Noisyfox f136f04cfd
Fix Linux build & some warnings (#6438)
* Fix linux deps debug build

* Use the same DL_CACHE for release build when building debug version of deps on Linux.
This prevents downloading the same source packages twice, and avoid downloading again after deleting the build dir.

* Fix debug build

* Fix warnings "loop variable creates a copy from type" and "loop variable binds to a temporary constructed from type"
2024-08-18 11:33:00 +08:00

3592 lines
137 KiB
C++

#include "Model.hpp"
#include "libslic3r.h"
#include "BuildVolume.hpp"
#include "Exception.hpp"
#include "Model.hpp"
#include "ModelArrange.hpp"
#include "Arrange.hpp"
#include "Geometry.hpp"
#include "MTUtils.hpp"
#include "TriangleMeshSlicer.hpp"
#include "TriangleSelector.hpp"
#include "Format/AMF.hpp"
#include "Format/svg.hpp"
// BBS
#include "FaceDetector.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include <float.h>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/log/trivial.hpp>
#include <boost/nowide/iostream.hpp>
#include "SVG.hpp"
#include <Eigen/Dense>
#include "GCodeWriter.hpp"
// BBS: for segment
#include "MeshBoolean.hpp"
#include "Format/3mf.hpp"
// Transtltion
#include "I18N.hpp"
// ModelIO support
#ifdef __APPLE__
#include "Format/ModelIO.hpp"
#endif
#define _L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
const std::vector<std::string> CONST_FILAMENTS = {
"", "4", "8", "0C", "1C", "2C", "3C", "4C", "5C", "6C", "7C", "8C", "9C", "AC", "BC", "CC", "DC",
}; // 5 10 15 16
// BBS initialization of static variables
std::map<size_t, ExtruderParams> Model::extruderParamsMap = { {0,{"",0,0}}};
GlobalSpeedMap Model::printSpeedMap{};
Model& Model::assign_copy(const Model &rhs)
{
this->copy_id(rhs);
// copy materials
this->clear_materials();
this->materials = rhs.materials;
for (std::pair<const t_model_material_id, ModelMaterial*> &m : this->materials) {
// Copy including the ID and m_model.
m.second = new ModelMaterial(*m.second);
m.second->set_model(this);
}
// copy objects
this->clear_objects();
this->objects.reserve(rhs.objects.size());
for (const ModelObject *model_object : rhs.objects) {
// Copy including the ID, leave ID set to invalid (zero).
auto mo = ModelObject::new_copy(*model_object);
mo->set_model(this);
this->objects.emplace_back(mo);
}
// copy custom code per height
// BBS
this->plates_custom_gcodes = rhs.plates_custom_gcodes;
this->curr_plate_index = rhs.curr_plate_index;
this->calib_pa_pattern.reset();
if (rhs.calib_pa_pattern) {
this->calib_pa_pattern = std::make_unique<CalibPressureAdvancePattern>(
CalibPressureAdvancePattern(*rhs.calib_pa_pattern)
);
}
if (rhs.calib_pa_pattern) {
this->calib_pa_pattern = std::make_unique<CalibPressureAdvancePattern>(CalibPressureAdvancePattern(*rhs.calib_pa_pattern));
}
// BBS: for design info
this->design_info = rhs.design_info;
this->model_info = rhs.model_info;
this->stl_design_id = rhs.stl_design_id;
this->stl_design_country = rhs.stl_design_country;
this->profile_info = rhs.profile_info;
this->mk_name = rhs.mk_name;
this->mk_version = rhs.mk_version;
this->md_name = rhs.md_name;
this->md_value = rhs.md_value;
return *this;
}
Model& Model::assign_copy(Model &&rhs)
{
this->copy_id(rhs);
// Move materials, adjust the parent pointer.
this->clear_materials();
this->materials = std::move(rhs.materials);
for (std::pair<const t_model_material_id, ModelMaterial*> &m : this->materials)
m.second->set_model(this);
rhs.materials.clear();
// Move objects, adjust the parent pointer.
this->clear_objects();
this->objects = std::move(rhs.objects);
for (ModelObject *model_object : this->objects)
model_object->set_model(this);
rhs.objects.clear();
// copy custom code per height
// BBS
this->plates_custom_gcodes = std::move(rhs.plates_custom_gcodes);
this->curr_plate_index = rhs.curr_plate_index;
this->calib_pa_pattern.reset();
this->calib_pa_pattern.swap(rhs.calib_pa_pattern);
//BBS: add auxiliary path logic
// BBS: backup, all in one temp dir
this->stl_design_id = rhs.stl_design_id;
this->stl_design_country = rhs.stl_design_country;
this->mk_name = rhs.mk_name;
this->mk_version = rhs.mk_version;
this->md_name = rhs.md_name;
this->md_value = rhs.md_value;
this->backup_path = std::move(rhs.backup_path);
this->object_backup_id_map = std::move(rhs.object_backup_id_map);
this->next_object_backup_id = rhs.next_object_backup_id;
this->design_info = rhs.design_info;
rhs.design_info.reset();
this->model_info = rhs.model_info;
rhs.model_info.reset();
this->profile_info = rhs.profile_info;
rhs.profile_info.reset();
return *this;
}
void Model::assign_new_unique_ids_recursive()
{
this->set_new_unique_id();
for (std::pair<const t_model_material_id, ModelMaterial*> &m : this->materials)
m.second->assign_new_unique_ids_recursive();
for (ModelObject *model_object : this->objects)
model_object->assign_new_unique_ids_recursive();
}
void Model::update_links_bottom_up_recursive()
{
for (std::pair<const t_model_material_id, ModelMaterial*> &kvp : this->materials)
kvp.second->set_model(this);
for (ModelObject *model_object : this->objects) {
model_object->set_model(this);
for (ModelInstance *model_instance : model_object->instances)
model_instance->set_model_object(model_object);
for (ModelVolume *model_volume : model_object->volumes)
model_volume->set_model_object(model_object);
}
}
Model::~Model()
{
this->clear_objects();
this->clear_materials();
// BBS: clear backup dir of temparary model
if (!backup_path.empty())
Slic3r::remove_backup(*this, true);
}
// BBS: add part plate related logic
// BBS: backup & restore
// Loading model from a file, it may be a simple geometry file as STL or OBJ, however it may be a project file as well.
Model Model::read_from_file(const std::string& input_file, DynamicPrintConfig* config, ConfigSubstitutionContext* config_substitutions,
LoadStrategy options, PlateDataPtrs* plate_data, std::vector<Preset*>* project_presets, bool *is_xxx, Semver* file_version, Import3mfProgressFn proFn,
ImportstlProgressFn stlFn,
ImportStepProgressFn stepFn,
StepIsUtf8Fn stepIsUtf8Fn,
BBLProject * project,
int plate_id,
ObjImportColorFn objFn)
{
Model model;
DynamicPrintConfig temp_config;
ConfigSubstitutionContext temp_config_substitutions_context(ForwardCompatibilitySubstitutionRule::EnableSilent);
if (config == nullptr)
config = &temp_config;
if (config_substitutions == nullptr)
config_substitutions = &temp_config_substitutions_context;
//BBS: plate_data
PlateDataPtrs temp_plate_data;
bool temp_is_xxx;
Semver temp_version;
if (plate_data == nullptr)
plate_data = &temp_plate_data;
if (is_xxx == nullptr)
is_xxx = &temp_is_xxx;
if (file_version == nullptr)
file_version = &temp_version;
bool result = false;
bool is_cb_cancel = false;
std::string message;
if (boost::algorithm::iends_with(input_file, ".stp") ||
boost::algorithm::iends_with(input_file, ".step"))
result = load_step(input_file.c_str(), &model, is_cb_cancel, stepFn, stepIsUtf8Fn);
else if (boost::algorithm::iends_with(input_file, ".stl"))
result = load_stl(input_file.c_str(), &model, nullptr, stlFn);
else if (boost::algorithm::iends_with(input_file, ".oltp"))
result = load_stl(input_file.c_str(), &model, nullptr, stlFn,256);
else if (boost::algorithm::iends_with(input_file, ".obj")) {
ObjInfo obj_info;
result = load_obj(input_file.c_str(), &model, obj_info, message);
if (result){
unsigned char first_extruder_id;
if (obj_info.vertex_colors.size() > 0) {
std::vector<unsigned char> vertex_filament_ids;
if (objFn) { // 1.result is ok and pop up a dialog
objFn(obj_info.vertex_colors, false, vertex_filament_ids, first_extruder_id);
if (vertex_filament_ids.size() > 0) {
result = obj_import_vertex_color_deal(vertex_filament_ids, first_extruder_id, & model);
}
}
} else if (obj_info.face_colors.size() > 0 && obj_info.has_uv_png == false) { // mtl file
std::vector<unsigned char> face_filament_ids;
if (objFn) { // 1.result is ok and pop up a dialog
objFn(obj_info.face_colors, obj_info.is_single_mtl, face_filament_ids, first_extruder_id);
if (face_filament_ids.size() > 0) {
result = obj_import_face_color_deal(face_filament_ids, first_extruder_id, &model);
}
}
} /*else if (obj_info.has_uv_png && obj_info.uvs.size() > 0) {
boost::filesystem::path full_path(input_file);
std::string obj_directory = full_path.parent_path().string();
obj_info.obj_dircetory = obj_directory;
result = false;
message = _L("Importing obj with png function is developing.");
}*/
}
}
else if (boost::algorithm::iends_with(input_file, ".svg"))
result = load_svg(input_file.c_str(), &model, message);
//BBS: remove the old .amf.xml files
//else if (boost::algorithm::iends_with(input_file, ".amf") || boost::algorithm::iends_with(input_file, ".amf.xml"))
else if (boost::algorithm::iends_with(input_file, ".amf"))
//BBS: is_xxx is used for is_inches when load amf
result = load_amf(input_file.c_str(), config, config_substitutions, &model, is_xxx);
else if (boost::algorithm::iends_with(input_file, ".3mf"))
//BBS: add part plate related logic
// BBS: backup & restore
//FIXME options & LoadStrategy::CheckVersion ?
//BBS: is_xxx is used for is_bbs_3mf when load 3mf
result = load_bbs_3mf(input_file.c_str(), config, config_substitutions, &model, plate_data, project_presets, is_xxx, file_version, proFn, options, project, plate_id);
#ifdef __APPLE__
else if (boost::algorithm::iends_with(input_file, ".usd") || boost::algorithm::iends_with(input_file, ".usda") ||
boost::algorithm::iends_with(input_file, ".usdc") || boost::algorithm::iends_with(input_file, ".usdz") ||
boost::algorithm::iends_with(input_file, ".abc") || boost::algorithm::iends_with(input_file, ".ply")) {
std::string temp_stl = make_temp_stl_with_modelio(input_file);
if (temp_stl.empty()) {
throw Slic3r::RuntimeError("Failed to convert asset to STL via ModelIO.");
}
result = load_stl(temp_stl.c_str(), &model);
delete_temp_file(temp_stl);
}
#endif
else
throw Slic3r::RuntimeError(_L("Unknown file format. Input file must have .stl, .obj, .amf(.xml) extension."));
if (is_cb_cancel) {
Model empty_model;
return empty_model;
}
if (!result) {
if (message.empty())
throw Slic3r::RuntimeError(_L("Loading of a model file failed."));
else
throw Slic3r::RuntimeError(message);
}
if (model.objects.empty())
throw Slic3r::RuntimeError(_L("The supplied file couldn't be read because it's empty"));
for (ModelObject *o : model.objects)
o->input_file = input_file;
if (options & LoadStrategy::AddDefaultInstances)
model.add_default_instances();
//BBS
//CustomGCode::update_custom_gcode_per_print_z_from_config(model.custom_gcode_per_print_z, config);
//BBS
for (auto& plate_gcodes : model.plates_custom_gcodes)
CustomGCode::check_mode_for_custom_gcode_per_print_z(plate_gcodes.second);
sort_remove_duplicates(config_substitutions->substitutions);
return model;
}
//BBS: add part plate related logic
// BBS: backup & restore
// Loading model from a file (3MF or AMF), not from a simple geometry file (STL or OBJ).
Model Model::read_from_archive(const std::string& input_file, DynamicPrintConfig* config, ConfigSubstitutionContext* config_substitutions, En3mfType& out_file_type, LoadStrategy options,
PlateDataPtrs* plate_data, std::vector<Preset*>* project_presets, Semver* file_version, Import3mfProgressFn proFn, BBLProject *project)
{
assert(config != nullptr);
assert(config_substitutions != nullptr);
Model model;
bool result = false;
bool is_bbl_3mf;
if (boost::algorithm::iends_with(input_file, ".3mf")) {
PrusaFileParser prusa_file_parser;
if (prusa_file_parser.check_3mf_from_prusa(input_file)) {
// for Prusa 3mf
result = load_3mf(input_file.c_str(), *config, *config_substitutions, &model, true);
out_file_type = En3mfType::From_Prusa;
} else {
// BBS: add part plate related logic
// BBS: backup & restore
result = load_bbs_3mf(input_file.c_str(), config, config_substitutions, &model, plate_data, project_presets, &is_bbl_3mf, file_version, proFn, options, project);
}
}
else if (boost::algorithm::iends_with(input_file, ".zip.amf"))
result = load_amf(input_file.c_str(), config, config_substitutions, &model, &is_bbl_3mf);
else
throw Slic3r::RuntimeError(_L("Unknown file format. Input file must have .3mf or .zip.amf extension."));
if (out_file_type != En3mfType::From_Prusa) {
out_file_type = is_bbl_3mf ? En3mfType::From_BBS : En3mfType::From_Other;
}
if (!result)
throw Slic3r::RuntimeError(_L("Loading of a model file failed."));
for (ModelObject *o : model.objects) {
// if (boost::algorithm::iends_with(input_file, ".zip.amf"))
// {
// // we remove the .zip part of the extension to avoid it be added to filenames when exporting
// o->input_file = boost::ireplace_last_copy(input_file, ".zip.", ".");
// }
// else
o->input_file = input_file;
}
bool cb_cancel;
if (options & LoadStrategy::AddDefaultInstances) {
model.add_default_instances();
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << ":" <<__LINE__ << boost::format("import 3mf IMPORT_STAGE_ADD_INSTANCE\n");
if (proFn) {
proFn(IMPORT_STAGE_ADD_INSTANCE, 0, 1, cb_cancel);
if (cb_cancel)
throw Slic3r::RuntimeError(_L("Canceled"));
}
}
//BBS
//CustomGCode::update_custom_gcode_per_print_z_from_config(model.custom_gcode_per_print_z, config);
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << ":" << __LINE__ << boost::format("import 3mf IMPORT_STAGE_UPDATE_GCODE\n");
if (proFn) {
proFn(IMPORT_STAGE_UPDATE_GCODE, 0, 1, cb_cancel);
if (cb_cancel)
throw Slic3r::RuntimeError(_L("Canceled"));
}
//BBS
for (auto& plate_gcodes : model.plates_custom_gcodes)
CustomGCode::check_mode_for_custom_gcode_per_print_z(plate_gcodes.second);
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << ":" << __LINE__ << boost::format("import 3mf IMPORT_STAGE_CHECK_MODE_GCODE\n");
if (proFn) {
proFn(IMPORT_STAGE_CHECK_MODE_GCODE, 0, 1, cb_cancel);
if (cb_cancel)
throw Slic3r::RuntimeError(_L("Canceled"));
}
handle_legacy_sla(*config);
return model;
}
ModelObject* Model::add_object()
{
this->objects.emplace_back(new ModelObject(this));
return this->objects.back();
}
ModelObject* Model::add_object(const char *name, const char *path, const TriangleMesh &mesh)
{
ModelObject* new_object = new ModelObject(this);
this->objects.push_back(new_object);
new_object->name = name;
new_object->input_file = path;
ModelVolume *new_volume = new_object->add_volume(mesh);
new_volume->name = name;
new_volume->source.input_file = path;
new_volume->source.object_idx = (int)this->objects.size() - 1;
new_volume->source.volume_idx = (int)new_object->volumes.size() - 1;
// BBS: set extruder id to 1
if (!new_object->config.has("extruder") || new_object->config.extruder() == 0)
new_object->config.set_key_value("extruder", new ConfigOptionInt(1));
new_object->invalidate_bounding_box();
return new_object;
}
ModelObject* Model::add_object(const char *name, const char *path, TriangleMesh &&mesh)
{
ModelObject* new_object = new ModelObject(this);
this->objects.push_back(new_object);
new_object->name = name;
new_object->input_file = path;
ModelVolume *new_volume = new_object->add_volume(std::move(mesh));
new_volume->name = name;
new_volume->source.input_file = path;
new_volume->source.object_idx = (int)this->objects.size() - 1;
new_volume->source.volume_idx = (int)new_object->volumes.size() - 1;
// BBS: set default extruder id to 1
if (!new_object->config.has("extruder") || new_object->config.extruder() == 0)
new_object->config.set_key_value("extruder", new ConfigOptionInt(1));
new_object->invalidate_bounding_box();
return new_object;
}
ModelObject* Model::add_object(const ModelObject &other)
{
ModelObject* new_object = ModelObject::new_clone(other);
new_object->set_model(this);
// BBS: set default extruder id to 1
if (!new_object->config.has("extruder") || new_object->config.extruder() == 0)
new_object->config.set_key_value("extruder", new ConfigOptionInt(1));
this->objects.push_back(new_object);
// BBS: backup
if (need_backup) {
if (auto model = other.get_model()) {
auto iter = object_backup_id_map.find(other.id().id);
if (iter != object_backup_id_map.end()) {
object_backup_id_map.emplace(new_object->id().id, iter->second);
object_backup_id_map.erase(iter);
return new_object;
}
}
Slic3r::save_object_mesh(*new_object);
}
return new_object;
}
void Model::delete_object(size_t idx)
{
ModelObjectPtrs::iterator i = this->objects.begin() + idx;
// BBS: backup
Slic3r::delete_object_mesh(**i);
delete *i;
this->objects.erase(i);
}
bool Model::delete_object(ModelObject* object)
{
if (object != nullptr) {
size_t idx = 0;
for (ModelObject *model_object : objects) {
if (model_object == object) {
// BBS: backup
Slic3r::delete_object_mesh(*model_object);
delete model_object;
objects.erase(objects.begin() + idx);
return true;
}
++ idx;
}
}
return false;
}
bool Model::delete_object(ObjectID id)
{
if (id.id != 0) {
size_t idx = 0;
for (ModelObject *model_object : objects) {
if (model_object->id() == id) {
// BBS: backup
Slic3r::delete_object_mesh(*model_object);
delete model_object;
objects.erase(objects.begin() + idx);
return true;
}
++ idx;
}
}
return false;
}
void Model::clear_objects()
{
for (ModelObject* o : this->objects) {
// BBS: backup
Slic3r::delete_object_mesh(*o);
delete o;
}
this->objects.clear();
object_backup_id_map.clear();
next_object_backup_id = 1;
}
// BBS: backup, reuse objects
void Model::collect_reusable_objects(std::vector<ObjectBase*>& objects)
{
for (ModelObject* model_object : this->objects) {
objects.push_back(model_object);
for (ModelVolume* model_volume : model_object->volumes)
objects.push_back(model_volume);
std::transform(model_object->volumes.begin(),
model_object->volumes.end(),
std::back_inserter(model_object->volume_ids),
std::mem_fn(&ObjectBase::id));
model_object->volumes.clear();
}
// we never own these objects
this->objects.clear();
}
void Model::set_object_backup_id(ModelObject const& object, int uuid)
{
object_backup_id_map[object.id().id] = uuid;
if (uuid >= next_object_backup_id) next_object_backup_id = uuid + 1;
}
int Model::get_object_backup_id(ModelObject const& object)
{
auto i = object_backup_id_map.find(object.id().id);
if (i == object_backup_id_map.end()) {
i = object_backup_id_map.insert(std::make_pair(object.id().id, next_object_backup_id++)).first;
}
return i->second;
}
int Model::get_object_backup_id(ModelObject const& object) const
{
return object_backup_id_map.find(object.id().id)->second;
}
void Model::delete_material(t_model_material_id material_id)
{
ModelMaterialMap::iterator i = this->materials.find(material_id);
if (i != this->materials.end()) {
delete i->second;
this->materials.erase(i);
}
}
void Model::clear_materials()
{
for (auto &m : this->materials)
delete m.second;
this->materials.clear();
}
ModelMaterial* Model::add_material(t_model_material_id material_id)
{
assert(! material_id.empty());
ModelMaterial* material = this->get_material(material_id);
if (material == nullptr)
material = this->materials[material_id] = new ModelMaterial(this);
return material;
}
ModelMaterial* Model::add_material(t_model_material_id material_id, const ModelMaterial &other)
{
assert(! material_id.empty());
// delete existing material if any
ModelMaterial* material = this->get_material(material_id);
delete material;
// set new material
material = new ModelMaterial(other);
material->set_model(this);
this->materials[material_id] = material;
return material;
}
// makes sure all objects have at least one instance
bool Model::add_default_instances()
{
// apply a default position to all objects not having one
for (ModelObject *o : this->objects)
if (o->instances.empty())
o->add_instance();
return true;
}
// this returns the bounding box of the *transformed* instances
BoundingBoxf3 Model::bounding_box_approx() const
{
BoundingBoxf3 bb;
for (ModelObject *o : this->objects)
bb.merge(o->bounding_box_approx());
return bb;
}
BoundingBoxf3 Model::bounding_box_exact() const
{
BoundingBoxf3 bb;
for (ModelObject *o : this->objects)
bb.merge(o->bounding_box_exact());
return bb;
}
double Model::max_z() const
{
double z = 0;
for (ModelObject *o : this->objects)
z = std::max(z, o->max_z());
return z;
}
unsigned int Model::update_print_volume_state(const BuildVolume &build_volume)
{
unsigned int num_printable = 0;
for (ModelObject* model_object : this->objects)
num_printable += model_object->update_instances_print_volume_state(build_volume);
//BBS: add logs for build_volume
const BoundingBoxf3& print_volume = build_volume.bounding_volume();
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(", print_volume {%1%, %2%, %3%} to {%4%, %5%, %6%}, got %7% printable istances")\
%print_volume.min.x() %print_volume.min.y() %print_volume.min.z()%print_volume.max.x() %print_volume.max.y() %print_volume.max.z() %num_printable;
return num_printable;
}
bool Model::center_instances_around_point(const Vec2d &point)
{
BoundingBoxf3 bb;
for (ModelObject *o : this->objects)
for (size_t i = 0; i < o->instances.size(); ++ i)
bb.merge(o->instance_bounding_box(i, false));
Vec2d shift2 = point - to_2d(bb.center());
if (std::abs(shift2(0)) < EPSILON && std::abs(shift2(1)) < EPSILON)
// No significant shift, don't do anything.
return false;
Vec3d shift3 = Vec3d(shift2(0), shift2(1), 0.0);
for (ModelObject *o : this->objects) {
for (ModelInstance *i : o->instances)
i->set_offset(i->get_offset() + shift3);
o->invalidate_bounding_box();
}
return true;
}
// flattens everything to a single mesh
TriangleMesh Model::mesh() const
{
TriangleMesh mesh;
for (const ModelObject *o : this->objects)
mesh.merge(o->mesh());
return mesh;
}
void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist)
{
if (this->objects.size() > 1) throw "Grid duplication is not supported with multiple objects";
if (this->objects.empty()) throw "No objects!";
ModelObject* object = this->objects.front();
object->clear_instances();
Vec3d ext_size = object->bounding_box_exact().size() + dist * Vec3d::Ones();
for (size_t x_copy = 1; x_copy <= x; ++x_copy) {
for (size_t y_copy = 1; y_copy <= y; ++y_copy) {
ModelInstance* instance = object->add_instance();
instance->set_offset(Vec3d(ext_size(0) * (double)(x_copy - 1), ext_size(1) * (double)(y_copy - 1), 0.0));
}
}
}
bool Model::looks_like_multipart_object() const
{
if (this->objects.size() <= 1)
return false;
double zmin = std::numeric_limits<double>::max();
for (const ModelObject *obj : this->objects) {
if (obj->volumes.size() > 1 || obj->config.keys().size() > 1)
return false;
double zmin_this = obj->min_z();
if (zmin == std::numeric_limits<double>::max())
zmin = zmin_this;
else if (std::abs(zmin - zmin_this) > EPSILON)
// The Object don't share zmin.
return true;
}
return false;
}
// Generate next extruder ID string, in the range of (1, max_extruders).
static inline int auto_extruder_id(unsigned int max_extruders, unsigned int &cntr)
{
int out = ++ cntr;
if (cntr == max_extruders)
cntr = 0;
return out;
}
void Model::convert_multipart_object(unsigned int max_extruders)
{
assert(this->objects.size() >= 2);
if (this->objects.size() < 2)
return;
ModelObject* object = new ModelObject(this);
object->input_file = this->objects.front()->input_file;
object->name = boost::filesystem::path(this->objects.front()->input_file).stem().string();
//FIXME copy the config etc?
unsigned int extruder_counter = 0;
for (const ModelObject* o : this->objects)
for (const ModelVolume* v : o->volumes) {
// If there are more than one object, put all volumes together
// Each object may contain any number of volumes and instances
// The volumes transformations are relative to the object containing them...
Geometry::Transformation trafo_volume = v->get_transformation();
// Revert the centering operation.
trafo_volume.set_offset(trafo_volume.get_offset() - o->origin_translation);
int counter = 1;
auto copy_volume = [o, v, max_extruders, &counter, &extruder_counter](ModelVolume *new_v) {
assert(new_v != nullptr);
new_v->name = (counter > 1) ? o->name + "_" + std::to_string(counter++) : o->name;
//BBS: Use extruder priority: volumn > object > default
if (v->config.option("extruder"))
new_v->config.set("extruder", v->config.extruder());
else if (o->config.option("extruder"))
new_v->config.set("extruder", o->config.extruder());
return new_v;
};
if (o->instances.empty()) {
copy_volume(object->add_volume(*v))->set_transformation(trafo_volume);
} else {
for (const ModelInstance* i : o->instances)
// ...so, transform everything to a common reference system (world)
copy_volume(object->add_volume(*v))->set_transformation(i->get_transformation() * trafo_volume);
}
}
// commented-out to fix #2868
// object->add_instance();
// object->instances[0]->set_offset(object->raw_mesh_bounding_box().center());
this->clear_objects();
this->objects.push_back(object);
}
static constexpr const double volume_threshold_inches = 8.0; // 9 = 2*2*2;
bool Model::looks_like_imperial_units() const
{
if (this->objects.size() == 0)
return false;
for (ModelObject* obj : this->objects)
if (obj->get_object_stl_stats().volume < volume_threshold_inches) {
if (!obj->is_cut())
return true;
bool all_cut_parts_look_like_imperial_units = true;
for (ModelObject* obj_other : this->objects) {
if (obj_other == obj)
continue;
if (obj_other->cut_id.is_equal(obj->cut_id) && obj_other->get_object_stl_stats().volume >= volume_threshold_inches) {
all_cut_parts_look_like_imperial_units = false;
break;
}
}
if (all_cut_parts_look_like_imperial_units)
return true;
}
return false;
}
void Model::convert_from_imperial_units(bool only_small_volumes)
{
static constexpr const float in_to_mm = 25.4f;
for (ModelObject* obj : this->objects)
if (! only_small_volumes || obj->get_object_stl_stats().volume < volume_threshold_inches) {
obj->scale_mesh_after_creation(in_to_mm);
for (ModelVolume* v : obj->volumes) {
assert(! v->source.is_converted_from_meters);
v->source.is_converted_from_inches = true;
}
}
}
static constexpr const double volume_threshold_meters = 0.008; // 0.008 = 0.2*0.2*0.2
bool Model::looks_like_saved_in_meters() const
{
if (this->objects.size() == 0)
return false;
for (ModelObject* obj : this->objects)
if (obj->get_object_stl_stats().volume < volume_threshold_meters)
return true;
return false;
}
void Model::convert_from_meters(bool only_small_volumes)
{
static constexpr const double m_to_mm = 1000;
for (ModelObject* obj : this->objects)
if (! only_small_volumes || obj->get_object_stl_stats().volume < volume_threshold_meters) {
obj->scale_mesh_after_creation(m_to_mm);
for (ModelVolume* v : obj->volumes) {
assert(! v->source.is_converted_from_inches);
v->source.is_converted_from_meters = true;
}
}
}
static constexpr const double zero_volume = 0.0000000001;
int Model::removed_objects_with_zero_volume()
{
if (objects.size() == 0)
return 0;
int removed = 0;
for (int i = int(objects.size()) - 1; i >= 0; i--)
if (objects[i]->get_object_stl_stats().volume < zero_volume) {
delete_object(size_t(i));
removed++;
}
return removed;
}
void Model::adjust_min_z()
{
if (objects.empty())
return;
if (this->bounding_box_exact().min.z() < 0.0)
{
for (ModelObject* obj : objects)
{
if (obj != nullptr)
{
coordf_t obj_min_z = obj->min_z();
if (obj_min_z < 0.0)
obj->translate_instances(Vec3d(0.0, 0.0, -obj_min_z));
}
}
}
}
// Propose a filename including path derived from the ModelObject's input path.
// If object's name is filled in, use the object name, otherwise use the input name.
std::string Model::propose_export_file_name_and_path() const
{
std::string input_file;
for (const ModelObject *model_object : this->objects)
for (ModelInstance *model_instance : model_object->instances)
if (model_instance->is_printable()) {
input_file = model_object->get_export_filename();
if (!input_file.empty())
goto end;
// Other instances will produce the same name, skip them.
break;
}
end:
return input_file;
}
//BBS: add auxiliary files temp path
// BBS: backup all in one dir
std::string Model::get_auxiliary_file_temp_path()
{
return get_backup_path("Auxiliaries");
}
// BBS: backup dir
std::string Model::get_backup_path()
{
if (backup_path.empty())
{
auto pid = get_current_pid();
boost::filesystem::path parent_path(temporary_dir());
std::time_t t = std::time(0);
std::tm* now_time = std::localtime(&t);
std::stringstream buf;
buf << "/orcaslicer_model/";
buf << std::put_time(now_time, "%a_%b_%d/%H_%M_%S#");
buf << pid << "#";
buf << this->id().id;
backup_path = parent_path.string() + buf.str();
BOOST_LOG_TRIVIAL(info) << boost::format("model %1%, id %2%, backup_path empty, set to %3%")%this%this->id().id%backup_path;
boost::filesystem::path temp_path(backup_path);
if (boost::filesystem::exists(temp_path))
{
BOOST_LOG_TRIVIAL(info) << boost::format("model %1%, id %2%, remove previous %3%")%this%this->id().id%backup_path;
boost::filesystem::remove_all(temp_path);
}
}
boost::filesystem::path temp_path(backup_path);
try {
if (!boost::filesystem::exists(temp_path))
{
BOOST_LOG_TRIVIAL(info) << "create /3D/Objects in " << temp_path;
boost::filesystem::create_directories(backup_path + "/3D/Objects");
BOOST_LOG_TRIVIAL(info) << "create /Metadata in " << temp_path;
boost::filesystem::create_directories(backup_path + "/Metadata");
BOOST_LOG_TRIVIAL(info) << "create /lock.txt in " << temp_path;
save_string_file(backup_path + "/lock.txt",
boost::lexical_cast<std::string>(get_current_pid()));
}
} catch (std::exception &ex) {
BOOST_LOG_TRIVIAL(error) << "Failed to create backup path" << temp_path << ": " << ex.what();
}
return backup_path;
}
void Model::remove_backup_path_if_exist()
{
if (!backup_path.empty()) {
boost::filesystem::path temp_path(backup_path);
if (boost::filesystem::exists(temp_path))
{
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format("model %1%, id %2% remove backup_path %3%")%this%this->id().id%backup_path;
boost::filesystem::remove_all(temp_path);
}
backup_path.clear();
}
}
std::string Model::get_backup_path(const std::string &sub_path)
{
auto path = get_backup_path() + "/" + sub_path;
try {
if (!boost::filesystem::exists(path)) {
BOOST_LOG_TRIVIAL(info) << "create missing sub_path" << path;
boost::filesystem::create_directories(path);
}
} catch (std::exception &ex) {
BOOST_LOG_TRIVIAL(error) << "Failed to create missing sub_path" << path << ": " << ex.what();
}
return path;
}
void Model::set_backup_path(std::string const& path)
{
if (backup_path == path)
return;
if ("detach" == path) {
backup_path.clear();
return;
}
if (!backup_path.empty()) {
BOOST_LOG_TRIVIAL(info) << __FUNCTION__<<boost::format(", model %1%, id %2%, remove previous backup %3%")%this%this->id().id%backup_path;
Slic3r::remove_backup(*this, true);
}
backup_path = path;
BOOST_LOG_TRIVIAL(info) << __FUNCTION__<<boost::format(", model %1%, id %2%, set backup to %3%")%this%this->id().id%backup_path;
}
void Model::load_from(Model& model)
{
set_backup_path(model.get_backup_path());
model.backup_path.clear();
object_backup_id_map = model.object_backup_id_map;
next_object_backup_id = model.next_object_backup_id;
design_info = model.design_info;
stl_design_id = model.stl_design_id;
stl_design_country = model.stl_design_country;
model_info = model.model_info;
profile_info = model.profile_info;
mk_name = model.mk_name;
mk_version = model.mk_version;
md_name = model.md_name;
md_value = model.md_value;
model.design_info.reset();
model.model_info.reset();
model.profile_info.reset();
model.calib_pa_pattern.reset();
}
// BBS: backup
void Model::set_need_backup()
{
need_backup = true;
}
std::string Model::propose_export_file_name_and_path(const std::string &new_extension) const
{
return boost::filesystem::path(this->propose_export_file_name_and_path()).replace_extension(new_extension).string();
}
bool Model::is_fdm_support_painted() const
{
return std::any_of(this->objects.cbegin(), this->objects.cend(), [](const ModelObject *mo) { return mo->is_fdm_support_painted(); });
}
bool Model::is_seam_painted() const
{
return std::any_of(this->objects.cbegin(), this->objects.cend(), [](const ModelObject *mo) { return mo->is_seam_painted(); });
}
bool Model::is_mm_painted() const
{
return std::any_of(this->objects.cbegin(), this->objects.cend(), [](const ModelObject *mo) { return mo->is_mm_painted(); });
}
static void add_cut_volume(TriangleMesh& mesh, ModelObject* object, const ModelVolume* src_volume, const Transform3d& cut_matrix, const std::string& suffix = {}, ModelVolumeType type = ModelVolumeType::MODEL_PART)
{
if (mesh.empty())
return;
mesh.transform(cut_matrix);
ModelVolume* vol = object->add_volume(mesh);
vol->set_type(type);
vol->name = src_volume->name + suffix;
// Don't copy the config's ID.
vol->config.assign_config(src_volume->config);
assert(vol->config.id().valid());
assert(vol->config.id() != src_volume->config.id());
vol->set_material(src_volume->material_id(), *src_volume->material());
vol->cut_info = src_volume->cut_info;
}
ModelObject::~ModelObject()
{
this->clear_volumes();
this->clear_instances();
}
// maintains the m_model pointer
ModelObject& ModelObject::assign_copy(const ModelObject &rhs)
{
assert(this->id().invalid() || this->id() == rhs.id());
assert(this->config.id().invalid() || this->config.id() == rhs.config.id());
this->copy_id(rhs);
this->name = rhs.name;
//BBS: add module name
this->module_name = rhs.module_name;
this->input_file = rhs.input_file;
// Copies the config's ID
this->config = rhs.config;
assert(this->config.id() == rhs.config.id());
this->sla_support_points = rhs.sla_support_points;
this->sla_points_status = rhs.sla_points_status;
this->sla_drain_holes = rhs.sla_drain_holes;
this->layer_config_ranges = rhs.layer_config_ranges;
this->layer_height_profile = rhs.layer_height_profile;
this->printable = rhs.printable;
this->origin_translation = rhs.origin_translation;
this->cut_id.copy(rhs.cut_id);
this->copy_transformation_caches(rhs);
this->clear_volumes();
this->volumes.reserve(rhs.volumes.size());
for (ModelVolume *model_volume : rhs.volumes) {
this->volumes.emplace_back(new ModelVolume(*model_volume));
this->volumes.back()->set_model_object(this);
}
this->clear_instances();
this->instances.reserve(rhs.instances.size());
for (const ModelInstance *model_instance : rhs.instances) {
this->instances.emplace_back(new ModelInstance(*model_instance));
this->instances.back()->set_model_object(this);
}
return *this;
}
// maintains the m_model pointer
ModelObject& ModelObject::assign_copy(ModelObject &&rhs)
{
assert(this->id().invalid());
this->copy_id(rhs);
this->name = std::move(rhs.name);
//BBS: add module name
this->module_name = std::move(rhs.module_name);
this->input_file = std::move(rhs.input_file);
// Moves the config's ID
this->config = std::move(rhs.config);
assert(this->config.id() == rhs.config.id());
this->sla_support_points = std::move(rhs.sla_support_points);
this->sla_points_status = std::move(rhs.sla_points_status);
this->sla_drain_holes = std::move(rhs.sla_drain_holes);
this->layer_config_ranges = std::move(rhs.layer_config_ranges);
this->layer_height_profile = std::move(rhs.layer_height_profile);
this->printable = std::move(rhs.printable);
this->origin_translation = std::move(rhs.origin_translation);
this->copy_transformation_caches(rhs);
this->clear_volumes();
this->volumes = std::move(rhs.volumes);
rhs.volumes.clear();
for (ModelVolume *model_volume : this->volumes)
model_volume->set_model_object(this);
this->clear_instances();
this->instances = std::move(rhs.instances);
rhs.instances.clear();
for (ModelInstance *model_instance : this->instances)
model_instance->set_model_object(this);
return *this;
}
void ModelObject::assign_new_unique_ids_recursive()
{
this->set_new_unique_id();
for (ModelVolume *model_volume : this->volumes)
model_volume->assign_new_unique_ids_recursive();
for (ModelInstance *model_instance : this->instances)
model_instance->assign_new_unique_ids_recursive();
this->layer_height_profile.set_new_unique_id();
}
// Clone this ModelObject including its volumes and instances, keep the IDs of the copies equal to the original.
// Called by Print::apply() to clone the Model / ModelObject hierarchy to the back end for background processing.
//ModelObject* ModelObject::clone(Model *parent)
//{
// return new ModelObject(parent, *this, true);
//}
// BBS: production extension
int ModelObject::get_backup_id() const { return m_model ? get_model()->get_object_backup_id(*this) : -1; }
// BBS: Boolean Operations impl. - MusangKing
bool ModelObject::make_boolean(ModelObject *cut_object, const std::string &boolean_opts)
{
// merge meshes into single volume instead of multi-parts object
if (this->volumes.size() != 1) {
// we can't merge meshes if there's not just one volume
return false;
}
std::vector<TriangleMesh> new_meshes;
const TriangleMesh &cut_mesh = cut_object->mesh();
MeshBoolean::mcut::make_boolean(this->mesh(), cut_mesh, new_meshes, boolean_opts);
this->clear_volumes();
int i = 1;
for (TriangleMesh &mesh : new_meshes) {
ModelVolume *vol = this->add_volume(mesh);
vol->name = this->name + "_" + std::to_string(i++);
}
return true;
}
ModelVolume* ModelObject::add_volume(const TriangleMesh &mesh)
{
ModelVolume* v = new ModelVolume(this, mesh);
this->volumes.push_back(v);
v->center_geometry_after_creation();
this->invalidate_bounding_box();
// BBS: backup
Slic3r::save_object_mesh(*this);
return v;
}
ModelVolume* ModelObject::add_volume(TriangleMesh &&mesh, ModelVolumeType type /*= ModelVolumeType::MODEL_PART*/)
{
ModelVolume* v = new ModelVolume(this, std::move(mesh), type);
this->volumes.push_back(v);
v->center_geometry_after_creation();
this->invalidate_bounding_box();
// BBS: backup
Slic3r::save_object_mesh(*this);
return v;
}
ModelVolume* ModelObject::add_volume(const ModelVolume &other, ModelVolumeType type /*= ModelVolumeType::INVALID*/)
{
ModelVolume* v = new ModelVolume(this, other);
if (type != ModelVolumeType::INVALID && v->type() != type)
v->set_type(type);
v->cut_info = other.cut_info;
this->volumes.push_back(v);
// The volume should already be centered at this point of time when copying shared pointers of the triangle mesh and convex hull.
// v->center_geometry_after_creation();
// this->invalidate_bounding_box();
// BBS: backup
Slic3r::save_object_mesh(*this);
return v;
}
ModelVolume* ModelObject::add_volume(const ModelVolume &other, TriangleMesh &&mesh)
{
ModelVolume* v = new ModelVolume(this, other, std::move(mesh));
this->volumes.push_back(v);
v->center_geometry_after_creation();
this->invalidate_bounding_box();
// BBS: backup
Slic3r::save_object_mesh(*this);
return v;
}
ModelVolume* ModelObject::add_volume_with_shared_mesh(const ModelVolume &other, ModelVolumeType type /*= ModelVolumeType::INVALID*/)
{
ModelVolume* v = new ModelVolume(this, other.m_mesh);
if (type != ModelVolumeType::INVALID && v->type() != type)
v->set_type(type);
this->volumes.push_back(v);
// The volume should already be centered at this point of time when copying shared pointers of the triangle mesh and convex hull.
// v->center_geometry_after_creation();
// this->invalidate_bounding_box();
// BBS: backup
Slic3r::save_object_mesh(*this);
return v;
}
void ModelObject::delete_volume(size_t idx)
{
ModelVolumePtrs::iterator i = this->volumes.begin() + idx;
delete *i;
this->volumes.erase(i);
if (this->volumes.size() == 1)
{
// only one volume left
// we need to collapse the volume transform into the instances transforms because now when selecting this volume
// it will be seen as a single full instance ans so its volume transform may be ignored
ModelVolume* v = this->volumes.front();
Transform3d v_t = v->get_transformation().get_matrix();
for (ModelInstance* inst : this->instances)
{
inst->set_transformation(Geometry::Transformation(inst->get_transformation().get_matrix() * v_t));
}
Geometry::Transformation t;
v->set_transformation(t);
v->set_new_unique_id();
}
this->invalidate_bounding_box();
// BBS: backup
Slic3r::save_object_mesh(*this);
}
void ModelObject::clear_volumes()
{
for (ModelVolume *v : this->volumes)
delete v;
this->volumes.clear();
this->invalidate_bounding_box();
// BBS: backup: do not save
// Slic3r::save_object_mesh(*this);
}
bool ModelObject::is_fdm_support_painted() const
{
return std::any_of(this->volumes.cbegin(), this->volumes.cend(), [](const ModelVolume *mv) { return mv->is_fdm_support_painted(); });
}
bool ModelObject::is_seam_painted() const
{
return std::any_of(this->volumes.cbegin(), this->volumes.cend(), [](const ModelVolume *mv) { return mv->is_seam_painted(); });
}
bool ModelObject::is_mm_painted() const
{
return std::any_of(this->volumes.cbegin(), this->volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); });
}
void ModelObject::sort_volumes(bool full_sort)
{
// sort volumes inside the object to order "Model Part, Negative Volume, Modifier, Support Blocker and Support Enforcer. "
if (full_sort)
std::stable_sort(volumes.begin(), volumes.end(), [](ModelVolume* vl, ModelVolume* vr) {
return vl->type() < vr->type();
});
// sort have to controll "place" of the support blockers/enforcers. But one of the model parts have to be on the first place.
else
std::stable_sort(volumes.begin(), volumes.end(), [](ModelVolume* vl, ModelVolume* vr) {
ModelVolumeType vl_type = vl->type() > ModelVolumeType::PARAMETER_MODIFIER ? vl->type() : ModelVolumeType::PARAMETER_MODIFIER;
ModelVolumeType vr_type = vr->type() > ModelVolumeType::PARAMETER_MODIFIER ? vr->type() : ModelVolumeType::PARAMETER_MODIFIER;
return vl_type < vr_type;
});
}
ModelInstance* ModelObject::add_instance()
{
ModelInstance* i = new ModelInstance(this);
this->instances.push_back(i);
this->invalidate_bounding_box();
// BBS: backup: do not save
if (this->instances.size() == 1)
Slic3r::save_object_mesh(*this);
return i;
}
ModelInstance* ModelObject::add_instance(const ModelInstance &other)
{
ModelInstance* i = new ModelInstance(this, other);
this->instances.push_back(i);
this->invalidate_bounding_box();
return i;
}
ModelInstance* ModelObject::add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation, const Vec3d &mirror)
{
auto *instance = add_instance();
instance->set_offset(offset);
instance->set_scaling_factor(scaling_factor);
instance->set_rotation(rotation);
instance->set_mirror(mirror);
return instance;
}
void ModelObject::delete_instance(size_t idx)
{
ModelInstancePtrs::iterator i = this->instances.begin() + idx;
delete *i;
this->instances.erase(i);
this->invalidate_bounding_box();
}
void ModelObject::delete_last_instance()
{
this->delete_instance(this->instances.size() - 1);
}
void ModelObject::clear_instances()
{
for (ModelInstance *i : this->instances)
delete i;
this->instances.clear();
this->invalidate_bounding_box();
}
// Returns the bounding box of the transformed instances.
// This bounding box is approximate and not snug.
const BoundingBoxf3& ModelObject::bounding_box_approx() const
{
if (! m_bounding_box_approx_valid) {
m_bounding_box_approx_valid = true;
BoundingBoxf3 raw_bbox = this->raw_mesh_bounding_box();
m_bounding_box_approx.reset();
for (const ModelInstance *i : this->instances)
m_bounding_box_approx.merge(i->transform_bounding_box(raw_bbox));
}
return m_bounding_box_approx;
}
// Returns the bounding box of the transformed instances.
// This bounding box is approximate and not snug.
const BoundingBoxf3& ModelObject::bounding_box_exact() const
{
if (! m_bounding_box_exact_valid) {
m_bounding_box_exact_valid = true;
m_min_max_z_valid = true;
m_bounding_box_exact.reset();
for (size_t i = 0; i < this->instances.size(); ++ i)
m_bounding_box_exact.merge(this->instance_bounding_box(i));
}
return m_bounding_box_exact;
}
double ModelObject::min_z() const
{
const_cast<ModelObject*>(this)->update_min_max_z();
return m_bounding_box_exact.min.z();
}
double ModelObject::max_z() const
{
const_cast<ModelObject*>(this)->update_min_max_z();
return m_bounding_box_exact.max.z();
}
void ModelObject::update_min_max_z()
{
assert(! this->instances.empty());
if (! m_min_max_z_valid && ! this->instances.empty()) {
m_min_max_z_valid = true;
const Transform3d mat_instance = this->instances.front()->get_transformation().get_matrix();
double global_min_z = std::numeric_limits<double>::max();
double global_max_z = - std::numeric_limits<double>::max();
for (const ModelVolume *v : this->volumes)
if (v->is_model_part()) {
const Transform3d m = mat_instance * v->get_matrix();
const Vec3d row_z = m.linear().row(2).cast<double>();
const double shift_z = m.translation().z();
double this_min_z = std::numeric_limits<double>::max();
double this_max_z = - std::numeric_limits<double>::max();
for (const Vec3f &p : v->mesh().its.vertices) {
double z = row_z.dot(p.cast<double>());
this_min_z = std::min(this_min_z, z);
this_max_z = std::max(this_max_z, z);
}
this_min_z += shift_z;
this_max_z += shift_z;
global_min_z = std::min(global_min_z, this_min_z);
global_max_z = std::max(global_max_z, this_max_z);
}
m_bounding_box_exact.min.z() = global_min_z;
m_bounding_box_exact.max.z() = global_max_z;
}
}
// A mesh containing all transformed instances of this object.
TriangleMesh ModelObject::mesh() const
{
TriangleMesh mesh;
TriangleMesh raw_mesh = this->raw_mesh();
for (const ModelInstance *i : this->instances) {
TriangleMesh m = raw_mesh;
i->transform_mesh(&m);
mesh.merge(m);
}
return mesh;
}
// Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
// Currently used by ModelObject::mesh(), to calculate the 2D envelope for 2D plater
// and to display the object statistics at ModelObject::print_info().
TriangleMesh ModelObject::raw_mesh() const
{
TriangleMesh mesh;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
{
TriangleMesh vol_mesh(v->mesh());
vol_mesh.transform(v->get_matrix());
mesh.merge(vol_mesh);
}
return mesh;
}
// Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
// Currently used by ModelObject::mesh(), to calculate the 2D envelope for 2D plater
// and to display the object statistics at ModelObject::print_info().
indexed_triangle_set ModelObject::raw_indexed_triangle_set() const
{
size_t num_vertices = 0;
size_t num_faces = 0;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part()) {
num_vertices += v->mesh().its.vertices.size();
num_faces += v->mesh().its.indices.size();
}
indexed_triangle_set out;
out.vertices.reserve(num_vertices);
out.indices.reserve(num_faces);
for (const ModelVolume *v : this->volumes)
if (v->is_model_part()) {
size_t i = out.vertices.size();
size_t j = out.indices.size();
append(out.vertices, v->mesh().its.vertices);
append(out.indices, v->mesh().its.indices);
const Transform3d& m = v->get_matrix();
for (; i < out.vertices.size(); ++ i)
out.vertices[i] = (m * out.vertices[i].cast<double>()).cast<float>().eval();
if (v->is_left_handed()) {
for (; j < out.indices.size(); ++ j)
std::swap(out.indices[j][0], out.indices[j][1]);
}
}
return out;
}
const BoundingBoxf3& ModelObject::raw_mesh_bounding_box() const
{
if (! m_raw_mesh_bounding_box_valid) {
m_raw_mesh_bounding_box_valid = true;
m_raw_mesh_bounding_box.reset();
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
m_raw_mesh_bounding_box.merge(v->mesh().transformed_bounding_box(v->get_matrix()));
}
return m_raw_mesh_bounding_box;
}
BoundingBoxf3 ModelObject::full_raw_mesh_bounding_box() const
{
BoundingBoxf3 bb;
for (const ModelVolume *v : this->volumes)
bb.merge(v->mesh().transformed_bounding_box(v->get_matrix()));
return bb;
}
// A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
// This bounding box is only used for the actual slicing and for layer editing UI to calculate the layers.
const BoundingBoxf3& ModelObject::raw_bounding_box() const
{
if (! m_raw_bounding_box_valid) {
m_raw_bounding_box_valid = true;
m_raw_bounding_box.reset();
if (this->instances.empty())
throw Slic3r::InvalidArgument("Can't call raw_bounding_box() with no instances");
const Transform3d inst_matrix = this->instances.front()->get_transformation().get_matrix_no_offset();
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
m_raw_bounding_box.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix()));
}
return m_raw_bounding_box;
}
// This returns an accurate snug bounding box of the transformed object instance, without the translation applied.
BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx, bool dont_translate) const {
return instance_bounding_box(*this->instances[instance_idx], dont_translate);
}
BoundingBoxf3 ModelObject::instance_bounding_box(const ModelInstance &instance, bool dont_translate) const
{
BoundingBoxf3 bb;
const Transform3d inst_matrix = dont_translate ?
instance.get_transformation().get_matrix_no_offset() :
instance.get_transformation().get_matrix();
for (ModelVolume *v : this->volumes) {
if (v->is_model_part())
bb.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix()));
}
return bb;
}
//BBS: add convex bounding box
BoundingBoxf3 ModelObject::instance_convex_hull_bounding_box(size_t instance_idx, bool dont_translate) const
{
return instance_convex_hull_bounding_box(this->instances[instance_idx], dont_translate);
}
BoundingBoxf3 ModelObject::instance_convex_hull_bounding_box(const ModelInstance* instance, bool dont_translate) const
{
BoundingBoxf3 bb;
const Transform3d inst_matrix = dont_translate ? instance->get_transformation().get_matrix_no_offset() :
instance->get_transformation().get_matrix();
for (ModelVolume* v : this->volumes) {
if (v->is_model_part())
bb.merge(v->get_convex_hull().transformed_bounding_box(inst_matrix * v->get_matrix()));
}
return bb;
}
// Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane.
// This method is cheap in that it does not make any unnecessary copy of the volume meshes.
// This method is used by the auto arrange function.
Polygon ModelObject::convex_hull_2d(const Transform3d& trafo_instance) const
{
#if 0
Points pts;
for (const ModelVolume* v : volumes) {
if (v->is_model_part())
//BBS: use convex hull vertex instead of all
append(pts, its_convex_hull_2d_above(v->get_convex_hull().its, (trafo_instance * v->get_matrix()).cast<float>(), 0.0f).points);
//append(pts, its_convex_hull_2d_above(v->mesh().its, (trafo_instance * v->get_matrix()).cast<float>(), 0.0f).points);
}
return Geometry::convex_hull(std::move(pts));
#else
Points pts;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part()) {
const Polygon& volume_hull = v->get_convex_hull_2d(trafo_instance);
pts.insert(pts.end(), volume_hull.points.begin(), volume_hull.points.end());
}
//std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) < b(0) || (a(0) == b(0) && a(1) < b(1)); });
//pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) == b(0) && a(1) == b(1); }), pts.end());
/*std::vector<Points> points;
//points.push_back(pts);
Polygon hull = Geometry::convex_hull(std::move(pts));
static int irun = 0;
BoundingBox bbox_svg;
bbox_svg.merge(get_extents(pts));
bbox_svg.merge(get_extents(hull));
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": bbox_svg.min{%1%,%2%} max{%3%,%4%}, points count %5%")% bbox_svg.min.x()% bbox_svg.min.y()% bbox_svg.max.x()% bbox_svg.max.y()%points[0].size();
{
std::stringstream stri;
stri << "convex_2d_hull_" << irun << ".svg";
SVG svg(stri.str(), bbox_svg);
std::vector<Polygon> hulls;
hulls.push_back(hull);
svg.draw(to_polylines(points), "blue");
svg.draw(to_polylines(hulls), "red");
svg.Close();
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": stri %1%, Polygon.size %2%, point[0] {%3%, %4%}, point[1] {%5%, %6%}")% stri.str()% hull.size()% hull[0].x()% hull[0].y()% hull[1].x()% hull[1].y();
}
++ irun;
return hull;*/
return Geometry::convex_hull(std::move(pts));
#endif
}
void ModelObject::center_around_origin(bool include_modifiers)
{
// calculate the displacements needed to
// center this object around the origin
const BoundingBoxf3 bb = include_modifiers ? full_raw_mesh_bounding_box() : raw_mesh_bounding_box();
// Shift is the vector from the center of the bounding box to the origin
const Vec3d shift = -bb.center();
this->translate(shift);
this->origin_translation += shift;
}
void ModelObject::ensure_on_bed(bool allow_negative_z)
{
double z_offset = 0.0;
if (allow_negative_z) {
if (parts_count() == 1) {
const double min_z = this->min_z();
const double max_z = this->max_z();
if (min_z >= SINKING_Z_THRESHOLD || max_z < 0.0)
z_offset = -min_z;
}
else {
const double max_z = this->max_z();
if (max_z < SINKING_MIN_Z_THRESHOLD)
z_offset = SINKING_MIN_Z_THRESHOLD - max_z;
}
}
else
z_offset = -this->min_z();
if (z_offset != 0.0)
translate_instances(z_offset * Vec3d::UnitZ());
}
void ModelObject::translate_instances(const Vec3d& vector)
{
for (size_t i = 0; i < instances.size(); ++i) {
translate_instance(i, vector);
}
}
void ModelObject::translate_instance(size_t instance_idx, const Vec3d& vector)
{
assert(instance_idx < instances.size());
ModelInstance* i = instances[instance_idx];
i->set_offset(i->get_offset() + vector);
invalidate_bounding_box();
}
void ModelObject::translate(double x, double y, double z)
{
for (ModelVolume *v : this->volumes) {
v->translate(x, y, z);
}
if (m_bounding_box_approx_valid)
m_bounding_box_approx.translate(x, y, z);
if (m_bounding_box_exact_valid)
m_bounding_box_exact.translate(x, y, z);
}
void ModelObject::scale(const Vec3d &versor)
{
for (ModelVolume *v : this->volumes) {
v->scale(versor);
}
this->invalidate_bounding_box();
}
void ModelObject::rotate(double angle, Axis axis)
{
for (ModelVolume *v : this->volumes) {
v->rotate(angle, axis);
}
center_around_origin();
this->invalidate_bounding_box();
}
void ModelObject::rotate(double angle, const Vec3d& axis)
{
for (ModelVolume *v : this->volumes) {
v->rotate(angle, axis);
}
//BBS update assemble transformation when modify volume rotation
for (int i = 0; i < instances.size(); i++) {
instances[i]->rotate_assemble(-angle, axis);
}
center_around_origin();
this->invalidate_bounding_box();
}
void ModelObject::mirror(Axis axis)
{
for (ModelVolume *v : this->volumes) {
v->mirror(axis);
}
this->invalidate_bounding_box();
}
// This method could only be called before the meshes of this ModelVolumes are not shared!
void ModelObject::scale_mesh_after_creation(const float scale)
{
for (ModelVolume *v : this->volumes) {
v->scale_geometry_after_creation(scale);
v->set_offset(Vec3d(scale, scale, scale).cwiseProduct(v->get_offset()));
}
this->invalidate_bounding_box();
}
void ModelObject::convert_units(ModelObjectPtrs& new_objects, ConversionType conv_type, std::vector<int> volume_idxs)
{
BOOST_LOG_TRIVIAL(trace) << "ModelObject::convert_units - start";
ModelObject* new_object = new_clone(*this);
float koef = conv_type == ConversionType::CONV_FROM_INCH ? 25.4f : conv_type == ConversionType::CONV_TO_INCH ? 0.0393700787f :
conv_type == ConversionType::CONV_FROM_METER ? 1000.f : conv_type == ConversionType::CONV_TO_METER ? 0.001f : 1.f;
new_object->set_model(nullptr);
new_object->sla_support_points.clear();
new_object->sla_drain_holes.clear();
new_object->sla_points_status = sla::PointsStatus::NoPoints;
new_object->clear_volumes();
new_object->input_file.clear();
int vol_idx = 0;
for (ModelVolume* volume : volumes) {
if (!volume->mesh().empty()) {
TriangleMesh mesh(volume->mesh());
ModelVolume* vol = new_object->add_volume(mesh);
vol->name = volume->name;
vol->set_type(volume->type());
// Don't copy the config's ID.
vol->config.assign_config(volume->config);
assert(vol->config.id().valid());
assert(vol->config.id() != volume->config.id());
vol->set_material(volume->material_id(), *volume->material());
vol->source.input_file = volume->source.input_file;
vol->source.object_idx = (int)new_objects.size();
vol->source.volume_idx = vol_idx;
vol->source.is_converted_from_inches = volume->source.is_converted_from_inches;
vol->source.is_converted_from_meters = volume->source.is_converted_from_meters;
vol->source.is_from_builtin_objects = volume->source.is_from_builtin_objects;
vol->supported_facets.assign(volume->supported_facets);
vol->seam_facets.assign(volume->seam_facets);
vol->mmu_segmentation_facets.assign(volume->mmu_segmentation_facets);
// Perform conversion only if the target "imperial" state is different from the current one.
// This check supports conversion of "mixed" set of volumes, each with different "imperial" state.
if (//vol->source.is_converted_from_inches != from_imperial &&
(volume_idxs.empty() ||
std::find(volume_idxs.begin(), volume_idxs.end(), vol_idx) != volume_idxs.end())) {
vol->scale_geometry_after_creation(koef);
vol->set_offset(Vec3d(koef, koef, koef).cwiseProduct(volume->get_offset()));
if (conv_type == ConversionType::CONV_FROM_INCH || conv_type == ConversionType::CONV_TO_INCH)
vol->source.is_converted_from_inches = conv_type == ConversionType::CONV_FROM_INCH;
if (conv_type == ConversionType::CONV_FROM_METER || conv_type == ConversionType::CONV_TO_METER)
vol->source.is_converted_from_meters = conv_type == ConversionType::CONV_FROM_METER;
assert(! vol->source.is_converted_from_inches || ! vol->source.is_converted_from_meters);
}
else
vol->set_offset(volume->get_offset());
}
vol_idx ++;
}
new_object->invalidate_bounding_box();
new_objects.push_back(new_object);
BOOST_LOG_TRIVIAL(trace) << "ModelObject::convert_units - end";
}
size_t ModelObject::materials_count() const
{
std::set<t_model_material_id> material_ids;
for (const ModelVolume *v : this->volumes)
material_ids.insert(v->material_id());
return material_ids.size();
}
size_t ModelObject::facets_count() const
{
size_t num = 0;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
num += v->mesh().facets_count();
return num;
}
size_t ModelObject::parts_count() const
{
size_t num = 0;
for (const ModelVolume* v : this->volumes)
if (v->is_model_part())
++num;
return num;
}
bool ModelObject::has_connectors() const
{
assert(is_cut());
for (const ModelVolume *v : this->volumes)
if (v->cut_info.is_connector) return true;
return false;
}
void ModelObject::invalidate_cut()
{
this->cut_id.invalidate();
for (ModelVolume *volume : this->volumes)
volume->invalidate_cut_info();
}
void ModelObject::delete_connectors()
{
for (int id = int(this->volumes.size()) - 1; id >= 0; id--) {
if (volumes[id]->is_cut_connector())
this->delete_volume(size_t(id));
}
}
void ModelObject::clone_for_cut(ModelObject **obj)
{
(*obj) = ModelObject::new_clone(*this);
(*obj)->set_model(this->get_model());
(*obj)->sla_support_points.clear();
(*obj)->sla_drain_holes.clear();
(*obj)->sla_points_status = sla::PointsStatus::NoPoints;
(*obj)->clear_volumes();
(*obj)->input_file.clear();
}
bool ModelVolume::is_the_only_one_part() const
{
if (m_type != ModelVolumeType::MODEL_PART)
return false;
if (object == nullptr)
return false;
for (const ModelVolume *v : object->volumes) {
if (v == nullptr)
continue;
// is this volume?
if (v->id() == this->id())
continue;
// exist another model part in object?
if (v->type() == ModelVolumeType::MODEL_PART)
return false;
}
return true;
}
void ModelVolume::reset_extra_facets()
{
this->supported_facets.reset();
this->seam_facets.reset();
this->mmu_segmentation_facets.reset();
}
static void invalidate_translations(ModelObject* object, const ModelInstance* src_instance)
{
if (!object->origin_translation.isApprox(Vec3d::Zero()) && src_instance->get_offset().isApprox(Vec3d::Zero())) {
object->center_around_origin();
object->translate_instances(-object->origin_translation);
object->origin_translation = Vec3d::Zero();
}
else {
object->invalidate_bounding_box();
object->center_around_origin();
}
}
void ModelObject::split(ModelObjectPtrs* new_objects)
{
std::vector<TriangleMesh> all_meshes;
std::vector<Transform3d> all_transfos;
std::vector<std::pair<int, int>> volume_mesh_counts;
all_meshes.reserve(this->volumes.size() * 5);
bool is_multi_volume_object = (this->volumes.size() > 1);
for (int volume_idx = 0; volume_idx < this->volumes.size(); volume_idx++) {
ModelVolume* volume = this->volumes[volume_idx];
if (volume->type() != ModelVolumeType::MODEL_PART)
continue;
// splited volume should not be text object
if (volume->text_configuration.has_value())
volume->text_configuration.reset();
if (!is_multi_volume_object) {
//BBS: not multi volume object, then split mesh.
std::vector<TriangleMesh> volume_meshes = volume->mesh().split();
int mesh_count = 0;
for (TriangleMesh& mesh : volume_meshes) {
if (mesh.facets_count() < 3)
continue;
all_meshes.emplace_back(std::move(mesh));
all_transfos.emplace_back(volume->get_matrix());
mesh_count++;
}
volume_mesh_counts.push_back({ volume_idx, mesh_count });
} else {
//BBS: multi volume object, then only split to volume
if (volume->mesh().facets_count() >= 3) {
all_meshes.emplace_back(std::move(volume->mesh()));
all_transfos.emplace_back(volume->get_matrix());
volume_mesh_counts.push_back({ volume_idx, 1 });
}
}
}
FaceDetector face_detector(all_meshes, all_transfos, 1.0);
face_detector.detect_exterior_face();
int volume_mesh_begin = 0;
for (int i = 0; i < volume_mesh_counts.size(); i++) {
std::pair<int, int> mesh_info = volume_mesh_counts[i];
ModelVolume* volume = this->volumes[mesh_info.first];
std::vector<TriangleMesh> meshes;
for (int mesh_idx = volume_mesh_begin; mesh_idx < volume_mesh_begin + mesh_info.second; mesh_idx++) {
meshes.emplace_back(std::move(all_meshes[mesh_idx]));
}
volume_mesh_begin += mesh_info.second;
size_t counter = 1;
for (TriangleMesh& mesh : meshes) {
// FIXME: crashes if not satisfied
if (mesh.facets_count() < 3)
continue;
// XXX: this seems to be the only real usage of m_model, maybe refactor this so that it's not needed?
ModelObject* new_object = m_model->add_object();
//BBS: refine the config logic
//use object as basic, and add volume's config
if (meshes.size() == 1) {
new_object->name = volume->name;
// Don't copy the config's ID.
//new_object->config.assign_config(this->config.size() > 0 ? this->config : volume->config);
}
else {
new_object->name = this->name + (meshes.size() > 1 ? "_" + std::to_string(counter++) : "");
// Don't copy the config's ID.
//new_object->config.assign_config(this->config);
}
new_object->config.assign_config(this->config);
new_object->config.apply(volume->config, true);
assert(new_object->config.id().valid());
assert(new_object->config.id() != this->config.id());
new_object->instances.reserve(this->instances.size());
for (const ModelInstance* model_instance : this->instances)
new_object->add_instance(*model_instance);
ModelVolume* new_vol = new_object->add_volume(*volume, std::move(mesh));
if (is_multi_volume_object) {
// BBS: volume geometry not changed, so we can keep the color paint facets
if (new_vol->mmu_segmentation_facets.timestamp() == volume->mmu_segmentation_facets.timestamp())
new_vol->mmu_segmentation_facets.reset(); // BBS: let next assign take effect
new_vol->mmu_segmentation_facets.assign(volume->mmu_segmentation_facets);
}
// BBS: clear volume's config, as we already set them into object
new_vol->config.reset();
for (ModelInstance* model_instance : new_object->instances)
{
const Vec3d shift = model_instance->get_transformation().get_matrix_no_offset() * new_vol->get_offset();
model_instance->set_offset(model_instance->get_offset() + shift);
//BBS: add assemble_view related logic
Geometry::Transformation instance_transformation_copy = model_instance->get_transformation();
instance_transformation_copy.set_offset(-new_vol->get_offset());
const Transform3d &assemble_matrix = model_instance->get_assemble_transformation().get_matrix();
const Transform3d &instance_inverse_matrix = instance_transformation_copy.get_matrix().inverse();
Transform3d new_instance_inverse_matrix = instance_inverse_matrix * model_instance->get_transformation().get_matrix_no_offset().inverse();
Transform3d new_assemble_transform = assemble_matrix * new_instance_inverse_matrix;
model_instance->set_assemble_from_transform(new_assemble_transform);
model_instance->set_offset_to_assembly(new_vol->get_offset());
}
new_vol->set_offset(Vec3d::Zero());
// reset the source to disable reload from disk
new_vol->source = ModelVolume::Source();
new_objects->emplace_back(new_object);
}
}
}
void ModelObject::merge()
{
if (this->volumes.size() == 1) {
// We can't merge meshes if there's just one volume
return;
}
TriangleMesh mesh;
for (ModelVolume* volume : volumes)
if (!volume->mesh().empty())
mesh.merge(volume->mesh());
this->clear_volumes();
ModelVolume* vol = this->add_volume(mesh);
if (!vol)
return;
}
ModelObjectPtrs ModelObject::merge_volumes(std::vector<int>& vol_indeces)
{
ModelObjectPtrs res;
if (this->volumes.size() == 1) {
// We can't merge meshes if there's just one volume
return res;
}
ModelObject* upper = ModelObject::new_clone(*this);
upper->set_model(nullptr);
upper->sla_support_points.clear();
upper->sla_drain_holes.clear();
upper->sla_points_status = sla::PointsStatus::NoPoints;
upper->clear_volumes();
upper->input_file.clear();
#if 1
TriangleMesh mesh;
for (int i : vol_indeces) {
auto volume = volumes[i];
if (!volume->mesh().empty()) {
const auto volume_matrix = volume->get_matrix();
TriangleMesh mesh_(volume->mesh());
mesh_.transform(volume_matrix, true);
volume->reset_mesh();
mesh.merge(mesh_);
}
}
#else
std::vector<TriangleMesh> meshes;
for (int i : vol_indeces) {
auto volume = volumes[i];
if (!volume->mesh().empty())
meshes.emplace_back(volume->mesh());
}
TriangleMesh mesh = MeshBoolean::cgal::merge(meshes);
#endif
ModelVolume* vol = upper->add_volume(mesh);
for (int i = 0; i < volumes.size();i++) {
if (std::find(vol_indeces.begin(), vol_indeces.end(), i) != vol_indeces.end()) {
vol->name = volumes[i]->name + "_merged";
vol->config.assign_config(volumes[i]->config);
}
else
upper->add_volume(*volumes[i]);
}
upper->invalidate_bounding_box();
res.push_back(upper);
return res;
}
// Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees,
// then the scaling in world coordinate system is not representable by the Geometry::Transformation structure.
// This situation is solved by baking in the instance transformation into the mesh vertices.
// Rotation and mirroring is being baked in. In case the instance scaling was non-uniform, it is baked in as well.
void ModelObject::bake_xy_rotation_into_meshes(size_t instance_idx)
{
assert(instance_idx < this->instances.size());
const Geometry::Transformation reference_trafo = this->instances[instance_idx]->get_transformation();
if (Geometry::is_rotation_ninety_degrees(reference_trafo.get_rotation()))
// nothing to do, scaling in the world coordinate space is possible in the representation of Geometry::Transformation.
return;
bool left_handed = reference_trafo.is_left_handed();
bool has_mirrorring = ! reference_trafo.get_mirror().isApprox(Vec3d(1., 1., 1.));
bool uniform_scaling = std::abs(reference_trafo.get_scaling_factor().x() - reference_trafo.get_scaling_factor().y()) < EPSILON &&
std::abs(reference_trafo.get_scaling_factor().x() - reference_trafo.get_scaling_factor().z()) < EPSILON;
double new_scaling_factor = uniform_scaling ? reference_trafo.get_scaling_factor().x() : 1.;
// Adjust the instances.
for (size_t i = 0; i < this->instances.size(); ++ i) {
ModelInstance &model_instance = *this->instances[i];
model_instance.set_rotation(Vec3d(0., 0., Geometry::rotation_diff_z(reference_trafo.get_rotation(), model_instance.get_rotation())));
model_instance.set_scaling_factor(Vec3d(new_scaling_factor, new_scaling_factor, new_scaling_factor));
model_instance.set_mirror(Vec3d(1., 1., 1.));
}
// Adjust the meshes.
// Transformation to be applied to the meshes.
Geometry::Transformation reference_trafo_mod = reference_trafo;
reference_trafo_mod.reset_offset();
if (uniform_scaling)
reference_trafo_mod.reset_scaling_factor();
if (!has_mirrorring)
reference_trafo_mod.reset_mirror();
Eigen::Matrix3d mesh_trafo_3x3 = reference_trafo_mod.get_matrix().matrix().block<3, 3>(0, 0);
Transform3d volume_offset_correction = this->instances[instance_idx]->get_transformation().get_matrix().inverse() * reference_trafo.get_matrix();
for (ModelVolume *model_volume : this->volumes) {
const Geometry::Transformation volume_trafo = model_volume->get_transformation();
bool volume_left_handed = volume_trafo.is_left_handed();
bool volume_has_mirrorring = ! volume_trafo.get_mirror().isApprox(Vec3d(1., 1., 1.));
bool volume_uniform_scaling = std::abs(volume_trafo.get_scaling_factor().x() - volume_trafo.get_scaling_factor().y()) < EPSILON &&
std::abs(volume_trafo.get_scaling_factor().x() - volume_trafo.get_scaling_factor().z()) < EPSILON;
double volume_new_scaling_factor = volume_uniform_scaling ? volume_trafo.get_scaling_factor().x() : 1.;
// Transform the mesh.
Geometry::Transformation volume_trafo_mod = volume_trafo;
volume_trafo_mod.reset_offset();
if (volume_uniform_scaling)
volume_trafo_mod.reset_scaling_factor();
if (!volume_has_mirrorring)
volume_trafo_mod.reset_mirror();
Eigen::Matrix3d volume_trafo_3x3 = volume_trafo_mod.get_matrix().matrix().block<3, 3>(0, 0);
// Following method creates a new shared_ptr<TriangleMesh>
model_volume->transform_this_mesh(mesh_trafo_3x3 * volume_trafo_3x3, left_handed != volume_left_handed);
// Reset the rotation, scaling and mirroring.
model_volume->set_rotation(Vec3d(0., 0., 0.));
model_volume->set_scaling_factor(Vec3d(volume_new_scaling_factor, volume_new_scaling_factor, volume_new_scaling_factor));
model_volume->set_mirror(Vec3d(1., 1., 1.));
// Move the reference point of the volume to compensate for the change of the instance trafo.
model_volume->set_offset(volume_offset_correction * volume_trafo.get_offset());
// reset the source to disable reload from disk
model_volume->source = ModelVolume::Source();
}
this->invalidate_bounding_box();
}
double ModelObject::get_instance_min_z(size_t instance_idx) const
{
double min_z = DBL_MAX;
const ModelInstance* inst = instances[instance_idx];
const Transform3d mi = inst->get_matrix_no_offset();
for (const ModelVolume* v : volumes) {
if (!v->is_model_part())
continue;
const Transform3d mv = mi * v->get_matrix();
const TriangleMesh& hull = v->get_convex_hull();
//BBS: in some case the convex hull is empty due to the qhull algo
//use the original mesh instead
//TODO: when the vertex's x/y/z are all the same, the run_qhull can not get correct result
//we need to find another algo then
if (hull.its.indices.size() == 0) {
const TriangleMesh& mesh = v->mesh();
for (const stl_triangle_vertex_indices& facet : mesh.its.indices)
for (int i = 0; i < 3; ++i)
min_z = std::min(min_z, (mv * mesh.its.vertices[facet[i]].cast<double>()).z());
}
else {
for (const stl_triangle_vertex_indices& facet : hull.its.indices)
for (int i = 0; i < 3; ++i)
min_z = std::min(min_z, (mv * hull.its.vertices[facet[i]].cast<double>()).z());
}
}
//BBS: add some logic to avoid wrong compute for min_z
if (min_z == DBL_MAX)
min_z = 0;
return min_z + inst->get_offset(Z);
}
double ModelObject::get_instance_max_z(size_t instance_idx) const
{
double max_z = -DBL_MAX;
const ModelInstance* inst = instances[instance_idx];
const Transform3d mi = inst->get_matrix_no_offset();
for (const ModelVolume* v : volumes) {
if (!v->is_model_part())
continue;
const Transform3d mv = mi * v->get_matrix();
const TriangleMesh& hull = v->get_convex_hull();
for (const stl_triangle_vertex_indices& facet : hull.its.indices)
for (int i = 0; i < 3; ++i)
max_z = std::max(max_z, (mv * hull.its.vertices[facet[i]].cast<double>()).z());
}
return max_z + inst->get_offset(Z);
}
unsigned int ModelObject::update_instances_print_volume_state(const BuildVolume &build_volume)
{
unsigned int num_printable = 0;
enum {
INSIDE = 1,
OUTSIDE = 2
};
//BBS: add logs for build_volume
//const BoundingBoxf3& print_volume = build_volume.bounding_volume();
//BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(", print_volume {%1%, %2%, %3%} to {%4%, %5%, %6%}")\
// %print_volume.min.x() %print_volume.min.y() %print_volume.min.z()%print_volume.max.x() %print_volume.max.y() %print_volume.max.z();
for (ModelInstance* model_instance : this->instances) {
unsigned int inside_outside = 0;
for (const ModelVolume *vol : this->volumes) {
if (vol->is_model_part()) {
//BBS: add bounding box empty check logic, for some volume is empty before split(it will be removed after split to object)
BoundingBoxf3 bb = vol->get_convex_hull().bounding_box();
Vec3d size = bb.size();
if ((size.x() == 0.f) || (size.y() == 0.f) || (size.z() == 0.f)) {
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(", object %1%'s vol %2% is empty, skip it, box: {%3%, %4%, %5%} to {%6%, %7%, %8%}")%this->name %vol->name\
%bb.min.x() %bb.min.y() %bb.min.z()%bb.max.x() %bb.max.y() %bb.max.z();
continue;
}
const Transform3d matrix = model_instance->get_matrix() * vol->get_matrix();
BuildVolume::ObjectState state = build_volume.object_state(vol->mesh().its, matrix.cast<float>(), true /* may be below print bed */);
if (state == BuildVolume::ObjectState::Inside)
// Volume is completely inside.
inside_outside |= INSIDE;
else if (state == BuildVolume::ObjectState::Outside)
// Volume is completely outside.
inside_outside |= OUTSIDE;
else if (state == BuildVolume::ObjectState::Below) {
// Volume below the print bed, thus it is completely outside, however this does not prevent the object to be printable
// if some of its volumes are still inside the build volume.
} else
// Volume colliding with the build volume.
inside_outside |= INSIDE | OUTSIDE;
}
}
model_instance->print_volume_state =
inside_outside == (INSIDE | OUTSIDE) ? ModelInstancePVS_Partly_Outside :
inside_outside == INSIDE ? ModelInstancePVS_Inside : ModelInstancePVS_Fully_Outside;
if (inside_outside == INSIDE) {
//BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(", object %1%'s instance inside print volum")%this->name;
++num_printable;
}
}
//BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(", found %1% printable instances")%num_printable;
return num_printable;
}
void ModelObject::print_info() const
{
using namespace std;
cout << fixed;
boost::nowide::cout << "[" << boost::filesystem::path(this->input_file).filename().string() << "]" << endl;
TriangleMesh mesh = this->raw_mesh();
BoundingBoxf3 bb = mesh.bounding_box();
Vec3d size = bb.size();
cout << "size_x = " << size(0) << endl;
cout << "size_y = " << size(1) << endl;
cout << "size_z = " << size(2) << endl;
cout << "min_x = " << bb.min(0) << endl;
cout << "min_y = " << bb.min(1) << endl;
cout << "min_z = " << bb.min(2) << endl;
cout << "max_x = " << bb.max(0) << endl;
cout << "max_y = " << bb.max(1) << endl;
cout << "max_z = " << bb.max(2) << endl;
cout << "number_of_facets = " << mesh.facets_count() << endl;
cout << "manifold = " << (mesh.stats().manifold() ? "yes" : "no") << endl;
if (! mesh.stats().manifold())
cout << "open_edges = " << mesh.stats().open_edges << endl;
if (mesh.stats().repaired()) {
const RepairedMeshErrors& stats = mesh.stats().repaired_errors;
if (stats.degenerate_facets > 0)
cout << "degenerate_facets = " << stats.degenerate_facets << endl;
if (stats.edges_fixed > 0)
cout << "edges_fixed = " << stats.edges_fixed << endl;
if (stats.facets_removed > 0)
cout << "facets_removed = " << stats.facets_removed << endl;
if (stats.facets_reversed > 0)
cout << "facets_reversed = " << stats.facets_reversed << endl;
if (stats.backwards_edges > 0)
cout << "backwards_edges = " << stats.backwards_edges << endl;
}
cout << "number_of_parts = " << mesh.stats().number_of_parts << endl;
cout << "volume = " << mesh.volume() << endl;
}
std::string ModelObject::get_export_filename() const
{
std::string ret = input_file;
if (!name.empty())
{
if (ret.empty())
// input_file was empty, just use name
ret = name;
else
{
// Replace file name in input_file with name, but keep the path and file extension.
ret = (boost::filesystem::path(name).parent_path().empty()) ?
(boost::filesystem::path(ret).parent_path() / name).make_preferred().string() : name;
}
}
return ret;
}
TriangleMeshStats ModelObject::get_object_stl_stats() const
{
TriangleMeshStats full_stats;
full_stats.volume = 0.f;
// fill full_stats from all objet's meshes
for (ModelVolume* volume : this->volumes)
{
const TriangleMeshStats& stats = volume->mesh().stats();
// initialize full_stats (for repaired errors)
full_stats.open_edges += stats.open_edges;
full_stats.repaired_errors.merge(stats.repaired_errors);
// another used satistics value
if (volume->is_model_part()) {
Transform3d trans = instances.empty() ? volume->get_matrix() : (volume->get_matrix() * instances[0]->get_matrix());
full_stats.volume += stats.volume * std::fabs(trans.matrix().block(0, 0, 3, 3).determinant());
full_stats.number_of_parts += stats.number_of_parts;
}
}
return full_stats;
}
int ModelObject::get_repaired_errors_count(const int vol_idx /*= -1*/) const
{
if (vol_idx >= 0)
return this->volumes[vol_idx]->get_repaired_errors_count();
const RepairedMeshErrors& stats = get_object_stl_stats().repaired_errors;
return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed +
stats.facets_reversed + stats.backwards_edges;
}
bool ModelObject::has_solid_mesh() const
{
for (const ModelVolume* volume : volumes)
if (volume->is_model_part())
return true;
return false;
}
void ModelVolume::set_material_id(t_model_material_id material_id)
{
m_material_id = material_id;
// ensure m_material_id references an existing material
if (! material_id.empty())
this->object->get_model()->add_material(material_id);
}
ModelMaterial* ModelVolume::material() const
{
return this->object->get_model()->get_material(m_material_id);
}
void ModelVolume::set_material(t_model_material_id material_id, const ModelMaterial &material)
{
m_material_id = material_id;
if (! material_id.empty())
this->object->get_model()->add_material(material_id, material);
}
// Extract the current extruder ID based on this ModelVolume's config and the parent ModelObject's config.
int ModelVolume::extruder_id() const
{
int extruder_id = -1;
//if (this->is_model_part())
{
const ConfigOption *opt = this->config.option("extruder");
if ((opt == nullptr) || (opt->getInt() == 0))
opt = this->object->config.option("extruder");
extruder_id = (opt == nullptr) ? 1 : opt->getInt();
}
return extruder_id;
}
bool ModelVolume::is_splittable() const
{
// the call mesh.is_splittable() is expensive, so cache the value to calculate it only once
if (m_is_splittable == -1)
m_is_splittable = its_is_splittable(this->mesh().its);
return m_is_splittable == 1;
}
// BBS
std::vector<int> ModelVolume::get_extruders() const
{
if (m_type == ModelVolumeType::INVALID
|| m_type == ModelVolumeType::NEGATIVE_VOLUME
|| m_type == ModelVolumeType::SUPPORT_BLOCKER
|| m_type == ModelVolumeType::SUPPORT_ENFORCER)
return std::vector<int>();
if (mmu_segmentation_facets.timestamp() != mmuseg_ts) {
std::vector<indexed_triangle_set> its_per_type;
mmuseg_extruders.clear();
mmuseg_ts = mmu_segmentation_facets.timestamp();
mmu_segmentation_facets.get_facets(*this, its_per_type);
for (int idx = 1; idx < its_per_type.size(); idx++) {
indexed_triangle_set& its = its_per_type[idx];
if (its.indices.empty())
continue;
mmuseg_extruders.push_back(idx);
}
}
std::vector<int> volume_extruders = mmuseg_extruders;
int volume_extruder_id = this->extruder_id();
if (volume_extruder_id > 0)
volume_extruders.push_back(volume_extruder_id);
return volume_extruders;
}
void ModelVolume::update_extruder_count(size_t extruder_count)
{
std::vector<int> used_extruders = get_extruders();
for (int extruder_id : used_extruders) {
if (extruder_id > extruder_count) {
mmu_segmentation_facets.set_enforcer_block_type_limit(*this, (EnforcerBlockerType)extruder_count);
break;
}
}
}
void ModelVolume::center_geometry_after_creation(bool update_source_offset)
{
Vec3d shift = this->mesh().bounding_box().center();
if (!shift.isApprox(Vec3d::Zero()))
{
if (m_mesh) {
const_cast<TriangleMesh*>(m_mesh.get())->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2));
const_cast<TriangleMesh*>(m_mesh.get())->set_init_shift(shift);
}
if (m_convex_hull)
const_cast<TriangleMesh*>(m_convex_hull.get())->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2));
translate(shift);
}
if (update_source_offset)
source.mesh_offset = shift;
}
void ModelVolume::calculate_convex_hull()
{
m_convex_hull = std::make_shared<TriangleMesh>(this->mesh().convex_hull_3d());
assert(m_convex_hull.get());
}
//BBS: convex_hull_2d using convex_hull_3d
void ModelVolume::calculate_convex_hull_2d(const Geometry::Transformation &transformation) const
{
const indexed_triangle_set &its = m_convex_hull->its;
if (its.vertices.empty())
return;
Points pts;
Transform3d new_matrix = transformation.get_matrix_no_offset();
pts.reserve(its.vertices.size());
// Using the shared vertices should be a bit quicker than using the STL faces.
for (size_t i = 0; i < its.vertices.size(); ++ i) {
Vec3d p = new_matrix * its.vertices[i].cast<double>();
pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y())));
}
//TODO, do we need to remove the duplicate points before convex_hull?
m_cached_2d_polygon = Slic3r::Geometry::convex_hull(pts);
m_convex_hull_2d = m_cached_2d_polygon;
m_convex_hull_2d.translate(scale_(transformation.get_offset(X)), scale_(transformation.get_offset(Y)));
//int size = m_cached_2d_polygon.size();
//BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": size %1%, offset {%2%, %3%}")% size% transformation.get_offset(X)% transformation.get_offset(Y);
//for (int i = 0; i < size; i++)
// BOOST_LOG_TRIVIAL(info) << boost::format(": point %1%, position {%2%, %3%}")% i% m_cached_2d_polygon[i].x()% m_cached_2d_polygon[i].y();
//m_convex_hull_2d.rotate(transformation.get_rotation(Z));
//m_convex_hull_2d.scale(transformation.get_scaling_factor(X), transformation.get_scaling_factor(Y));
}
const Polygon& ModelVolume::get_convex_hull_2d(const Transform3d &trafo_instance) const
{
Transform3d new_matrix;
new_matrix = trafo_instance * m_transformation.get_matrix();
auto need_recompute = [](Geometry::Transformation& old_transform, Geometry::Transformation& new_transform)->bool {
//double old_rot_x = old_transform.get_rotation(X);
//double old_rot_y = old_transform.get_rotation(Y);
//double new_rot_x = new_transform.get_rotation(X);
//double new_rot_y = new_transform.get_rotation(Y);
const Vec3d &old_rotation = old_transform.get_rotation();
const Vec3d &new_rotation = new_transform.get_rotation();
const Vec3d &old_mirror = old_transform.get_mirror();
const Vec3d &new_mirror = new_transform.get_mirror();
const Vec3d &old_scaling = old_transform.get_scaling_factor();
const Vec3d &new_scaling = new_transform.get_scaling_factor();
if ((old_scaling != new_scaling) || (old_rotation != new_rotation) || (old_mirror != new_mirror))
return true;
else
return false;
};
if ((new_matrix.matrix() != m_cached_trans_matrix.matrix()) || !m_convex_hull_2d.is_valid())
{
Geometry::Transformation new_trans(new_matrix), old_trans(m_cached_trans_matrix);
if (need_recompute(old_trans, new_trans) || !m_convex_hull_2d.is_valid())
{
//need to update
calculate_convex_hull_2d(new_trans);
}
else
{
m_convex_hull_2d = m_cached_2d_polygon;
m_convex_hull_2d.translate(scale_(new_trans.get_offset(X)), scale_(new_trans.get_offset(Y)));
//m_convex_hull_2d.rotate(new_trans.get_rotation(Z));
//m_convex_hull_2d.scale(new_trans.get_scaling_factor(X), new_trans.get_scaling_factor(Y));
//int size = m_cached_2d_polygon.size();
//BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": use previous cached, size %1%, offset {%2%, %3%}")% size% new_trans.get_offset(X)% new_trans.get_offset(Y);
//for (int i = 0; i < size; i++)
// BOOST_LOG_TRIVIAL(info) << boost::format(": point %1%, position {%2%, %3%}")% i% m_cached_2d_polygon[i].x()% m_cached_2d_polygon[i].y();
}
m_cached_trans_matrix = new_matrix;
}
return m_convex_hull_2d;
}
int ModelVolume::get_repaired_errors_count() const
{
const RepairedMeshErrors &stats = this->mesh().stats().repaired_errors;
return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed +
stats.facets_reversed + stats.backwards_edges;
}
const TriangleMesh& ModelVolume::get_convex_hull() const
{
return *m_convex_hull.get();
}
//BBS: refine the model part names
ModelVolumeType ModelVolume::type_from_string(const std::string &s)
{
// New type (supporting the support enforcers & blockers)
if (s == "normal_part")
return ModelVolumeType::MODEL_PART;
if (s == "negative_part")
return ModelVolumeType::NEGATIVE_VOLUME;
if (s == "modifier_part")
return ModelVolumeType::PARAMETER_MODIFIER;
if (s == "support_enforcer")
return ModelVolumeType::SUPPORT_ENFORCER;
if (s == "support_blocker")
return ModelVolumeType::SUPPORT_BLOCKER;
//assert(s == "0");
// Default value if invalud type string received.
return ModelVolumeType::MODEL_PART;
}
//BBS: refine the model part names
std::string ModelVolume::type_to_string(const ModelVolumeType t)
{
switch (t) {
case ModelVolumeType::MODEL_PART: return "normal_part";
case ModelVolumeType::NEGATIVE_VOLUME: return "negative_part";
case ModelVolumeType::PARAMETER_MODIFIER: return "modifier_part";
case ModelVolumeType::SUPPORT_ENFORCER: return "support_enforcer";
case ModelVolumeType::SUPPORT_BLOCKER: return "support_blocker";
default:
assert(false);
return "normal_part";
}
}
// Split this volume, append the result to the object owning this volume.
// Return the number of volumes created from this one.
// This is useful to assign different materials to different volumes of an object.
size_t ModelVolume::split(unsigned int max_extruders)
{
std::vector<TriangleMesh> meshes = this->mesh().split();
if (meshes.size() <= 1)
return 1;
// splited volume should not be text object
if (text_configuration.has_value())
text_configuration.reset();
size_t idx = 0;
size_t ivolume = std::find(this->object->volumes.begin(), this->object->volumes.end(), this) - this->object->volumes.begin();
const std::string name = this->name;
unsigned int extruder_counter = 0;
const Vec3d offset = this->get_offset();
for (TriangleMesh &mesh : meshes) {
if (mesh.empty())
// Repair may have removed unconnected triangles, thus emptying the mesh.
continue;
if (idx == 0) {
this->set_mesh(std::move(mesh));
this->calculate_convex_hull();
this->invalidate_convex_hull_2d();
// Assign a new unique ID, so that a new GLVolume will be generated.
this->set_new_unique_id();
// reset the source to disable reload from disk
this->source = ModelVolume::Source();
// BBS: reset facet annotations
this->mmu_segmentation_facets.reset();
this->exterior_facets.reset();
this->supported_facets.reset();
this->seam_facets.reset();
}
else
this->object->volumes.insert(this->object->volumes.begin() + (++ivolume), new ModelVolume(object, *this, std::move(mesh)));
this->object->volumes[ivolume]->set_offset(Vec3d::Zero());
this->object->volumes[ivolume]->center_geometry_after_creation();
this->object->volumes[ivolume]->translate(offset);
this->object->volumes[ivolume]->name = name + "_" + std::to_string(idx + 1);
//BBS: always set the extruder id the same as original
this->object->volumes[ivolume]->config.set("extruder", this->extruder_id());
//this->object->volumes[ivolume]->config.set("extruder", auto_extruder_id(max_extruders, extruder_counter));
this->object->volumes[ivolume]->m_is_splittable = 0;
++ idx;
}
// discard volumes for which the convex hull was not generated or is degenerate
size_t i = 0;
while (i < this->object->volumes.size()) {
const std::shared_ptr<const TriangleMesh> &hull = this->object->volumes[i]->get_convex_hull_shared_ptr();
if (hull == nullptr || hull->its.vertices.empty() || hull->its.indices.empty()) {
this->object->delete_volume(i);
--idx;
--i;
}
++i;
}
return idx;
}
void ModelVolume::translate(const Vec3d& displacement)
{
set_offset(get_offset() + displacement);
}
void ModelVolume::scale(const Vec3d& scaling_factors)
{
set_scaling_factor(get_scaling_factor().cwiseProduct(scaling_factors));
}
void ModelObject::scale_to_fit(const Vec3d &size)
{
Vec3d orig_size = this->bounding_box_exact().size();
double factor = std::min(
size.x() / orig_size.x(),
std::min(
size.y() / orig_size.y(),
size.z() / orig_size.z()
)
);
this->scale(factor);
}
void ModelVolume::assign_new_unique_ids_recursive()
{
ObjectBase::set_new_unique_id();
config.set_new_unique_id();
supported_facets.set_new_unique_id();
seam_facets.set_new_unique_id();
mmu_segmentation_facets.set_new_unique_id();
}
void ModelVolume::rotate(double angle, Axis axis)
{
switch (axis)
{
case X: { rotate(angle, Vec3d::UnitX()); break; }
case Y: { rotate(angle, Vec3d::UnitY()); break; }
case Z: { rotate(angle, Vec3d::UnitZ()); break; }
default: break;
}
}
void ModelVolume::rotate(double angle, const Vec3d& axis)
{
set_rotation(get_rotation() + Geometry::extract_euler_angles(Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis)).toRotationMatrix()));
}
void ModelVolume::mirror(Axis axis)
{
Vec3d mirror = get_mirror();
switch (axis)
{
case X: { mirror(0) *= -1.0; break; }
case Y: { mirror(1) *= -1.0; break; }
case Z: { mirror(2) *= -1.0; break; }
default: break;
}
set_mirror(mirror);
}
// This method could only be called before the meshes of this ModelVolumes are not shared!
void ModelVolume::scale_geometry_after_creation(const Vec3f& versor)
{
const_cast<TriangleMesh*>(m_mesh.get())->scale(versor);
if (m_convex_hull->empty())
//BBS: recompute the convex hull if it is null for previous too small
this->calculate_convex_hull();
else
const_cast<TriangleMesh*>(m_convex_hull.get())->scale(versor);
}
void ModelVolume::transform_this_mesh(const Transform3d &mesh_trafo, bool fix_left_handed)
{
TriangleMesh mesh = this->mesh();
mesh.transform(mesh_trafo, fix_left_handed);
this->set_mesh(std::move(mesh));
TriangleMesh convex_hull = this->get_convex_hull();
convex_hull.transform(mesh_trafo, fix_left_handed);
m_convex_hull = std::make_shared<TriangleMesh>(std::move(convex_hull));
// Let the rest of the application know that the geometry changed, so the meshes have to be reloaded.
this->set_new_unique_id();
}
void ModelVolume::transform_this_mesh(const Matrix3d &matrix, bool fix_left_handed)
{
TriangleMesh mesh = this->mesh();
mesh.transform(matrix, fix_left_handed);
this->set_mesh(std::move(mesh));
TriangleMesh convex_hull = this->get_convex_hull();
convex_hull.transform(matrix, fix_left_handed);
m_convex_hull = std::make_shared<TriangleMesh>(std::move(convex_hull));
// Let the rest of the application know that the geometry changed, so the meshes have to be reloaded.
this->set_new_unique_id();
}
void ModelVolume::convert_from_imperial_units()
{
assert(! this->source.is_converted_from_meters);
this->scale_geometry_after_creation(25.4f);
this->set_offset(Vec3d(0, 0, 0));
this->source.is_converted_from_inches = true;
}
void ModelVolume::convert_from_meters()
{
assert(! this->source.is_converted_from_inches);
this->scale_geometry_after_creation(1000.f);
this->set_offset(Vec3d(0, 0, 0));
this->source.is_converted_from_meters = true;
}
void ModelInstance::transform_mesh(TriangleMesh* mesh, bool dont_translate) const
{
mesh->transform(dont_translate ? get_matrix_no_offset() : get_matrix());
}
BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate) const
{
return bbox.transformed(dont_translate ? get_matrix_no_offset() : get_matrix());
}
Vec3d ModelInstance::transform_vector(const Vec3d& v, bool dont_translate) const
{
return dont_translate ? get_matrix_no_offset() * v : get_matrix() * v;
}
void ModelInstance::transform_polygon(Polygon* polygon) const
{
// CHECK_ME -> Is the following correct or it should take in account all three rotations ?
polygon->rotate(get_rotation(Z)); // rotate around polygon origin
// CHECK_ME -> Is the following correct ?
polygon->scale(get_scaling_factor(X), get_scaling_factor(Y)); // scale around polygon origin
}
//BBS
// BBS set print speed table and find maximum speed
void Model::setPrintSpeedTable(const DynamicPrintConfig& config, const PrintConfig& print_config) {
//Slic3r::DynamicPrintConfig config = wxGetApp().preset_bundle->full_config();
printSpeedMap.maxSpeed = 0;
if (config.has("inner_wall_speed")) {
printSpeedMap.perimeterSpeed = config.opt_float("inner_wall_speed");
if (printSpeedMap.perimeterSpeed > printSpeedMap.maxSpeed)
printSpeedMap.maxSpeed = printSpeedMap.perimeterSpeed;
}
if (config.has("outer_wall_speed")) {
printSpeedMap.externalPerimeterSpeed = config.opt_float("outer_wall_speed");
printSpeedMap.maxSpeed = std::max(printSpeedMap.maxSpeed, printSpeedMap.externalPerimeterSpeed);
}
if (config.has("sparse_infill_speed")) {
printSpeedMap.infillSpeed = config.opt_float("sparse_infill_speed");
if (printSpeedMap.infillSpeed > printSpeedMap.maxSpeed)
printSpeedMap.maxSpeed = printSpeedMap.infillSpeed;
}
if (config.has("internal_solid_infill_speed")) {
printSpeedMap.solidInfillSpeed = config.opt_float("internal_solid_infill_speed");
if (printSpeedMap.solidInfillSpeed > printSpeedMap.maxSpeed)
printSpeedMap.maxSpeed = printSpeedMap.solidInfillSpeed;
}
if (config.has("top_surface_speed")) {
printSpeedMap.topSolidInfillSpeed = config.opt_float("top_surface_speed");
if (printSpeedMap.topSolidInfillSpeed > printSpeedMap.maxSpeed)
printSpeedMap.maxSpeed = printSpeedMap.topSolidInfillSpeed;
}
if (config.has("support_speed")) {
printSpeedMap.supportSpeed = config.opt_float("support_speed");
if (printSpeedMap.supportSpeed > printSpeedMap.maxSpeed)
printSpeedMap.maxSpeed = printSpeedMap.supportSpeed;
}
//auto& print = wxGetApp().plater()->get_partplate_list().get_current_fff_print();
//auto print_config = print.config();
//printSpeedMap.bed_poly.points = get_bed_shape(*(wxGetApp().plater()->config()));
printSpeedMap.bed_poly.points = get_bed_shape(config);
Pointfs excluse_area_points = print_config.bed_exclude_area.values;
Polygons exclude_polys;
Polygon exclude_poly;
for (int i = 0; i < excluse_area_points.size(); i++) {
auto pt = excluse_area_points[i];
exclude_poly.points.emplace_back(scale_(pt.x()), scale_(pt.y()));
if (i % 4 == 3) { // exclude areas are always rectangle
exclude_polys.push_back(exclude_poly);
exclude_poly.points.clear();
}
}
printSpeedMap.bed_poly = diff({ printSpeedMap.bed_poly }, exclude_polys)[0];
}
// find temperature of heatend and bed and matierial of an given extruder
void Model::setExtruderParams(const DynamicPrintConfig& config, int extruders_count) {
extruderParamsMap.clear();
//Slic3r::DynamicPrintConfig config = wxGetApp().preset_bundle->full_config();
// BBS
//int numExtruders = wxGetApp().preset_bundle->filament_presets.size();
for (unsigned int i = 0; i != extruders_count; ++i) {
std::string matName = "";
// BBS
int bedTemp = 35;
double endTemp = 0.f;
if (config.has("filament_type")) {
matName = config.opt_string("filament_type", i);
}
if (config.has("nozzle_temperature")) {
endTemp = config.opt_int("nozzle_temperature", i);
}
// FIXME: curr_bed_type is now a plate config rather than a global config.
// Currently bed temp is not used for brim generation, so just comment it for now.
#if 0
if (config.has("curr_bed_type")) {
BedType curr_bed_type = config.opt_enum<BedType>("curr_bed_type");
bedTemp = config.opt_int(get_bed_temp_key(curr_bed_type), i);
}
#endif
if (i == 0) extruderParamsMap.insert({ i,{matName, bedTemp, endTemp} });
extruderParamsMap.insert({ i + 1,{matName, bedTemp, endTemp} });
}
}
static void get_real_filament_id(const unsigned char &id, std::string &result) {
if (id < CONST_FILAMENTS.size()) {
result = CONST_FILAMENTS[id];
} else {
result = "";//error
}
};
bool Model::obj_import_vertex_color_deal(const std::vector<unsigned char> &vertex_filament_ids, const unsigned char &first_extruder_id, Model *model)
{
if (vertex_filament_ids.size() == 0) {
return false;
}
// 2.generate mmu_segmentation_facets
if (model->objects.size() == 1 ) {
auto obj = model->objects[0];
obj->config.set("extruder", first_extruder_id);
if (obj->volumes.size() == 1) {
enum VertexColorCase {
_3_SAME_COLOR,
_3_DIFF_COLOR,
_2_SAME_1_DIFF_COLOR,
};
auto calc_vertex_color_case = [](const unsigned char &c0, const unsigned char &c1, const unsigned char &c2, VertexColorCase &vertex_color_case,
unsigned char &iso_index) {
if (c0 == c1 && c1 == c2) {
vertex_color_case = VertexColorCase::_3_SAME_COLOR;
} else if (c0 != c1 && c1 != c2 && c0 != c2) {
vertex_color_case = VertexColorCase::_3_DIFF_COLOR;
} else if (c0 == c1) {
vertex_color_case = _2_SAME_1_DIFF_COLOR;
iso_index = 2;
} else if (c1 == c2) {
vertex_color_case = _2_SAME_1_DIFF_COLOR;
iso_index = 0;
} else if (c0 == c2) {
vertex_color_case = _2_SAME_1_DIFF_COLOR;
iso_index = 1;
} else {
std::cout << "error";
}
};
auto calc_tri_area = [](const Vec3f &v0, const Vec3f &v1, const Vec3f &v2) {
return std::abs((v0 - v1).cross(v0 - v2).norm()) / 2;
};
auto volume = obj->volumes[0];
volume->config.set("extruder", first_extruder_id);
auto face_count = volume->mesh().its.indices.size();
volume->mmu_segmentation_facets.reserve(face_count);
if (volume->mesh().its.vertices.size() != vertex_filament_ids.size()) {
return false;
}
for (size_t i = 0; i < volume->mesh().its.indices.size(); i++) {
auto face = volume->mesh().its.indices[i];
auto filament_id0 = vertex_filament_ids[face[0]];
auto filament_id1 = vertex_filament_ids[face[1]];
auto filament_id2 = vertex_filament_ids[face[2]];
if (filament_id0 <= 1 && filament_id1 <= 1 && filament_id2 <= 2) {
continue;
}
if (i == 0) {
std::cout << "";
}
VertexColorCase vertex_color_case;
unsigned char iso_index;
calc_vertex_color_case(filament_id0, filament_id1, filament_id2, vertex_color_case, iso_index);
switch (vertex_color_case) {
case _3_SAME_COLOR: {
std::string result;
get_real_filament_id(filament_id0, result);
volume->mmu_segmentation_facets.set_triangle_from_string(i, result);
break;
}
case _3_DIFF_COLOR: {
std::string result0, result1, result2;
get_real_filament_id(filament_id0, result0);
get_real_filament_id(filament_id1, result1);
get_real_filament_id(filament_id2, result2);
auto v0 = volume->mesh().its.vertices[face[0]];
auto v1 = volume->mesh().its.vertices[face[1]];
auto v2 = volume->mesh().its.vertices[face[2]];
auto dir_0_1 = (v1 - v0).normalized();
auto dir_0_2 = (v2 - v0).normalized();
float sita0 = acos(dir_0_1.dot(dir_0_2));
auto dir_1_0 = -dir_0_1;
auto dir_1_2 = (v2 - v1).normalized();
float sita1 = acos(dir_1_0.dot(dir_1_2));
float sita2 = PI - sita0 - sita1;
std::array<float, 3> sitas = {sita0, sita1, sita2};
float max_sita = sitas[0];
int max_sita_vertex_index = 0;
for (size_t j = 1; j < sitas.size(); j++) {
if (sitas[j] > max_sita) {
max_sita_vertex_index = j;
max_sita = sitas[j];
}
}
if (max_sita_vertex_index == 0) {
volume->mmu_segmentation_facets.set_triangle_from_string(i, result0 + result1 + result2 + (result1 + result2 + "5" )+ "3"); //"1C0C2C0C1C13"
} else if (max_sita_vertex_index == 1) {
volume->mmu_segmentation_facets.set_triangle_from_string(i, result0 + result1 + result2 + (result0 + result2 + "9") + "3");
} else{// if (max_sita_vertex_index == 2)
volume->mmu_segmentation_facets.set_triangle_from_string(i, result0 + result1 + result2 + (result1 + result0 + "1") + "3");
}
break;
}
case _2_SAME_1_DIFF_COLOR: {
std::string result0, result1, result2;
get_real_filament_id(filament_id0, result0);
get_real_filament_id(filament_id1, result1);
get_real_filament_id(filament_id2, result2);
if (iso_index == 0) {
volume->mmu_segmentation_facets.set_triangle_from_string(i, result0 + result1 + result1 + "2");
} else if (iso_index == 1) {
volume->mmu_segmentation_facets.set_triangle_from_string(i, result1 + result0 + result0 + "6");
} else if (iso_index == 2) {
volume->mmu_segmentation_facets.set_triangle_from_string(i, result2 + result0 + result0 + "A");
}
break;
}
default: break;
}
}
return true;
}
}
return false;
}
bool Model::obj_import_face_color_deal(const std::vector<unsigned char> &face_filament_ids, const unsigned char &first_extruder_id, Model *model)
{
if (face_filament_ids.size() == 0) { return false; }
// 2.generate mmu_segmentation_facets
if (model->objects.size() == 1) {
auto obj = model->objects[0];
obj->config.set("extruder", first_extruder_id);
if (obj->volumes.size() == 1) {
auto volume = obj->volumes[0];
volume->config.set("extruder", first_extruder_id);
auto face_count = volume->mesh().its.indices.size();
volume->mmu_segmentation_facets.reserve(face_count);
if (volume->mesh().its.indices.size() != face_filament_ids.size()) { return false; }
for (size_t i = 0; i < volume->mesh().its.indices.size(); i++) {
auto face = volume->mesh().its.indices[i];
auto filament_id = face_filament_ids[i];
if (filament_id <= 1) { continue; }
std::string result;
get_real_filament_id(filament_id, result);
volume->mmu_segmentation_facets.set_triangle_from_string(i, result);
}
return true;
}
}
return false;
}
// update the maxSpeed of an object if it is different from the global configuration
double Model::findMaxSpeed(const ModelObject* object) {
auto objectKeys = object->config.keys();
double objMaxSpeed = -1.;
if (objectKeys.empty())
return Model::printSpeedMap.maxSpeed;
double perimeterSpeedObj = Model::printSpeedMap.perimeterSpeed;
double externalPerimeterSpeedObj = Model::printSpeedMap.externalPerimeterSpeed;
double infillSpeedObj = Model::printSpeedMap.infillSpeed;
double solidInfillSpeedObj = Model::printSpeedMap.solidInfillSpeed;
double topSolidInfillSpeedObj = Model::printSpeedMap.topSolidInfillSpeed;
double supportSpeedObj = Model::printSpeedMap.supportSpeed;
double smallPerimeterSpeedObj = Model::printSpeedMap.smallPerimeterSpeed;
for (std::string objectKey : objectKeys) {
if (objectKey == "inner_wall_speed"){
perimeterSpeedObj = object->config.opt_float(objectKey);
externalPerimeterSpeedObj = Model::printSpeedMap.externalPerimeterSpeed / Model::printSpeedMap.perimeterSpeed * perimeterSpeedObj;
}
if (objectKey == "sparse_infill_speed")
infillSpeedObj = object->config.opt_float(objectKey);
if (objectKey == "internal_solid_infill_speed")
solidInfillSpeedObj = object->config.opt_float(objectKey);
if (objectKey == "top_surface_speed")
topSolidInfillSpeedObj = object->config.opt_float(objectKey);
if (objectKey == "support_speed")
supportSpeedObj = object->config.opt_float(objectKey);
if (objectKey == "outer_wall_speed")
externalPerimeterSpeedObj = object->config.opt_float(objectKey);
if (objectKey == "small_perimeter_speed")
smallPerimeterSpeedObj = object->config.opt_float(objectKey);
}
objMaxSpeed = std::max(perimeterSpeedObj, std::max(externalPerimeterSpeedObj, std::max(infillSpeedObj, std::max(solidInfillSpeedObj, std::max(topSolidInfillSpeedObj, std::max(supportSpeedObj, std::max(smallPerimeterSpeedObj, objMaxSpeed)))))));
if (objMaxSpeed <= 0) objMaxSpeed = 250.;
return objMaxSpeed;
}
// BBS: thermal length is calculated according to the material of a volume
double Model::getThermalLength(const ModelVolume* modelVolumePtr) {
double thermalLength = 200.;
auto aa = modelVolumePtr->extruder_id();
if (Model::extruderParamsMap.find(aa) != Model::extruderParamsMap.end()) {
if (Model::extruderParamsMap.at(aa).materialName == "ABS" ||
Model::extruderParamsMap.at(aa).materialName == "PA-CF" ||
Model::extruderParamsMap.at(aa).materialName == "PET-CF") {
thermalLength = 100;
}
if (Model::extruderParamsMap.at(aa).materialName == "PC") {
thermalLength = 40;
}
if (Model::extruderParamsMap.at(aa).materialName == "TPU") {
thermalLength = 1000;
}
}
return thermalLength;
}
// BBS: thermal length calculation for a group of volumes
double Model::getThermalLength(const std::vector<ModelVolume*> modelVolumePtrs)
{
double thermalLength = 1250.;
for (const auto& modelVolumePtr : modelVolumePtrs) {
if (modelVolumePtr != nullptr) {
// the thermal length of a group is decided by the volume with shortest thermal length
thermalLength = std::min(thermalLength, getThermalLength(modelVolumePtr));
}
}
return thermalLength;
}
// max printing speed, difference in bed temperature and envirument temperature and bed adhesion coefficients are considered
double ModelInstance::get_auto_brim_width(double deltaT, double adhesion) const
{
BoundingBoxf3 raw_bbox = object->raw_mesh_bounding_box();
double maxSpeed = Model::findMaxSpeed(object);
auto bbox_size = transform_bounding_box(raw_bbox).size();
double height_to_area = std::max(bbox_size(2) / (bbox_size(0) * bbox_size(0) * bbox_size(1)),
bbox_size(2) / (bbox_size(1) * bbox_size(1) * bbox_size(0)));
double thermalLength = sqrt(bbox_size(0)* bbox_size(0) + bbox_size(1)* bbox_size(1));
double thermalLengthRef = Model::getThermalLength(object->volumes);
double brim_width = adhesion * std::min(std::min(std::max(height_to_area * 200 * maxSpeed/200, thermalLength * 8. / thermalLengthRef * std::min(bbox_size(2), 30.) / 30.), 20.), 1.5 * thermalLength);
// small brims are omitted
if (brim_width < 5 && brim_width < 1.5 * thermalLength)
brim_width = 0;
return brim_width;
}
//BBS: instance's convex_hull_2d
Polygon ModelInstance::convex_hull_2d()
{
//BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": name %1%, is_valid %2%")% this->object->name.c_str()% convex_hull.is_valid();
//if (!convex_hull.is_valid())
{ // this logic is not working right now, as moving instance doesn't update convex_hull
const Transform3d& trafo_instance = get_matrix();
convex_hull = get_object()->convex_hull_2d(trafo_instance);
}
//int size = convex_hull.size();
//BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": convex_hull, point size %1%")% size;
//for (int i = 0; i < size; i++)
// BOOST_LOG_TRIVIAL(info) << boost::format(": point %1%, position {%2%, %3%}")% i% convex_hull[i].x()% convex_hull[i].y();
return convex_hull;
}
//BBS: invalidate instance's convex_hull_2d
void ModelInstance::invalidate_convex_hull_2d()
{
convex_hull.clear();
}
//BBS adhesion coefficients from model object class
double getadhesionCoeff(const ModelVolumePtrs objectVolumes)
{
double adhesionCoeff = 1;
for (const ModelVolume* modelVolume : objectVolumes) {
if (Model::extruderParamsMap.find(modelVolume->extruder_id()) != Model::extruderParamsMap.end())
if (Model::extruderParamsMap.at(modelVolume->extruder_id()).materialName == "PETG" ||
Model::extruderParamsMap.at(modelVolume->extruder_id()).materialName == "PCTG") {
adhesionCoeff = 2;
}
else if (Model::extruderParamsMap.at(modelVolume->extruder_id()).materialName == "TPU") {
adhesionCoeff = 0.5;
}
}
return adhesionCoeff;
}
//BBS maximum temperature difference from model object class
double getTemperatureFromExtruder(const ModelVolumePtrs objectVolumes) {
// BBS: FIXME
#if 1
std::vector<size_t> extruders;
for (const ModelVolume* modelVolume : objectVolumes) {
if (modelVolume->extruder_id() >= 0)
extruders.push_back(modelVolume->extruder_id());
}
double maxDeltaTemp = 0;
for (auto extruderID : extruders) {
if (Model::extruderParamsMap.find(extruderID) != Model::extruderParamsMap.end())
if (Model::extruderParamsMap.at(extruderID).bedTemp != 0){
maxDeltaTemp = std::max(maxDeltaTemp, (double)Model::extruderParamsMap.at(extruderID).bedTemp);
break;
}
}
return maxDeltaTemp;
#else
return 0.f;
#endif
}
double ModelInstance::get_auto_brim_width() const
{
return 0.;
double adhcoeff = getadhesionCoeff(object->volumes);
double DeltaT = getTemperatureFromExtruder(object->volumes);
// get auto brim width (Note even if the global brim_type=btOuterBrim, we can still go into this branch)
return get_auto_brim_width(DeltaT, adhcoeff);
}
void ModelInstance::get_arrange_polygon(void *ap, const Slic3r::DynamicPrintConfig &config_global) const
{
// static const double SIMPLIFY_TOLERANCE_MM = 0.1;
Vec3d rotation = get_rotation();
rotation.z() = 0.;
Geometry::Transformation t(m_transformation);
t.set_offset(get_offset().z() * Vec3d::UnitZ());
t.set_rotation(rotation);
Polygon p = get_object()->convex_hull_2d(t.get_matrix());
// if (!p.points.empty()) {
// Polygons pp{p};
// pp = p.simplify(scaled<double>(SIMPLIFY_TOLERANCE_MM));
// if (!pp.empty()) p = pp.front();
// }
arrangement::ArrangePolygon& ret = *(arrangement::ArrangePolygon*)ap;
ret.poly.contour = std::move(p);
ret.translation = Vec2crd{scaled(get_offset(X)), scaled(get_offset(Y))};
ret.rotation = get_rotation(Z);
//BBS: add materials related information
ModelVolume *volume = NULL;
for (size_t i = 0; i < object->volumes.size(); ++i) {
if (object->volumes[i]->is_model_part()) {
volume = object->volumes[i];
if (!volume) {
BOOST_LOG_TRIVIAL(error) << __FUNCTION__ << "invalid object, should not happen";
return;
}
auto ve = object->volumes[i]->get_extruders();
ret.extrude_ids.insert(ret.extrude_ids.end(), ve.begin(), ve.end());
}
}
// get per-object support extruders
auto op = object->get_config_value<ConfigOptionBool>(config_global, "enable_support");
bool is_support_enabled = op && op->getBool();
if (is_support_enabled) {
auto op1 = object->get_config_value<ConfigOptionInt>(config_global, "support_filament");
auto op2 = object->get_config_value<ConfigOptionInt>(config_global, "support_interface_filament");
int extruder_id;
// id==0 means follow previous material, so need not be recorded
if (op1 && (extruder_id = op1->getInt()) > 0) ret.extrude_ids.push_back(extruder_id);
if (op2 && (extruder_id = op2->getInt()) > 0) ret.extrude_ids.push_back(extruder_id);
}
if (ret.extrude_ids.empty()) //the default extruder
ret.extrude_ids.push_back(1);
}
indexed_triangle_set FacetsAnnotation::get_facets(const ModelVolume& mv, EnforcerBlockerType type) const
{
TriangleSelector selector(mv.mesh());
// Reset of TriangleSelector is done inside TriangleSelector's constructor, so we don't need it to perform it again in deserialize().
selector.deserialize(m_data, false);
return selector.get_facets(type);
}
// BBS
void FacetsAnnotation::get_facets(const ModelVolume& mv, std::vector<indexed_triangle_set>& facets_per_type) const
{
TriangleSelector selector(mv.mesh());
selector.deserialize(m_data, false);
selector.get_facets(facets_per_type);
}
void FacetsAnnotation::set_enforcer_block_type_limit(const ModelVolume& mv, EnforcerBlockerType max_type)
{
TriangleSelector selector(mv.mesh());
selector.deserialize(m_data, false, max_type);
this->set(selector);
}
indexed_triangle_set FacetsAnnotation::get_facets_strict(const ModelVolume& mv, EnforcerBlockerType type) const
{
TriangleSelector selector(mv.mesh());
// Reset of TriangleSelector is done inside TriangleSelector's constructor, so we don't need it to perform it again in deserialize().
selector.deserialize(m_data, false);
return selector.get_facets_strict(type);
}
bool FacetsAnnotation::has_facets(const ModelVolume& mv, EnforcerBlockerType type) const
{
return TriangleSelector::has_facets(m_data, type);
}
bool FacetsAnnotation::set(const TriangleSelector& selector)
{
TriangleSelector::TriangleSplittingData sel_map = selector.serialize();
if (sel_map != m_data) {
m_data = std::move(sel_map);
this->touch();
return true;
}
return false;
}
void FacetsAnnotation::reset()
{
m_data.triangles_to_split.clear();
m_data.bitstream.clear();
this->touch();
}
// Following function takes data from a triangle and encodes it as string
// of hexadecimal numbers (one digit per triangle). Used for 3MF export,
// changing it may break backwards compatibility !!!!!
std::string FacetsAnnotation::get_triangle_as_string(int triangle_idx) const
{
std::string out;
auto triangle_it = std::lower_bound(m_data.triangles_to_split.begin(), m_data.triangles_to_split.end(), triangle_idx, [](const TriangleSelector::TriangleBitStreamMapping &l, const int r) { return l.triangle_idx < r; });
if (triangle_it != m_data.triangles_to_split.end() && triangle_it->triangle_idx == triangle_idx) {
int offset = triangle_it->bitstream_start_idx;
int end = ++ triangle_it == m_data.triangles_to_split.end() ? int(m_data.bitstream.size()) : triangle_it->bitstream_start_idx;
while (offset < end) {
int next_code = 0;
for (int i=3; i>=0; --i) {
next_code = next_code << 1;
next_code |= int(m_data.bitstream[offset + i]);
}
offset += 4;
assert(next_code >=0 && next_code <= 15);
char digit = next_code < 10 ? next_code + '0' : (next_code-10)+'A';
out.insert(out.begin(), digit);
}
}
return out;
}
// Recover triangle splitting & state from string of hexadecimal values previously
// generated by get_triangle_as_string. Used to load from 3MF.
void FacetsAnnotation::set_triangle_from_string(int triangle_id, const std::string& str)
{
assert(! str.empty());
assert(m_data.triangles_to_split.empty() || m_data.triangles_to_split.back().triangle_idx < triangle_id);
m_data.triangles_to_split.emplace_back(triangle_id, int(m_data.bitstream.size()));
const size_t bitstream_start_idx = m_data.bitstream.size();
for (auto it = str.crbegin(); it != str.crend(); ++it) {
const char ch = *it;
int dec = 0;
if (ch >= '0' && ch<='9')
dec = int(ch - '0');
else if (ch >='A' && ch <= 'F')
dec = 10 + int(ch - 'A');
else
assert(false);
// Convert to binary and append into code.
for (int i = 0; i < 4; ++i)
m_data.bitstream.insert(m_data.bitstream.end(), bool(dec & (1 << i)));
}
m_data.update_used_states(bitstream_start_idx);
}
bool FacetsAnnotation::equals(const FacetsAnnotation &other) const
{
const auto& data = other.get_data();
return (m_data == data);
}
// Test whether the two models contain the same number of ModelObjects with the same set of IDs
// ordered in the same order. In that case it is not necessary to kill the background processing.
bool model_object_list_equal(const Model &model_old, const Model &model_new)
{
if (model_old.objects.size() != model_new.objects.size())
return false;
for (size_t i = 0; i < model_old.objects.size(); ++ i)
if (model_old.objects[i]->id() != model_new.objects[i]->id())
return false;
return true;
}
// Test whether the new model is just an extension of the old model (new objects were added
// to the end of the original list. In that case it is not necessary to kill the background processing.
bool model_object_list_extended(const Model &model_old, const Model &model_new)
{
if (model_old.objects.size() >= model_new.objects.size())
return false;
for (size_t i = 0; i < model_old.objects.size(); ++ i)
if (model_old.objects[i]->id() != model_new.objects[i]->id())
return false;
return true;
}
template<typename TypeFilterFn>
bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, TypeFilterFn type_filter)
{
size_t i_old, i_new;
for (i_old = 0, i_new = 0; i_old < model_object_old.volumes.size() && i_new < model_object_new.volumes.size();) {
const ModelVolume &mv_old = *model_object_old.volumes[i_old];
const ModelVolume &mv_new = *model_object_new.volumes[i_new];
if (! type_filter(mv_old.type())) {
++ i_old;
continue;
}
if (! type_filter(mv_new.type())) {
++ i_new;
continue;
}
if (mv_old.type() != mv_new.type() || mv_old.id() != mv_new.id())
return true;
//FIXME test for the content of the mesh!
if (! mv_old.get_matrix().isApprox(mv_new.get_matrix()))
return true;
++ i_old;
++ i_new;
}
for (; i_old < model_object_old.volumes.size(); ++ i_old) {
const ModelVolume &mv_old = *model_object_old.volumes[i_old];
if (type_filter(mv_old.type()))
// ModelVolume was deleted.
return true;
}
for (; i_new < model_object_new.volumes.size(); ++ i_new) {
const ModelVolume &mv_new = *model_object_new.volumes[i_new];
if (type_filter(mv_new.type()))
// ModelVolume was added.
return true;
}
return false;
}
bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const ModelVolumeType type)
{
return model_volume_list_changed(model_object_old, model_object_new, [type](const ModelVolumeType t) { return t == type; });
}
bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const std::initializer_list<ModelVolumeType> &types)
{
return model_volume_list_changed(model_object_old, model_object_new, [&types](const ModelVolumeType t) {
return std::find(types.begin(), types.end(), t) != types.end();
});
}
template< typename TypeFilterFn, typename CompareFn>
bool model_property_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, TypeFilterFn type_filter, CompareFn compare)
{
assert(! model_volume_list_changed(model_object_old, model_object_new, type_filter));
size_t i_old, i_new;
for (i_old = 0, i_new = 0; i_old < model_object_old.volumes.size() && i_new < model_object_new.volumes.size();) {
const ModelVolume &mv_old = *model_object_old.volumes[i_old];
const ModelVolume &mv_new = *model_object_new.volumes[i_new];
if (! type_filter(mv_old.type())) {
++ i_old;
continue;
}
if (! type_filter(mv_new.type())) {
++ i_new;
continue;
}
assert(mv_old.type() == mv_new.type() && mv_old.id() == mv_new.id());
if (! compare(mv_old, mv_new))
return true;
++ i_old;
++ i_new;
}
return false;
}
bool model_custom_supports_data_changed(const ModelObject& mo, const ModelObject& mo_new)
{
return model_property_changed(mo, mo_new,
[](const ModelVolumeType t) { return t == ModelVolumeType::MODEL_PART; },
[](const ModelVolume &mv_old, const ModelVolume &mv_new){ return mv_old.supported_facets.timestamp_matches(mv_new.supported_facets); });
}
bool model_custom_seam_data_changed(const ModelObject& mo, const ModelObject& mo_new)
{
return model_property_changed(mo, mo_new,
[](const ModelVolumeType t) { return t == ModelVolumeType::MODEL_PART; },
[](const ModelVolume &mv_old, const ModelVolume &mv_new){ return mv_old.seam_facets.timestamp_matches(mv_new.seam_facets); });
}
bool model_mmu_segmentation_data_changed(const ModelObject& mo, const ModelObject& mo_new)
{
return model_property_changed(mo, mo_new,
[](const ModelVolumeType t) { return t == ModelVolumeType::MODEL_PART; },
[](const ModelVolume &mv_old, const ModelVolume &mv_new){ return mv_old.mmu_segmentation_facets.timestamp_matches(mv_new.mmu_segmentation_facets); });
}
bool model_has_multi_part_objects(const Model &model)
{
for (const ModelObject *model_object : model.objects)
if (model_object->volumes.size() != 1 || ! model_object->volumes.front()->is_model_part())
return true;
return false;
}
bool model_has_advanced_features(const Model &model)
{
auto config_is_advanced = [](const ModelConfig &config) {
return ! (config.empty() || (config.size() == 1 && config.cbegin()->first == "extruder"));
};
for (const ModelObject *model_object : model.objects) {
// Is there more than one instance or advanced config data?
if (model_object->instances.size() > 1 || config_is_advanced(model_object->config))
return true;
// Is there any modifier or advanced config data?
for (const ModelVolume* model_volume : model_object->volumes)
if (! model_volume->is_model_part() || config_is_advanced(model_volume->config))
return true;
}
return false;
}
#ifndef NDEBUG
// Verify whether the IDs of Model / ModelObject / ModelVolume / ModelInstance / ModelMaterial are valid and unique.
void check_model_ids_validity(const Model &model)
{
std::set<ObjectID> ids;
auto check = [&ids](ObjectID id) {
assert(id.valid());
assert(ids.find(id) == ids.end());
ids.insert(id);
};
for (const ModelObject *model_object : model.objects) {
check(model_object->id());
check(model_object->config.id());
for (const ModelVolume *model_volume : model_object->volumes) {
check(model_volume->id());
check(model_volume->config.id());
}
for (const ModelInstance *model_instance : model_object->instances)
check(model_instance->id());
}
for (const auto& mm : model.materials) {
check(mm.second->id());
check(mm.second->config.id());
}
}
void check_model_ids_equal(const Model &model1, const Model &model2)
{
// Verify whether the IDs of model1 and model match.
assert(model1.objects.size() == model2.objects.size());
for (size_t idx_model = 0; idx_model < model2.objects.size(); ++ idx_model) {
const ModelObject &model_object1 = *model1.objects[idx_model];
const ModelObject &model_object2 = * model2.objects[idx_model];
assert(model_object1.id() == model_object2.id());
assert(model_object1.config.id() == model_object2.config.id());
assert(model_object1.volumes.size() == model_object2.volumes.size());
assert(model_object1.instances.size() == model_object2.instances.size());
for (size_t i = 0; i < model_object1.volumes.size(); ++ i) {
assert(model_object1.volumes[i]->id() == model_object2.volumes[i]->id());
assert(model_object1.volumes[i]->config.id() == model_object2.volumes[i]->config.id());
}
for (size_t i = 0; i < model_object1.instances.size(); ++ i)
assert(model_object1.instances[i]->id() == model_object2.instances[i]->id());
}
assert(model1.materials.size() == model2.materials.size());
{
auto it1 = model1.materials.begin();
auto it2 = model2.materials.begin();
for (; it1 != model1.materials.end(); ++ it1, ++ it2) {
assert(it1->first == it2->first); // compare keys
assert(it1->second->id() == it2->second->id());
assert(it1->second->config.id() == it2->second->config.id());
}
}
}
#endif /* NDEBUG */
}
#if 0
CEREAL_REGISTER_TYPE(Slic3r::ModelObject)
CEREAL_REGISTER_TYPE(Slic3r::ModelVolume)
CEREAL_REGISTER_TYPE(Slic3r::ModelInstance)
CEREAL_REGISTER_TYPE(Slic3r::Model)
CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelObject)
CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelVolume)
CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelInstance)
CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::Model)
#endif