes_per_extruder.at(extruder_id);
auto [used_filament_m, used_filament_g] = get_used_filament_from_volume(volume, extruder_id);
used_filaments_m.push_back(used_filament_m);
used_filaments_g.push_back(used_filament_g);
}
std::string longest_used_filament_string;
for (double item : used_filaments_m) {
char buffer[64];
::sprintf(buffer, imperial_units ? "%.2f in" : "%.2f m", item);
if (::strlen(buffer) > longest_used_filament_string.length())
longest_used_filament_string = buffer;
}
offsets = calculate_offsets(labels, times, { "Extruder NNN", longest_used_filament_string }, icon_size);
}
// extrusion paths section -> title
switch (m_view_type)
{
case EViewType::FeatureType:
{
append_headers({ _u8L("Feature type"), _u8L("Time"), _u8L("Percentage"), _u8L("Used filament") }, offsets);
break;
}
case EViewType::Height: { imgui.title(_u8L("Height (mm)")); break; }
case EViewType::Width: { imgui.title(_u8L("Width (mm)")); break; }
case EViewType::Feedrate: { imgui.title(_u8L("Speed (mm/s)")); break; }
case EViewType::FanSpeed: { imgui.title(_u8L("Fan Speed (%)")); break; }
case EViewType::Temperature: { imgui.title(_u8L("Temperature (°C)")); break; }
case EViewType::VolumetricRate: { imgui.title(_u8L("Volumetric flow rate (mm³/s)")); break; }
case EViewType::Tool:
{
append_headers({ _u8L("Tool"), _u8L("Used filament") }, offsets);
break;
}
case EViewType::ColorPrint: { imgui.title(_u8L("Color Print")); break; }
default: { break; }
}
// extrusion paths section -> items
switch (m_view_type)
{
case EViewType::FeatureType:
{
for (size_t i = 0; i < m_roles.size(); ++i) {
ExtrusionRole role = m_roles[i];
if (role >= erCount)
continue;
const bool visible = is_visible(role);
append_item(EItemType::Rect, Extrusion_Role_Colors[static_cast<unsigned int>(role)], labels[i],
visible, times[i], percents[i], max_percent, offsets, used_filaments_m[i], used_filaments_g[i], [this, role, visible]() {
m_extrusions.role_visibility_flags = visible ? m_extrusions.role_visibility_flags & ~(1 << role) : m_extrusions.role_visibility_flags | (1 << role);
// update buffers' render paths
refresh_render_paths(false, false);
wxGetApp().plater()->update_preview_moves_slider();
wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
wxGetApp().plater()->update_preview_bottom_toolbar();
}
);
}
break;
}
case EViewType::Height: { append_range(m_extrusions.ranges.height, 3); break; }
case EViewType::Width: { append_range(m_extrusions.ranges.width, 3); break; }
case EViewType::Feedrate: { append_range(m_extrusions.ranges.feedrate, 1); break; }
case EViewType::FanSpeed: { append_range(m_extrusions.ranges.fan_speed, 0); break; }
case EViewType::Temperature: { append_range(m_extrusions.ranges.temperature, 0); break; }
case EViewType::VolumetricRate: { append_range(m_extrusions.ranges.volumetric_rate, 3); break; }
case EViewType::Tool:
{
// shows only extruders actually used
size_t i = 0;
for (unsigned char extruder_id : m_extruder_ids) {
append_item(EItemType::Rect, m_tool_colors[extruder_id], _u8L("Extruder") + " " + std::to_string(extruder_id + 1),
true, "", 0.0f, 0.0f, offsets, used_filaments_m[i], used_filaments_g[i]);
i++;
}
break;
}
case EViewType::ColorPrint:
{
const std::vector<CustomGCode::Item>& custom_gcode_per_print_z = wxGetApp().is_editor() ? wxGetApp().plater()->model().custom_gcode_per_print_z.gcodes : m_custom_gcode_per_print_z;
size_t total_items = 1;
for (unsigned char i : m_extruder_ids) {
total_items += color_print_ranges(i, custom_gcode_per_print_z).size();
}
const bool need_scrollable = static_cast<float>(total_items) * (icon_size + ImGui::GetStyle().ItemSpacing.y) > child_height;
// add scrollable region, if needed
if (need_scrollable)
ImGui::BeginChild("color_prints", { -1.0f, child_height }, false);
if (m_extruders_count == 1) { // single extruder use case
const std::vector<std::pair<Color, std::pair<double, double>>> cp_values = color_print_ranges(0, custom_gcode_per_print_z);
const int items_cnt = static_cast<int>(cp_values.size());
if (items_cnt == 0) { // There are no color changes, but there are some pause print or custom Gcode
append_item(EItemType::Rect, m_tool_colors.front(), _u8L("Default color"));
}
else {
for (int i = items_cnt; i >= 0; --i) {
// create label for color change item
if (i == 0) {
append_item(EItemType::Rect, m_tool_colors[0], upto_label(cp_values.front().second.first));
break;
}
else if (i == items_cnt) {
append_item(EItemType::Rect, cp_values[i - 1].first, above_label(cp_values[i - 1].second.second));
continue;
}
append_item(EItemType::Rect, cp_values[i - 1].first, fromto_label(cp_values[i - 1].second.second, cp_values[i].second.first));
}
}
}
else { // multi extruder use case
// shows only extruders actually used
for (unsigned char i : m_extruder_ids) {
const std::vector<std::pair<Color, std::pair<double, double>>> cp_values = color_print_ranges(i, custom_gcode_per_print_z);
const int items_cnt = static_cast<int>(cp_values.size());
if (items_cnt == 0) { // There are no color changes, but there are some pause print or custom Gcode
append_item(EItemType::Rect, m_tool_colors[i], _u8L("Extruder") + " " + std::to_string(i + 1) + " " + _u8L("default color"));
}
else {
for (int j = items_cnt; j >= 0; --j) {
// create label for color change item
std::string label = _u8L("Extruder") + " " + std::to_string(i + 1);
if (j == 0) {
label += " " + upto_label(cp_values.front().second.first);
append_item(EItemType::Rect, m_tool_colors[i], label);
break;
}
else if (j == items_cnt) {
label += " " + above_label(cp_values[j - 1].second.second);
append_item(EItemType::Rect, cp_values[j - 1].first, label);
continue;
}
label += " " + fromto_label(cp_values[j - 1].second.second, cp_values[j].second.first);
append_item(EItemType::Rect, cp_values[j - 1].first, label);
}
}
}
}
if (need_scrollable)
ImGui::EndChild();
break;
}
default: { break; }
}
// partial estimated printing time section
if (m_view_type == EViewType::ColorPrint) {
using Times = std::pair<float, float>;
using TimesList = std::vector<std::pair<CustomGCode::Type, Times>>;
// helper structure containig the data needed to render the time items
struct PartialTime
{
enum class EType : unsigned char
{
Print,
ColorChange,
Pause
};
EType type;
int extruder_id;
Color color1;
Color color2;
Times times;
std::pair<double, double> used_filament {0.0f, 0.0f};
};
using PartialTimes = std::vector<PartialTime>;
auto generate_partial_times = [this, get_used_filament_from_volume](const TimesList& times, const std::vector<double>& used_filaments) {
PartialTimes items;
std::vector<CustomGCode::Item> custom_gcode_per_print_z = wxGetApp().is_editor() ? wxGetApp().plater()->model().custom_gcode_per_print_z.gcodes : m_custom_gcode_per_print_z;
int extruders_count = wxGetApp().extruders_edited_cnt();
std::vector<Color> last_color(extruders_count);
for (int i = 0; i < extruders_count; ++i) {
last_color[i] = m_tool_colors[i];
}
int last_extruder_id = 1;
int color_change_idx = 0;
for (const auto& time_rec : times) {
switch (time_rec.first)
{
case CustomGCode::PausePrint: {
auto it = std::find_if(custom_gcode_per_print_z.begin(), custom_gcode_per_print_z.end(), [time_rec](const CustomGCode::Item& item) { return item.type == time_rec.first; });
if (it != custom_gcode_per_print_z.end()) {
items.push_back({ PartialTime::EType::Print, it->extruder, last_color[it->extruder - 1], Color(), time_rec.second });
items.push_back({ PartialTime::EType::Pause, it->extruder, Color(), Color(), time_rec.second });
custom_gcode_per_print_z.erase(it);
}
break;
}
case CustomGCode::ColorChange: {
auto it = std::find_if(custom_gcode_per_print_z.begin(), custom_gcode_per_print_z.end(), [time_rec](const CustomGCode::Item& item) { return item.type == time_rec.first; });
if (it != custom_gcode_per_print_z.end()) {
items.push_back({ PartialTime::EType::Print, it->extruder, last_color[it->extruder - 1], Color(), time_rec.second, get_used_filament_from_volume(used_filaments[color_change_idx++], it->extruder-1) });
items.push_back({ PartialTime::EType::ColorChange, it->extruder, last_color[it->extruder - 1], decode_color(it->color), time_rec.second });
last_color[it->extruder - 1] = decode_color(it->color);
last_extruder_id = it->extruder;
custom_gcode_per_print_z.erase(it);
}
else
items.push_back({ PartialTime::EType::Print, last_extruder_id, last_color[last_extruder_id - 1], Color(), time_rec.second, get_used_filament_from_volume(used_filaments[color_change_idx++], last_extruder_id -1) });
break;
}
default: { break; }
}
}
return items;
};
auto append_color_change = [&imgui](const Color& color1, const Color& color2, const std::array<float, 4>& offsets, const Times& times) {
imgui.text(_u8L("Color change"));
ImGui::SameLine();
float icon_size = ImGui::GetTextLineHeight();
ImDrawList* draw_list = ImGui::GetWindowDrawList();
ImVec2 pos = ImGui::GetCursorScreenPos();
pos.x -= 0.5f * ImGui::GetStyle().ItemSpacing.x;
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color1[0], color1[1], color1[2], 1.0f }));
pos.x += icon_size;
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color2[0], color2[1], color2[2], 1.0f }));
ImGui::SameLine(offsets[0]);
imgui.text(short_time(get_time_dhms(times.second - times.first)));
};
auto append_print = [&imgui, imperial_units](const Color& color, const std::array<float, 4>& offsets, const Times& times, std::pair<double, double> used_filament) {
imgui.text(_u8L("Print"));
ImGui::SameLine();
float icon_size = ImGui::GetTextLineHeight();
ImDrawList* draw_list = ImGui::GetWindowDrawList();
ImVec2 pos = ImGui::GetCursorScreenPos();
pos.x -= 0.5f * ImGui::GetStyle().ItemSpacing.x;
draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }));
ImGui::SameLine(offsets[0]);
imgui.text(short_time(get_time_dhms(times.second)));
ImGui::SameLine(offsets[1]);
imgui.text(short_time(get_time_dhms(times.first)));
if (used_filament.first > 0.0f) {
char buffer[64];
ImGui::SameLine(offsets[2]);
::sprintf(buffer, imperial_units ? "%.2f in" : "%.2f m", used_filament.first);
imgui.text(buffer);
ImGui::SameLine(offsets[3]);
::sprintf(buffer, "%.2f g", used_filament.second);
imgui.text(buffer);
}
};
PartialTimes partial_times = generate_partial_times(time_mode.custom_gcode_times, m_print_statistics.volumes_per_color_change);
if (!partial_times.empty()) {
labels.clear();
times.clear();
for (const PartialTime& item : partial_times) {
switch (item.type)
{
case PartialTime::EType::Print: { labels.push_back(_u8L("Print")); break; }
case PartialTime::EType::Pause: { labels.push_back(_u8L("Pause")); break; }
case PartialTime::EType::ColorChange: { labels.push_back(_u8L("Color change")); break; }
}
times.push_back(short_time(get_time_dhms(item.times.second)));
}
std::string longest_used_filament_string;
for (const PartialTime& item : partial_times) {
if (item.used_filament.first > 0.0f) {
char buffer[64];
::sprintf(buffer, imperial_units ? "%.2f in" : "%.2f m", item.used_filament.first);
if (::strlen(buffer) > longest_used_filament_string.length())
longest_used_filament_string = buffer;
}
}
offsets = calculate_offsets(labels, times, { _u8L("Event"), _u8L("Remaining time"), _u8L("Duration"), longest_used_filament_string }, 2.0f * icon_size);
ImGui::Spacing();
append_headers({ _u8L("Event"), _u8L("Remaining time"), _u8L("Duration"), _u8L("Used filament") }, offsets);
const bool need_scrollable = static_cast<float>(partial_times.size()) * (icon_size + ImGui::GetStyle().ItemSpacing.y) > child_height;
if (need_scrollable)
// add scrollable region
ImGui::BeginChild("events", { -1.0f, child_height }, false);
for (const PartialTime& item : partial_times) {
switch (item.type)
{
case PartialTime::EType::Print: {
append_print(item.color1, offsets, item.times, item.used_filament);
break;
}
case PartialTime::EType::Pause: {
imgui.text(_u8L("Pause"));
ImGui::SameLine(offsets[0]);
imgui.text(short_time(get_time_dhms(item.times.second - item.times.first)));
break;
}
case PartialTime::EType::ColorChange: {
append_color_change(item.color1, item.color2, offsets, item.times);
break;
}
}
}
if (need_scrollable)
ImGui::EndChild();
}
}
// travel paths section
if (m_buffers[buffer_id(EMoveType::Travel)].visible) {
switch (m_view_type)
{
case EViewType::Feedrate:
case EViewType::Tool:
case EViewType::ColorPrint: {
break;
}
default: {
// title
ImGui::Spacing();
imgui.title(_u8L("Travel"));
// items
append_item(EItemType::Line, Travel_Colors[0], _u8L("Movement"));
append_item(EItemType::Line, Travel_Colors[1], _u8L("Extrusion"));
append_item(EItemType::Line, Travel_Colors[2], _u8L("Retraction"));
break;
}
}
}
// wipe paths section
if (m_buffers[buffer_id(EMoveType::Wipe)].visible) {
switch (m_view_type)
{
case EViewType::Feedrate:
case EViewType::Tool:
case EViewType::ColorPrint: { break; }
default: {
// title
ImGui::Spacing();
imgui.title(_u8L("Wipe"));
// items
append_item(EItemType::Line, Wipe_Color, _u8L("Wipe"));
break;
}
}
}
auto any_option_available = [this]() {
auto available = [this](EMoveType type) {
const TBuffer& buffer = m_buffers[buffer_id(type)];
return buffer.visible && buffer.has_data();
};
return available(EMoveType::Color_change) ||
available(EMoveType::Custom_GCode) ||
available(EMoveType::Pause_Print) ||
available(EMoveType::Retract) ||
available(EMoveType::Tool_change) ||
available(EMoveType::Unretract) ||
available(EMoveType::Seam);
};
auto add_option = [this, append_item](EMoveType move_type, EOptionsColors color, const std::string& text) {
const TBuffer& buffer = m_buffers[buffer_id(move_type)];
if (buffer.visible && buffer.has_data())
#if ENABLE_SEAMS_USING_BATCHED_MODELS
append_item(EItemType::Circle, Options_Colors[static_cast<unsigned int>(color)], text);
#else
append_item((buffer.shader == "options_110") ? EItemType::Rect : EItemType::Circle, Options_Colors[static_cast<unsigned int>(color)], text);
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
};
// options section
if (any_option_available()) {
// title
ImGui::Spacing();
imgui.title(_u8L("Options"));
// items
add_option(EMoveType::Retract, EOptionsColors::Retractions, _u8L("Retractions"));
add_option(EMoveType::Unretract, EOptionsColors::Unretractions, _u8L("Deretractions"));
add_option(EMoveType::Seam, EOptionsColors::Seams, _u8L("Seams"));
add_option(EMoveType::Tool_change, EOptionsColors::ToolChanges, _u8L("Tool changes"));
add_option(EMoveType::Color_change, EOptionsColors::ColorChanges, _u8L("Color changes"));
add_option(EMoveType::Pause_Print, EOptionsColors::PausePrints, _u8L("Print pauses"));
add_option(EMoveType::Custom_GCode, EOptionsColors::CustomGCodes, _u8L("Custom G-codes"));
}
// settings section
bool has_settings = false;
has_settings |= !m_settings_ids.print.empty();
has_settings |= !m_settings_ids.printer.empty();
bool has_filament_settings = true;
has_filament_settings &= !m_settings_ids.filament.empty();
for (const std::string& fs : m_settings_ids.filament) {
has_filament_settings &= !fs.empty();
}
has_settings |= has_filament_settings;
bool show_settings = wxGetApp().is_gcode_viewer();
show_settings &= (m_view_type == EViewType::FeatureType || m_view_type == EViewType::Tool);
show_settings &= has_settings;
if (show_settings) {
auto calc_offset = [this]() {
float ret = 0.0f;
if (!m_settings_ids.printer.empty())
ret = std::max(ret, ImGui::CalcTextSize((_u8L("Printer") + std::string(":")).c_str()).x);
if (!m_settings_ids.print.empty())
ret = std::max(ret, ImGui::CalcTextSize((_u8L("Print settings") + std::string(":")).c_str()).x);
if (!m_settings_ids.filament.empty()) {
for (unsigned char i : m_extruder_ids) {
ret = std::max(ret, ImGui::CalcTextSize((_u8L("Filament") + " " + std::to_string(i + 1) + ":").c_str()).x);
}
}
if (ret > 0.0f)
ret += 2.0f * ImGui::GetStyle().ItemSpacing.x;
return ret;
};
ImGui::Spacing();
imgui.title(_u8L("Settings"));
float offset = calc_offset();
if (!m_settings_ids.printer.empty()) {
imgui.text(_u8L("Printer") + ":");
ImGui::SameLine(offset);
imgui.text(m_settings_ids.printer);
}
if (!m_settings_ids.print.empty()) {
imgui.text(_u8L("Print settings") + ":");
ImGui::SameLine(offset);
imgui.text(m_settings_ids.print);
}
if (!m_settings_ids.filament.empty()) {
for (unsigned char i : m_extruder_ids) {
if (i < static_cast<unsigned char>(m_settings_ids.filament.size()) && !m_settings_ids.filament[i].empty()) {
std::string txt = _u8L("Filament");
txt += (m_extruder_ids.size() == 1) ? ":" : " " + std::to_string(i + 1);
imgui.text(txt);
ImGui::SameLine(offset);
imgui.text(m_settings_ids.filament[i]);
}
}
}
}
// total estimated printing time section
if (show_estimated_time) {
ImGui::Spacing();
std::string time_title = _u8L("Estimated printing times");
auto can_show_mode_button = [this](PrintEstimatedStatistics::ETimeMode mode) {
bool show = false;
if (m_print_statistics.modes.size() > 1 && m_print_statistics.modes[static_cast<size_t>(mode)].roles_times.size() > 0) {
for (size_t i = 0; i < m_print_statistics.modes.size(); ++i) {
if (i != static_cast<size_t>(mode) &&
m_print_statistics.modes[i].time > 0.0f &&
short_time(get_time_dhms(m_print_statistics.modes[static_cast<size_t>(mode)].time)) != short_time(get_time_dhms(m_print_statistics.modes[i].time))) {
show = true;
break;
}
}
}
return show;
};
if (can_show_mode_button(m_time_estimate_mode)) {
switch (m_time_estimate_mode)
{
case PrintEstimatedStatistics::ETimeMode::Normal: { time_title += " [" + _u8L("Normal mode") + "]"; break; }
case PrintEstimatedStatistics::ETimeMode::Stealth: { time_title += " [" + _u8L("Stealth mode") + "]"; break; }
default: { assert(false); break; }
}
}
imgui.title(time_title + ":");
std::string first_str = _u8L("First layer");
std::string total_str = _u8L("Total");
float max_len = 10.0f + ImGui::GetStyle().ItemSpacing.x;
if (time_mode.layers_times.empty())
max_len += ImGui::CalcTextSize(total_str.c_str()).x;
else
max_len += std::max(ImGui::CalcTextSize(first_str.c_str()).x, ImGui::CalcTextSize(total_str.c_str()).x);
if (!time_mode.layers_times.empty()) {
imgui.text(first_str + ":");
ImGui::SameLine(max_len);
imgui.text(short_time(get_time_dhms(time_mode.layers_times.front())));
}
imgui.text(total_str + ":");
ImGui::SameLine(max_len);
imgui.text(short_time(get_time_dhms(time_mode.time)));
auto show_mode_button = [this, &imgui, can_show_mode_button](const wxString& label, PrintEstimatedStatistics::ETimeMode mode) {
if (can_show_mode_button(mode)) {
if (imgui.button(label)) {
m_time_estimate_mode = mode;
#if ENABLE_ENHANCED_IMGUI_SLIDER_FLOAT
imgui.set_requires_extra_frame();
#else
wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
wxGetApp().plater()->get_current_canvas3D()->request_extra_frame();
#endif // ENABLE_ENHANCED_IMGUI_SLIDER_FLOAT
}
}
};
switch (m_time_estimate_mode) {
case PrintEstimatedStatistics::ETimeMode::Normal: {
show_mode_button(_L("Show stealth mode"), PrintEstimatedStatistics::ETimeMode::Stealth);
break;
}
case PrintEstimatedStatistics::ETimeMode::Stealth: {
show_mode_button(_L("Show normal mode"), PrintEstimatedStatistics::ETimeMode::Normal);
break;
}
default : { assert(false); break; }
}
}
legend_height = ImGui::GetCurrentWindow()->Size.y;
imgui.end();
ImGui::PopStyleVar();
}
#if ENABLE_GCODE_VIEWER_STATISTICS
void GCodeViewer::render_statistics()
{
static const float offset = 275.0f;
ImGuiWrapper& imgui = *wxGetApp().imgui();
auto add_time = [this, &imgui](const std::string& label, int64_t time) {
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
ImGui::SameLine(offset);
imgui.text(std::to_string(time) + " ms (" + get_time_dhms(static_cast<float>(time) * 0.001f) + ")");
};
auto add_memory = [this, &imgui](const std::string& label, int64_t memory) {
auto format_string = [memory](const std::string& units, float value) {
return std::to_string(memory) + " bytes (" +
Slic3r::float_to_string_decimal_point(float(memory) * value, 3)
+ " " + units + ")";
};
static const float kb = 1024.0f;
static const float inv_kb = 1.0f / kb;
static const float mb = 1024.0f * kb;
static const float inv_mb = 1.0f / mb;
static const float gb = 1024.0f * mb;
static const float inv_gb = 1.0f / gb;
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
ImGui::SameLine(offset);
if (static_cast<float>(memory) < mb)
imgui.text(format_string("KB", inv_kb));
else if (static_cast<float>(memory) < gb)
imgui.text(format_string("MB", inv_mb));
else
imgui.text(format_string("GB", inv_gb));
};
auto add_counter = [this, &imgui](const std::string& label, int64_t counter) {
imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
ImGui::SameLine(offset);
imgui.text(std::to_string(counter));
};
imgui.set_next_window_pos(0.5f * wxGetApp().plater()->get_current_canvas3D()->get_canvas_size().get_width(), 0.0f, ImGuiCond_Once, 0.5f, 0.0f);
ImGui::SetNextWindowSizeConstraints({ 300.0f, 100.0f }, { 600.0f, 900.0f });
imgui.begin(std::string("GCodeViewer Statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize);
ImGui::BringWindowToDisplayFront(ImGui::GetCurrentWindow());
if (ImGui::CollapsingHeader("Time")) {
add_time(std::string("GCodeProcessor:"), m_statistics.results_time);
ImGui::Separator();
add_time(std::string("Load:"), m_statistics.load_time);
add_time(std::string(" Load vertices:"), m_statistics.load_vertices);
add_time(std::string(" Smooth vertices:"), m_statistics.smooth_vertices);
add_time(std::string(" Load indices:"), m_statistics.load_indices);
add_time(std::string("Refresh:"), m_statistics.refresh_time);
add_time(std::string("Refresh paths:"), m_statistics.refresh_paths_time);
}
if (ImGui::CollapsingHeader("OpenGL calls")) {
add_counter(std::string("Multi GL_POINTS:"), m_statistics.gl_multi_points_calls_count);
add_counter(std::string("Multi GL_LINES:"), m_statistics.gl_multi_lines_calls_count);
add_counter(std::string("Multi GL_TRIANGLES:"), m_statistics.gl_multi_triangles_calls_count);
add_counter(std::string("GL_TRIANGLES:"), m_statistics.gl_triangles_calls_count);
#if ENABLE_SEAMS_USING_MODELS
ImGui::Separator();
add_counter(std::string("Instanced models:"), m_statistics.gl_instanced_models_calls_count);
#if ENABLE_SEAMS_USING_BATCHED_MODELS
add_counter(std::string("Batched models:"), m_statistics.gl_batched_models_calls_count);
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
#endif // ENABLE_SEAMS_USING_MODELS
}
if (ImGui::CollapsingHeader("CPU memory")) {
add_memory(std::string("GCodeProcessor results:"), m_statistics.results_size);
ImGui::Separator();
add_memory(std::string("Paths:"), m_statistics.paths_size);
add_memory(std::string("Render paths:"), m_statistics.render_paths_size);
#if ENABLE_SEAMS_USING_MODELS
add_memory(std::string("Models instances:"), m_statistics.models_instances_size);
#endif // ENABLE_SEAMS_USING_MODELS
}
if (ImGui::CollapsingHeader("GPU memory")) {
add_memory(std::string("Vertices:"), m_statistics.total_vertices_gpu_size);
add_memory(std::string("Indices:"), m_statistics.total_indices_gpu_size);
#if ENABLE_SEAMS_USING_MODELS
add_memory(std::string("Instances:"), m_statistics.total_instances_gpu_size);
#endif // ENABLE_SEAMS_USING_MODELS
ImGui::Separator();
add_memory(std::string("Max VBuffer:"), m_statistics.max_vbuffer_gpu_size);
add_memory(std::string("Max IBuffer:"), m_statistics.max_ibuffer_gpu_size);
}
if (ImGui::CollapsingHeader("Other")) {
add_counter(std::string("Travel segments count:"), m_statistics.travel_segments_count);
add_counter(std::string("Wipe segments count:"), m_statistics.wipe_segments_count);
add_counter(std::string("Extrude segments count:"), m_statistics.extrude_segments_count);
#if ENABLE_SEAMS_USING_MODELS
add_counter(std::string("Instances count:"), m_statistics.instances_count);
#if ENABLE_SEAMS_USING_BATCHED_MODELS
add_counter(std::string("Batched count:"), m_statistics.batched_count);
#endif // ENABLE_SEAMS_USING_BATCHED_MODELS
#endif // ENABLE_SEAMS_USING_MODELS
ImGui::Separator();
add_counter(std::string("VBuffers count:"), m_statistics.vbuffers_count);
add_counter(std::string("IBuffers count:"), m_statistics.ibuffers_count);
}
imgui.end();
}
#endif // ENABLE_GCODE_VIEWER_STATISTICS
void GCodeViewer::log_memory_used(const std::string& label, int64_t additional) const
{
if (Slic3r::get_logging_level() >= 5) {
int64_t paths_size = 0;
int64_t render_paths_size = 0;
for (const TBuffer& buffer : m_buffers) {
paths_size += SLIC3R_STDVEC_MEMSIZE(buffer.paths, Path);
render_paths_size += SLIC3R_STDUNORDEREDSET_MEMSIZE(buffer.render_paths, RenderPath);
for (const RenderPath& path : buffer.render_paths) {
render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.sizes, unsigned int);
render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.offsets, size_t);
}
}
int64_t layers_size = SLIC3R_STDVEC_MEMSIZE(m_layers.get_zs(), double);
layers_size += SLIC3R_STDVEC_MEMSIZE(m_layers.get_endpoints(), Layers::Endpoints);
BOOST_LOG_TRIVIAL(trace) << label
<< "(" << format_memsize_MB(additional + paths_size + render_paths_size + layers_size) << ");"
<< log_memory_info();
}
}
GCodeViewer::Color GCodeViewer::option_color(EMoveType move_type) const
{
switch (move_type)
{
case EMoveType::Tool_change: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::ToolChanges)]; }
case EMoveType::Color_change: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::ColorChanges)]; }
case EMoveType::Pause_Print: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::PausePrints)]; }
case EMoveType::Custom_GCode: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::CustomGCodes)]; }
case EMoveType::Retract: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::Retractions)]; }
case EMoveType::Unretract: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::Unretractions)]; }
case EMoveType::Seam: { return Options_Colors[static_cast<unsigned int>(EOptionsColors::Seams)]; }
default: { return { 0.0f, 0.0f, 0.0f, 1.0f }; }
}
}
} // namespace GUI
} // namespace Slic3r