time estimator wip stage 2

This commit is contained in:
Enrico Turri 2017-12-08 10:50:36 +01:00
parent bc3d184d7c
commit 092d271fa2
3 changed files with 516 additions and 325 deletions

View File

@ -7,9 +7,6 @@
//############################################################################################################
#include "GCodeTimeEstimator.hpp"
#ifdef WIN32
#include "enrico/wintimer.h"
#endif // WIN32
//############################################################################################################
#include <algorithm>
@ -383,83 +380,12 @@ bool GCode::do_export(Print *print, const char *path)
boost::nowide::remove(path_tmp.c_str());
//############################################################################################################
#ifdef WIN32
WinTimer timer;
timer.Start();
#endif // WIN32
GCodeTimeEstimator timeEstimator;
timeEstimator.calculate_time_from_file(path);
float time = timeEstimator.get_time();
std::string timeHMS = timeEstimator.get_time_hms();
My_GCodeTimeEstimator timeEstimator;
timeEstimator.parse_file(path);
#ifdef WIN32
double timeParse = timer.GetElapsedTimeSec();
#endif // WIN32
timeEstimator.calculate_time();
#ifdef WIN32
double timeCalculate = timer.GetElapsedTimeSec();
#endif // WIN32
std::cout << std::endl << ">>> estimated time: " << timeEstimator.get_time() << " seconds." << std::endl << std::endl;
#ifdef WIN32
std::cout << std::endl << "parse_file() -> Time: " << timeParse << std::endl << std::endl;
std::cout << std::endl << "calculate_file() -> Time: " << timeCalculate - timeParse << std::endl << std::endl;
#endif // WIN32
/*
unsigned int i = 0;
const My_GCodeTimeEstimator::BlocksList& blocks = timeEstimator.get_blocks();
float maxXYZ[3] = { 0.0f, 0.0f, 0.0f };
unsigned int maxID[3] = { 0, 0, 0 };
for (const My_GCodeTimeEstimator::Block& block : blocks)
{
++i;
std::cout << std::endl << "Block: "
<< i
<< " ("
<< block.delta_pos[My_GCodeTimeEstimator::X]
<< ", "
<< block.delta_pos[My_GCodeTimeEstimator::Y]
<< ", "
<< block.delta_pos[My_GCodeTimeEstimator::Z]
<< ") - f: "
<< block.feedrate
<< " - a: "
<< block.acceleration
<< " - s: ("
<< block.entry_feedrate
<< ", "
<< block.exit_feedrate
<< ")"
<< std::endl;
float dx = ::abs(block.delta_pos[My_GCodeTimeEstimator::X]);
float dy = ::abs(block.delta_pos[My_GCodeTimeEstimator::Y]);
float dz = ::abs(block.delta_pos[My_GCodeTimeEstimator::Z]);
if (maxXYZ[My_GCodeTimeEstimator::X] < dx)
{
maxXYZ[My_GCodeTimeEstimator::X] = dx;
maxID[My_GCodeTimeEstimator::X] = i;
}
if (maxXYZ[My_GCodeTimeEstimator::Y] < dy)
{
maxXYZ[My_GCodeTimeEstimator::Y] = dy;
maxID[My_GCodeTimeEstimator::Y] = i;
}
if (maxXYZ[My_GCodeTimeEstimator::Z] < dz)
{
maxXYZ[My_GCodeTimeEstimator::Z] = dz;
maxID[My_GCodeTimeEstimator::Z] = i;
}
}
std::cout << std::endl << "MAX DX: " << maxID[My_GCodeTimeEstimator::X] << " - " << maxXYZ[My_GCodeTimeEstimator::X] << std::endl;
std::cout << std::endl << "MAX DY: " << maxID[My_GCodeTimeEstimator::Y] << " - " << maxXYZ[My_GCodeTimeEstimator::Y] << std::endl;
std::cout << std::endl << "MAX DZ: " << maxID[My_GCodeTimeEstimator::Z] << " - " << maxXYZ[My_GCodeTimeEstimator::Z] << std::endl;
timeEstimator.print_counters();
*/
std::cout << std::endl << ">>> estimated time: " << timeHMS << " (" << time << " seconds)" << std::endl << std::endl;
//############################################################################################################
return result;

View File

@ -2,8 +2,6 @@
#include <boost/bind.hpp>
#include <cmath>
//###########################################################################################################
#include <fstream>
static const std::string AXIS_STR = "XYZE";
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
static const float MILLISEC_TO_SEC = 0.001f;
@ -13,205 +11,258 @@ static const float DEFAULT_ACCELERATION = 3000.0f;
static const float DEFAULT_AXIS_MAX_FEEDRATE[] = { 600.0f, 600.0f, 40.0f, 25.0f };
static const float DEFAULT_AXIS_MAX_ACCELERATION[] = { 9000.0f, 9000.0f, 100.0f, 10000.0f };
static const float DEFAULT_AXIS_MAX_JERK[] = { 10.0f, 10.0f, 0.2f, 2.5f }; // from firmware
// static const float DEFAULT_AXIS_MAX_JERK[] = { 20.0f, 20.0f, 0.4f, 5.0f }; / from CURA
static const float DEFAULT_AXIS_MAX_JERK[] = { 10.0f, 10.0f, 0.2f, 2.5f }; // from Firmware
//static const float DEFAULT_AXIS_MAX_JERK[] = { 20.0f, 20.0f, 0.4f, 5.0f }; // from Cura
static const float MINIMUM_FEEDRATE = 0.01f;
static const float MINIMUM_PLANNER_SPEED = 0.05f; // <<<<<<<< WHAT IS THIS ???
static const float FEEDRATE_THRESHOLD = 0.0001f;
//###########################################################################################################
static const float DEFAULT_MINIMUM_FEEDRATE = 0.0f; // from Firmware
//static const float DEFAULT_MINIMUM_FEEDRATE = 0.01f; // from Cura
#if USE_CURA_JUNCTION_VMAX
static const float MINIMUM_PLANNER_SPEED = 0.05f; // from Cura <<<<<<<< WHAT IS THIS ???
#endif // USE_CURA_JUNCTION_VMAX
static const float PREVIOUS_FEEDRATE_THRESHOLD = 0.0001f;
namespace Slic3r {
//###########################################################################################################
float My_GCodeTimeEstimator::Block::move_length() const
void GCodeTimeEstimator::Feedrates::reset()
{
feedrate = 0.0f;
safe_feedrate = 0.0f;
::memset(axis_feedrate, 0, Num_Axis * sizeof(float));
::memset(abs_axis_feedrate, 0, Num_Axis * sizeof(float));
}
float GCodeTimeEstimator::Block::Trapezoid::acceleration_time(float acceleration) const
{
return acceleration_time_from_distance(feedrate.entry, accelerate_until, acceleration);
}
float GCodeTimeEstimator::Block::Trapezoid::cruise_time() const
{
return (feedrate.cruise != 0.0f) ? cruise_distance() / feedrate.cruise : 0.0f;
}
float GCodeTimeEstimator::Block::Trapezoid::deceleration_time(float acceleration) const
{
return acceleration_time_from_distance(feedrate.cruise, (distance - decelerate_after), -acceleration);
}
float GCodeTimeEstimator::Block::Trapezoid::cruise_distance() const
{
return decelerate_after - accelerate_until;
}
float GCodeTimeEstimator::Block::Trapezoid::acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration)
{
return (acceleration != 0.0f) ? (speed_from_distance(initial_feedrate, distance, acceleration) - initial_feedrate) / acceleration : 0.0f;
}
float GCodeTimeEstimator::Block::Trapezoid::speed_from_distance(float initial_feedrate, float distance, float acceleration)
{
return ::sqrt(sqr(initial_feedrate) + 2.0f * acceleration * distance);
}
float GCodeTimeEstimator::Block::move_length() const
{
float length = ::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]));
return (length > 0.0f) ? length : ::abs(delta_pos[E]);
}
void My_GCodeTimeEstimator::Block::calculate_trapezoid()
float GCodeTimeEstimator::Block::acceleration_time() const
{
float accelerate_distance = estimate_acceleration_distance(entry_feedrate, feedrate, acceleration);
float decelerate_distance = estimate_acceleration_distance(feedrate, exit_feedrate, -acceleration);
return trapezoid.acceleration_time(acceleration);
}
float GCodeTimeEstimator::Block::cruise_time() const
{
return trapezoid.cruise_time();
}
float GCodeTimeEstimator::Block::deceleration_time() const
{
return trapezoid.deceleration_time(acceleration);
}
float GCodeTimeEstimator::Block::cruise_distance() const
{
return trapezoid.cruise_distance();
}
void GCodeTimeEstimator::Block::calculate_trapezoid()
{
float distance = move_length();
float plateau_distance = distance - accelerate_distance - decelerate_distance;
trapezoid.distance = distance;
trapezoid.feedrate = feedrate;
float accelerate_distance = estimate_acceleration_distance(feedrate.entry, feedrate.cruise, acceleration);
float decelerate_distance = estimate_acceleration_distance(feedrate.cruise, feedrate.exit, -acceleration);
float cruise_distance = distance - accelerate_distance - decelerate_distance;
// Not enough space to reach the nominal feedrate.
// This means no cruising, and we'll have to use intersection_distance() to calculate when to abort acceleration
// and start braking in order to reach the exit_feedrate exactly at the end of this block.
if (plateau_distance < 0.0f)
if (cruise_distance < 0.0f)
{
accelerate_distance = clamp(0.0f, distance, intersection_distance(entry_feedrate, exit_feedrate, acceleration, distance));
plateau_distance = 0.0f;
accelerate_distance = clamp(0.0f, distance, intersection_distance(feedrate.entry, feedrate.exit, acceleration, distance));
cruise_distance = 0.0f;
trapezoid.feedrate.cruise = Trapezoid::speed_from_distance(feedrate.entry, accelerate_distance, acceleration);
}
trapezoid.distance = distance;
trapezoid.accelerate_until = accelerate_distance;
trapezoid.decelerate_after = accelerate_distance + plateau_distance;
trapezoid.entry_feedrate = entry_feedrate;
trapezoid.exit_feedrate = exit_feedrate;
trapezoid.decelerate_after = accelerate_distance + cruise_distance;
}
float My_GCodeTimeEstimator::Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
float GCodeTimeEstimator::Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
{
return ::sqrt(sqr(target_velocity) - 2.0f * acceleration * distance);
}
float My_GCodeTimeEstimator::Block::estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
float GCodeTimeEstimator::Block::estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
return (acceleration == 0.0f) ? 0.0f : (sqr(target_rate) - sqr(initial_rate)) / (2.0f * acceleration);
}
float My_GCodeTimeEstimator::Block::intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
float GCodeTimeEstimator::Block::intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
return (acceleration == 0.0f) ? 0.0f : (2.0f * acceleration * distance - sqr(initial_rate) + sqr(final_rate)) / (4.0f * acceleration);
}
float My_GCodeTimeEstimator::Block::acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration)
{
float discriminant = sqr(initial_feedrate) + 2.0f * acceleration * distance;
// If discriminant is negative, we're moving in the wrong direction.
// Making the discriminant 0 then gives the extremum of the parabola instead of the intersection.
discriminant = std::max(0.0f, discriminant);
return (-initial_feedrate + ::sqrt(discriminant)) / acceleration;
}
My_GCodeTimeEstimator::My_GCodeTimeEstimator()
GCodeTimeEstimator::GCodeTimeEstimator()
{
}
void My_GCodeTimeEstimator::parse(const std::string& gcode)
void GCodeTimeEstimator::calculate_time_from_text(const std::string& gcode)
{
_reset();
GCodeReader::parse(gcode, boost::bind(&My_GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
_parser.parse(gcode, boost::bind(&GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
_calculate_time();
}
void My_GCodeTimeEstimator::parse_file(const std::string& file)
void GCodeTimeEstimator::calculate_time_from_file(const std::string& file)
{
_reset();
GCodeReader::parse_file(file, boost::bind(&My_GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
_parser.parse_file(file, boost::bind(&GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
_calculate_time();
}
void My_GCodeTimeEstimator::calculate_time()
{
_time = get_additional_time();
for (const Block& block : _blocks)
{
const Block::Trapezoid& trapezoid = block.trapezoid;
float plateau_distance = trapezoid.decelerate_after - trapezoid.accelerate_until;
_time += Block::acceleration_time_from_distance(block.entry_feedrate, trapezoid.accelerate_until, block.acceleration);
_time += plateau_distance / block.feedrate;
_time += Block::acceleration_time_from_distance(block.exit_feedrate, (trapezoid.distance - trapezoid.decelerate_after), block.acceleration);
}
}
void My_GCodeTimeEstimator::set_axis_position(EAxis axis, float position)
void GCodeTimeEstimator::set_axis_position(EAxis axis, float position)
{
_state.axis[axis].position = position;
}
void My_GCodeTimeEstimator::set_axis_max_feedrate(EAxis axis, float feedrate_mm_sec)
void GCodeTimeEstimator::set_axis_max_feedrate(EAxis axis, float feedrate_mm_sec)
{
_state.axis[axis].max_feedrate = feedrate_mm_sec;
}
void My_GCodeTimeEstimator::set_axis_max_acceleration(EAxis axis, float acceleration)
void GCodeTimeEstimator::set_axis_max_acceleration(EAxis axis, float acceleration)
{
_state.axis[axis].max_acceleration = acceleration;
}
void My_GCodeTimeEstimator::set_axis_max_jerk(EAxis axis, float jerk)
void GCodeTimeEstimator::set_axis_max_jerk(EAxis axis, float jerk)
{
_state.axis[axis].max_jerk = jerk;
}
float My_GCodeTimeEstimator::get_axis_position(EAxis axis) const
float GCodeTimeEstimator::get_axis_position(EAxis axis) const
{
return _state.axis[axis].position;
}
float My_GCodeTimeEstimator::get_axis_max_feedrate(EAxis axis) const
float GCodeTimeEstimator::get_axis_max_feedrate(EAxis axis) const
{
return _state.axis[axis].max_feedrate;
}
float My_GCodeTimeEstimator::get_axis_max_acceleration(EAxis axis) const
float GCodeTimeEstimator::get_axis_max_acceleration(EAxis axis) const
{
return _state.axis[axis].max_acceleration;
}
float My_GCodeTimeEstimator::get_axis_max_jerk(EAxis axis) const
float GCodeTimeEstimator::get_axis_max_jerk(EAxis axis) const
{
return _state.axis[axis].max_jerk;
}
void My_GCodeTimeEstimator::set_feedrate(float feedrate_mm_sec)
void GCodeTimeEstimator::set_feedrate(float feedrate_mm_sec)
{
_state.feedrate = std::max(feedrate_mm_sec, MINIMUM_FEEDRATE);
_state.feedrate = feedrate_mm_sec;
}
float My_GCodeTimeEstimator::get_feedrate() const
float GCodeTimeEstimator::get_feedrate() const
{
return _state.feedrate;
}
void My_GCodeTimeEstimator::set_acceleration(float acceleration)
void GCodeTimeEstimator::set_acceleration(float acceleration)
{
_state.acceleration = acceleration;
}
float My_GCodeTimeEstimator::get_acceleration() const
float GCodeTimeEstimator::get_acceleration() const
{
return _state.acceleration;
}
void My_GCodeTimeEstimator::set_dialect(My_GCodeTimeEstimator::EDialect dialect)
void GCodeTimeEstimator::set_minimum_feedrate(float feedrate_mm_sec)
{
_state.minimum_feedrate = feedrate_mm_sec;
}
float GCodeTimeEstimator::get_minimum_feedrate() const
{
return _state.minimum_feedrate;
}
void GCodeTimeEstimator::set_dialect(GCodeTimeEstimator::EDialect dialect)
{
_state.dialect = dialect;
}
My_GCodeTimeEstimator::EDialect My_GCodeTimeEstimator::get_dialect() const
GCodeTimeEstimator::EDialect GCodeTimeEstimator::get_dialect() const
{
return _state.dialect;
}
void My_GCodeTimeEstimator::set_units(My_GCodeTimeEstimator::EUnits units)
void GCodeTimeEstimator::set_units(GCodeTimeEstimator::EUnits units)
{
_state.units = units;
}
My_GCodeTimeEstimator::EUnits My_GCodeTimeEstimator::get_units() const
GCodeTimeEstimator::EUnits GCodeTimeEstimator::get_units() const
{
return _state.units;
}
void My_GCodeTimeEstimator::set_positioningType(My_GCodeTimeEstimator::EPositioningType type)
void GCodeTimeEstimator::set_positioningType(GCodeTimeEstimator::EPositioningType type)
{
_state.positioningType = type;
}
My_GCodeTimeEstimator::EPositioningType My_GCodeTimeEstimator::get_positioningType() const
GCodeTimeEstimator::EPositioningType GCodeTimeEstimator::get_positioningType() const
{
return _state.positioningType;
}
void My_GCodeTimeEstimator::add_additional_time(float timeSec)
void GCodeTimeEstimator::add_additional_time(float timeSec)
{
_state.additional_time += timeSec;
}
float My_GCodeTimeEstimator::get_additional_time() const
void GCodeTimeEstimator::set_additional_time(float timeSec)
{
_state.additional_time = timeSec;
}
float GCodeTimeEstimator::get_additional_time() const
{
return _state.additional_time;
}
void My_GCodeTimeEstimator::set_default()
void GCodeTimeEstimator::set_default()
{
set_units(Millimeters);
set_dialect(Unknown);
@ -219,6 +270,7 @@ namespace Slic3r {
set_feedrate(DEFAULT_FEEDRATE);
set_acceleration(DEFAULT_ACCELERATION);
set_minimum_feedrate(DEFAULT_MINIMUM_FEEDRATE);
for (unsigned char a = X; a < Num_Axis; ++a)
{
@ -229,40 +281,59 @@ namespace Slic3r {
}
}
float My_GCodeTimeEstimator::get_time() const
float GCodeTimeEstimator::get_time() const
{
return _time;
}
const My_GCodeTimeEstimator::BlocksList& My_GCodeTimeEstimator::get_blocks() const
std::string GCodeTimeEstimator::get_time_hms() const
{
return _blocks;
float timeinsecs = get_time();
int hours = (int)(timeinsecs / 3600.0f);
timeinsecs -= (float)hours * 3600.0f;
int minutes = (int)(timeinsecs / 60.0f);
timeinsecs -= (float)minutes * 60.0f;
char buf[16];
::sprintf(buf, "%02d:%02d:%02d", hours, minutes, (int)timeinsecs);
return buf;
}
// void My_GCodeTimeEstimator::print_counters() const
// {
// std::cout << std::endl;
// for (const CmdToCounterMap::value_type& counter : _cmdCounters)
// {
// std::cout << counter.first << " : " << counter.second << std::endl;
// }
// }
void My_GCodeTimeEstimator::_reset()
void GCodeTimeEstimator::_reset()
{
// _cmdCounters.clear();
_blocks.clear();
_curr.reset();
_prev.reset();
set_default();
set_axis_position(X, 0.0f);
set_axis_position(Y, 0.0f);
set_axis_position(Z, 0.0f);
_state.additional_time = 0.0f;
set_additional_time(0.0f);
}
void My_GCodeTimeEstimator::_process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_calculate_time()
{
#if ENABLE_BLOCKS_PRE_PROCESSING
forward_pass();
reverse_pass();
recalculate_trapezoids();
#endif // ENABLE_BLOCKS_PRE_PROCESSING
_time = get_additional_time();
for (const Block& block : _blocks)
{
_time += block.acceleration_time();
_time += block.cruise_time();
_time += block.deceleration_time();
}
}
void GCodeTimeEstimator::_process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line)
{
if (line.cmd.length() > 1)
{
@ -335,6 +406,11 @@ namespace Slic3r {
_processM204(line);
break;
}
case 205: // Advanced settings
{
_processM205(line);
break;
}
case 566: // Set allowable instantaneous speed change
{
_processM566(line);
@ -345,16 +421,10 @@ namespace Slic3r {
break;
}
}
// CmdToCounterMap::iterator it = _cmdCounters.find(line.cmd);
// if (it == _cmdCounters.end())
// _cmdCounters.insert(CmdToCounterMap::value_type(line.cmd, 1));
// else
// ++it->second;
}
}
void My_GCodeTimeEstimator::_processG1(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processG1(const GCodeReader::GCodeLine& line)
{
float lengthsScaleFactor = (get_units() == Inches) ? INCHES_TO_MM : 1.0f;
@ -379,7 +449,7 @@ namespace Slic3r {
// updates feedrate from line, if present
if (line.has('F'))
set_feedrate(line.get_float('F') * MMMIN_TO_MMSEC);
set_feedrate(std::max(line.get_float('F') * MMMIN_TO_MMSEC, get_minimum_feedrate()));
// fills block data
Block block;
@ -397,24 +467,26 @@ namespace Slic3r {
return;
// calculates block feedrate
float feedrate = get_feedrate();
_curr.feedrate = std::max(get_feedrate(), get_minimum_feedrate());
float distance = block.move_length();
float invDistance = 1.0f / distance;
float axis_feedrate[Num_Axis];
float min_feedrate_factor = 1.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
axis_feedrate[a] = feedrate * ::abs(block.delta_pos[a]) * invDistance;
if (axis_feedrate[a] > 0.0f)
min_feedrate_factor = std::min(min_feedrate_factor, get_axis_max_feedrate((EAxis)a) / axis_feedrate[a]);
_curr.axis_feedrate[a] = _curr.feedrate * block.delta_pos[a] * invDistance;
_curr.abs_axis_feedrate[a] = ::abs(_curr.axis_feedrate[a]);
if (_curr.abs_axis_feedrate[a] > 0.0f)
min_feedrate_factor = std::min(min_feedrate_factor, get_axis_max_feedrate((EAxis)a) / _curr.abs_axis_feedrate[a]);
}
block.feedrate = min_feedrate_factor * feedrate;
block.feedrate.cruise = min_feedrate_factor * _curr.feedrate;
for (unsigned char a = X; a < Num_Axis; ++a)
{
axis_feedrate[a] *= min_feedrate_factor;
_curr.axis_feedrate[a] *= min_feedrate_factor;
_curr.abs_axis_feedrate[a] *= min_feedrate_factor;
}
// calculates block acceleration
@ -430,27 +502,28 @@ namespace Slic3r {
block.acceleration = acceleration;
// calculates block exit feedrate
float exit_feedrate = block.feedrate;
_curr.safe_feedrate = block.feedrate.cruise;
for (unsigned char a = X; a < Num_Axis; ++a)
{
float half_axis_max_jerk = 0.5f * get_axis_max_jerk((EAxis)a);
if (axis_feedrate[a] > half_axis_max_jerk)
exit_feedrate = std::min(exit_feedrate, half_axis_max_jerk);
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (_curr.abs_axis_feedrate[a] > axis_max_jerk)
_curr.safe_feedrate = std::min(_curr.safe_feedrate, axis_max_jerk);
}
block.exit_feedrate = exit_feedrate;
block.feedrate.exit = _curr.safe_feedrate;
// calculates block entry feedrate
float vmax_junction = exit_feedrate;
if (!_blocks.empty() && (_prev.feedrate > FEEDRATE_THRESHOLD))
#if USE_CURA_JUNCTION_VMAX
float vmax_junction = _curr.safe_feedrate;
if (!_blocks.empty() && (_prev.feedrate > PREVIOUS_FEEDRATE_THRESHOLD))
{
vmax_junction = block.feedrate;
vmax_junction = block.feedrate.cruise;
float vmax_junction_factor = 1.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
float abs_delta_axis_feedrate = ::abs(axis_feedrate[a] - _prev.axis_feedrate[a]);
float abs_delta_axis_feedrate = ::abs(_curr.axis_feedrate[a] - _prev.axis_feedrate[a]);
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (abs_delta_axis_feedrate > axis_max_jerk)
vmax_junction_factor = std::min(vmax_junction_factor, axis_max_jerk / abs_delta_axis_feedrate);
@ -460,17 +533,94 @@ namespace Slic3r {
vmax_junction = std::min(_prev.feedrate, vmax_junction * vmax_junction_factor);
}
block.entry_feedrate = std::min(vmax_junction, Block::max_allowable_speed(-acceleration, MINIMUM_PLANNER_SPEED, distance));
#if ENABLE_BLOCKS_PRE_PROCESSING
float v_allowable = Block::max_allowable_speed(-acceleration, MINIMUM_PLANNER_SPEED, distance);
block.feedrate.entry = std::min(vmax_junction, v_allowable);
#else
block.feedrate.entry = std::min(vmax_junction, Block::max_allowable_speed(-acceleration, MINIMUM_PLANNER_SPEED, distance));
#endif // ENABLE_BLOCKS_PRE_PROCESSING
#else
float vmax_junction = _curr.safe_feedrate;
if (!_blocks.empty() && (_prev.feedrate > PREVIOUS_FEEDRATE_THRESHOLD))
{
bool prev_speed_larger = _prev.feedrate > block.feedrate.cruise;
float smaller_speed_factor = prev_speed_larger ? (block.feedrate.cruise / _prev.feedrate) : (_prev.feedrate / block.feedrate.cruise);
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = prev_speed_larger ? block.feedrate.cruise : _prev.feedrate;
float v_factor = 1.0f;
bool limited = false;
for (unsigned char a = X; a < Num_Axis; ++a)
{
// Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
float v_exit = _prev.axis_feedrate[a];
float v_entry = _curr.axis_feedrate[a];
if (prev_speed_larger)
v_exit *= smaller_speed_factor;
if (limited)
{
v_exit *= v_factor;
v_entry *= v_factor;
}
// Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
float jerk =
(v_exit > v_entry) ?
(((v_entry > 0.0f) || (v_exit < 0.0f)) ?
// coasting
(v_exit - v_entry) :
// axis reversal
std::max(v_exit, -v_entry)) :
// v_exit <= v_entry
(((v_entry < 0.0f) || (v_exit > 0.0f)) ?
// coasting
(v_entry - v_exit) :
// axis reversal
std::max(-v_exit, v_entry));
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (jerk > axis_max_jerk)
{
v_factor *= axis_max_jerk / jerk;
limited = true;
}
}
if (limited)
vmax_junction *= v_factor;
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
float vmax_junction_threshold = vmax_junction * 0.99f;
// Not coasting. The machine will stop and start the movements anyway, better to start the segment from start.
if ((_prev.safe_feedrate > vmax_junction_threshold) && (_curr.safe_feedrate > vmax_junction_threshold))
vmax_junction = _curr.safe_feedrate;
}
#if ENABLE_BLOCKS_PRE_PROCESSING
float v_allowable = Block::max_allowable_speed(-acceleration, _curr.safe_feedrate, distance);
block.feedrate.entry = std::min(vmax_junction, v_allowable);
#else
block.feedrate.entry = std::min(vmax_junction, Block::max_allowable_speed(-acceleration, _curr.safe_feedrate, distance));
#endif // ENABLE_BLOCKS_PRE_PROCESSING
#endif // USE_CURA_JUNCTION_VMAX
#if ENABLE_BLOCKS_PRE_PROCESSING
block.max_entry_speed = vmax_junction;
block.flags.nominal_length = (block.feedrate.cruise <= v_allowable);
block.flags.recalculate = true;
block.safe_feedrate = _curr.safe_feedrate;
#endif // ENABLE_BLOCKS_PRE_PROCESSING
// calculates block trapezoid
block.calculate_trapezoid();
// updates previous cache
_prev.feedrate = feedrate;
for (unsigned char a = X; a < Num_Axis; ++a)
{
_prev.axis_feedrate[a] = axis_feedrate[a];
}
// updates previous
_prev = _curr;
// updates axis positions
for (unsigned char a = X; a < Num_Axis; ++a)
@ -482,7 +632,7 @@ namespace Slic3r {
_blocks.push_back(block);
}
void My_GCodeTimeEstimator::_processG4(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processG4(const GCodeReader::GCodeLine& line)
{
EDialect dialect = get_dialect();
@ -500,44 +650,44 @@ namespace Slic3r {
}
}
void My_GCodeTimeEstimator::_processG20(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processG20(const GCodeReader::GCodeLine& line)
{
set_units(Inches);
}
void My_GCodeTimeEstimator::_processG21(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processG21(const GCodeReader::GCodeLine& line)
{
set_units(Millimeters);
}
void My_GCodeTimeEstimator::_processG28(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processG28(const GCodeReader::GCodeLine& line)
{
// todo
}
void My_GCodeTimeEstimator::_processG90(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processG90(const GCodeReader::GCodeLine& line)
{
set_positioningType(Absolute);
}
void My_GCodeTimeEstimator::_processG91(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processG91(const GCodeReader::GCodeLine& line)
{
// >>>>>>>> THERE ARE DIALECT VARIANTS
set_positioningType(Relative);
}
void My_GCodeTimeEstimator::_processG92(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processG92(const GCodeReader::GCodeLine& line)
{
// todo
}
void My_GCodeTimeEstimator::_processM109(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processM109(const GCodeReader::GCodeLine& line)
{
// todo
}
void My_GCodeTimeEstimator::_processM203(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processM203(const GCodeReader::GCodeLine& line)
{
EDialect dialect = get_dialect();
@ -561,7 +711,7 @@ namespace Slic3r {
set_axis_max_feedrate(E, line.get_float('E') * factor);
}
void My_GCodeTimeEstimator::_processM204(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processM204(const GCodeReader::GCodeLine& line)
{
if (line.has('S'))
set_acceleration(line.get_float('S')); // <<<< Is this correct ?
@ -572,7 +722,29 @@ namespace Slic3r {
}
}
void My_GCodeTimeEstimator::_processM566(const GCodeReader::GCodeLine& line)
void GCodeTimeEstimator::_processM205(const GCodeReader::GCodeLine& line)
{
if (line.has('X'))
{
float max_jerk = line.get_float('X');
set_axis_max_jerk(X, max_jerk);
set_axis_max_jerk(Y, max_jerk);
}
if (line.has('Y'))
set_axis_max_jerk(Y, line.get_float('Y'));
if (line.has('Z'))
set_axis_max_jerk(Z, line.get_float('Z'));
if (line.has('E'))
set_axis_max_jerk(E, line.get_float('E'));
if (line.has('S'))
set_minimum_feedrate(line.get_float('S'));
}
void GCodeTimeEstimator::_processM566(const GCodeReader::GCodeLine& line)
{
if (line.has('X'))
set_axis_max_jerk(X, line.get_float('X') * MMMIN_TO_MMSEC);
@ -586,77 +758,119 @@ namespace Slic3r {
if (line.has('E'))
set_axis_max_jerk(E, line.get_float('E') * MMMIN_TO_MMSEC);
}
//###########################################################################################################
void
GCodeTimeEstimator::parse(const std::string &gcode)
{
GCodeReader::parse(gcode, boost::bind(&GCodeTimeEstimator::_parser, this, _1, _2));
}
#if ENABLE_BLOCKS_PRE_PROCESSING
void GCodeTimeEstimator::forward_pass()
{
Block* block[2] = { nullptr, nullptr };
void
GCodeTimeEstimator::parse_file(const std::string &file)
{
GCodeReader::parse_file(file, boost::bind(&GCodeTimeEstimator::_parser, this, _1, _2));
}
void
GCodeTimeEstimator::_parser(GCodeReader&, const GCodeReader::GCodeLine &line)
{
// std::cout << "[" << this->time << "] " << line.raw << std::endl;
if (line.cmd == "G1") {
const float dist_XY = line.dist_XY();
const float new_F = line.new_F();
if (dist_XY > 0) {
//this->time += dist_XY / new_F * 60;
this->time += _accelerated_move(dist_XY, new_F/60, this->acceleration);
} else {
//this->time += std::abs(line.dist_E()) / new_F * 60;
this->time += _accelerated_move(std::abs(line.dist_E()), new_F/60, this->acceleration);
}
//this->time += std::abs(line.dist_Z()) / new_F * 60;
this->time += _accelerated_move(std::abs(line.dist_Z()), new_F/60, this->acceleration);
} else if (line.cmd == "M204" && line.has('S')) {
this->acceleration = line.get_float('S');
} else if (line.cmd == "G4") { // swell
if (line.has('S')) {
this->time += line.get_float('S');
} else if (line.has('P')) {
this->time += line.get_float('P')/1000;
}
for (Block& b : _blocks)
{
block[0] = block[1];
block[1] = &b;
planner_forward_pass_kernel(block[0], block[1]);
}
}
// Wildly optimistic acceleration "bell" curve modeling.
// Returns an estimate of how long the move with a given accel
// takes in seconds.
// It is assumed that the movement is smooth and uniform.
float
GCodeTimeEstimator::_accelerated_move(double length, double v, double acceleration)
{
// for half of the move, there are 2 zones, where the speed is increasing/decreasing and
// where the speed is constant.
// Since the slowdown is assumed to be uniform, calculate the average velocity for half of the
// expected displacement.
// final velocity v = a*t => a * (dx / 0.5v) => v^2 = 2*a*dx
// v_avg = 0.5v => 2*v_avg = v
// d_x = v_avg*t => t = d_x / v_avg
acceleration = (acceleration == 0.0 ? 4000.0 : acceleration); // Set a default accel to use for print time in case it's 0 somehow.
auto half_length = length / 2.0;
auto t_init = v / acceleration; // time to final velocity
auto dx_init = (0.5*v*t_init); // Initial displacement for the time to get to final velocity
auto t = 0.0;
if (half_length >= dx_init) {
half_length -= (0.5*v*t_init);
t += t_init;
t += (half_length / v); // rest of time is at constant speed.
} else {
// If too much displacement for the expected final velocity, we don't hit the max, so reduce
// the average velocity to fit the displacement we actually are looking for.
t += std::sqrt(std::abs(length) * 2.0 * acceleration) / acceleration;
planner_forward_pass_kernel(block[1], nullptr);
}
void GCodeTimeEstimator::reverse_pass()
{
Block* block[2] = { nullptr, nullptr };
for (int i = (int)_blocks.size() - 1; i >= 0; --i)
{
block[1] = block[0];
block[0] = &_blocks[i];
planner_reverse_pass_kernel(block[0], block[1]);
}
return 2.0*t; // cut in half before, so double to get full time spent.
}
}
void GCodeTimeEstimator::planner_forward_pass_kernel(Block* prev, Block* curr)
{
if (prev == nullptr)
return;
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!prev->flags.nominal_length)
{
if (prev->feedrate.entry < curr->feedrate.entry)
{
float entry_speed = std::min(curr->feedrate.entry, Block::max_allowable_speed(-prev->acceleration, prev->feedrate.entry, prev->move_length()));
// Check for junction speed change
if (curr->feedrate.entry != entry_speed)
{
curr->feedrate.entry = entry_speed;
curr->flags.recalculate = true;
}
}
}
}
void GCodeTimeEstimator::planner_reverse_pass_kernel(Block* curr, Block* next)
{
if ((curr == nullptr) || (next == nullptr))
return;
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (curr->feedrate.entry != curr->max_entry_speed)
{
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
if (!curr->flags.nominal_length && (curr->max_entry_speed > next->feedrate.entry))
curr->feedrate.entry = std::min(curr->max_entry_speed, Block::max_allowable_speed(-curr->acceleration, next->feedrate.entry, curr->move_length()));
else
curr->feedrate.entry = curr->max_entry_speed;
curr->flags.recalculate = true;
}
}
void GCodeTimeEstimator::recalculate_trapezoids()
{
Block* curr = nullptr;
Block* next = nullptr;
for (Block& b : _blocks)
{
curr = next;
next = &b;
if (curr != nullptr)
{
// Recalculate if current block entry or exit junction speed has changed.
if (curr->flags.recalculate || next->flags.recalculate)
{
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
Block block = *curr;
block.feedrate.exit = next->feedrate.entry;
block.calculate_trapezoid();
curr->trapezoid = block.trapezoid;
curr->flags.recalculate = false; // Reset current only to ensure next trapezoid is computed
}
}
}
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if (next != nullptr)
{
Block block = *next;
#if USE_CURA_JUNCTION_VMAX
block.feedrate.exit = MINIMUM_PLANNER_SPEED;
#else
block.feedrate.exit = next->safe_feedrate;
#endif // USE_CURA_JUNCTION_VMAX
block.calculate_trapezoid();
next->trapezoid = block.trapezoid;
next->flags.recalculate = false;
}
}
#endif // ENABLE_BLOCKS_PRE_PROCESSING
}

View File

@ -4,10 +4,12 @@
#include "libslic3r.h"
#include "GCodeReader.hpp"
#define USE_CURA_JUNCTION_VMAX 0
#define ENABLE_BLOCKS_PRE_PROCESSING 1
namespace Slic3r {
//###########################################################################################################
class My_GCodeTimeEstimator : public GCodeReader
class GCodeTimeEstimator
{
public:
enum EUnits : unsigned char
@ -51,6 +53,16 @@ namespace Slic3r {
float max_jerk; // mm/s
};
struct Feedrates
{
float feedrate; // mm/s
float axis_feedrate[Num_Axis]; // mm/s
float abs_axis_feedrate[Num_Axis]; // mm/s
float safe_feedrate; // mm/s
void reset();
};
struct State
{
EDialect dialect;
@ -60,37 +72,74 @@ namespace Slic3r {
float feedrate; // mm/s
float acceleration; // mm/s^2
float additional_time; // s
};
struct PreviousBlockCache
{
float feedrate; // mm/s
float axis_feedrate[Num_Axis]; // mm/s
float minimum_feedrate; // mm/s
};
public:
struct Block
{
struct FeedrateProfile
{
float entry; // mm/s
float cruise; // mm/s
float exit; // mm/s
};
struct Trapezoid
{
float distance; // mm
float accelerate_until; // mm
float decelerate_after; // mm
float entry_feedrate; // mm/s
float exit_feedrate; // mm/s
FeedrateProfile feedrate;
float acceleration_time(float acceleration) const;
float cruise_time() const;
float deceleration_time(float acceleration) const;
float cruise_distance() const;
// This function gives the time needed to accelerate from an initial speed to reach a final distance.
static float acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration);
// This function gives the final speed while accelerating at the given constant acceleration from the given initial speed along the given distance.
static float speed_from_distance(float initial_feedrate, float distance, float acceleration);
};
float delta_pos[Num_Axis]; // mm
float feedrate; // mm/s
float acceleration; // mm/s^2
float entry_feedrate; // mm/s
float exit_feedrate; // mm/s
#if ENABLE_BLOCKS_PRE_PROCESSING
struct Flags
{
bool recalculate;
bool nominal_length;
};
Flags flags;
#endif // ENABLE_BLOCKS_PRE_PROCESSING
float delta_pos[Num_Axis]; // mm
float acceleration; // mm/s^2
#if ENABLE_BLOCKS_PRE_PROCESSING
float max_entry_speed; // mm/s
float safe_feedrate; // mm/s
#endif // ENABLE_BLOCKS_PRE_PROCESSING
FeedrateProfile feedrate;
Trapezoid trapezoid;
// Returns the length of the move covered by this block, in mm
float move_length() const;
// Returns the time spent accelerating toward cruise speed, in seconds
float acceleration_time() const;
// Returns the time spent at cruise speed, in seconds
float cruise_time() const;
// Returns the time spent decelerating from cruise speed, in seconds
float deceleration_time() const;
// Returns the distance covered at cruise speed, in mm
float cruise_distance() const;
// Calculates this block's trapezoid
void calculate_trapezoid();
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
@ -105,29 +154,26 @@ namespace Slic3r {
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
static float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance);
// This function gives the time it needs to accelerate from an initial speed to reach a final distance.
static float acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration);
};
typedef std::vector<Block> BlocksList;
private:
// typedef std::map<std::string, unsigned int> CmdToCounterMap;
// CmdToCounterMap _cmdCounters;
GCodeReader _parser;
State _state;
PreviousBlockCache _prev;
Feedrates _curr;
Feedrates _prev;
BlocksList _blocks;
float _time; // s
public:
My_GCodeTimeEstimator();
GCodeTimeEstimator();
void parse(const std::string& gcode);
void parse_file(const std::string& file);
// Calculates the time estimate from the given gcode in string format
void calculate_time_from_text(const std::string& gcode);
void calculate_time();
// Calculates the time estimate from the gcode contained in the file with the given filename
void calculate_time_from_file(const std::string& file);
void set_axis_position(EAxis axis, float position);
void set_axis_max_feedrate(EAxis axis, float feedrate_mm_sec);
@ -145,6 +191,9 @@ namespace Slic3r {
void set_acceleration(float acceleration);
float get_acceleration() const;
void set_minimum_feedrate(float feedrate_mm_sec);
float get_minimum_feedrate() const;
void set_dialect(EDialect dialect);
EDialect get_dialect() const;
@ -155,20 +204,23 @@ namespace Slic3r {
EPositioningType get_positioningType() const;
void add_additional_time(float timeSec);
void set_additional_time(float timeSec);
float get_additional_time() const;
void set_default();
// returns estimated time in seconds
// Returns the estimated time, in seconds
float get_time() const;
const BlocksList& get_blocks() const;
// void print_counters() const;
// Returns the estimated time, in format HH:MM:SS
std::string get_time_hms() const;
private:
void _reset();
// Calculates the time estimate
void _calculate_time();
// Processes GCode line
void _process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line);
@ -205,23 +257,22 @@ namespace Slic3r {
// Set default acceleration
void _processM204(const GCodeReader::GCodeLine& line);
// Advanced settings
void _processM205(const GCodeReader::GCodeLine& line);
// Set allowable instantaneous speed change
void _processM566(const GCodeReader::GCodeLine& line);
};
//###########################################################################################################
class GCodeTimeEstimator : public GCodeReader {
public:
float time = 0; // in seconds
void parse(const std::string &gcode);
void parse_file(const std::string &file);
protected:
float acceleration = 9000;
void _parser(GCodeReader&, const GCodeReader::GCodeLine &line);
static float _accelerated_move(double length, double v, double acceleration);
};
#if ENABLE_BLOCKS_PRE_PROCESSING
void forward_pass();
void reverse_pass();
void planner_forward_pass_kernel(Block* prev, Block* curr);
void planner_reverse_pass_kernel(Block* curr, Block* next);
void recalculate_trapezoids();
#endif // ENABLE_BLOCKS_PRE_PROCESSING
};
} /* namespace Slic3r */