mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-08-12 06:59:00 +08:00
Move definitons to header in the SupportSpotsGenerator.
Moving the definitions to a header file will enable testing the functions involved.
This commit is contained in:
parent
ea69deef24
commit
13579fff45
@ -55,43 +55,26 @@
|
||||
#include "libslic3r/Color.hpp"
|
||||
#endif
|
||||
|
||||
namespace Slic3r {
|
||||
namespace Slic3r::SupportSpotsGenerator {
|
||||
|
||||
class ExtrusionLine
|
||||
ExtrusionLine::ExtrusionLine() : a(Vec2f::Zero()), b(Vec2f::Zero()), len(0.0), origin_entity(nullptr) {}
|
||||
ExtrusionLine::ExtrusionLine(const Vec2f &a, const Vec2f &b, float len, const ExtrusionEntity *origin_entity)
|
||||
: a(a), b(b), len(len), origin_entity(origin_entity)
|
||||
{}
|
||||
|
||||
ExtrusionLine::ExtrusionLine(const Vec2f &a, const Vec2f &b)
|
||||
: a(a), b(b), len((a-b).norm()), origin_entity(nullptr)
|
||||
{}
|
||||
|
||||
bool ExtrusionLine::is_external_perimeter() const
|
||||
{
|
||||
public:
|
||||
ExtrusionLine() : a(Vec2f::Zero()), b(Vec2f::Zero()), len(0.0), origin_entity(nullptr) {}
|
||||
ExtrusionLine(const Vec2f &a, const Vec2f &b, float len, const ExtrusionEntity *origin_entity)
|
||||
: a(a), b(b), len(len), origin_entity(origin_entity)
|
||||
{}
|
||||
|
||||
ExtrusionLine(const Vec2f &a, const Vec2f &b)
|
||||
: a(a), b(b), len((a-b).norm()), origin_entity(nullptr)
|
||||
{}
|
||||
|
||||
bool is_external_perimeter() const
|
||||
{
|
||||
assert(origin_entity != nullptr);
|
||||
return origin_entity->role().is_external_perimeter();
|
||||
}
|
||||
|
||||
Vec2f a;
|
||||
Vec2f b;
|
||||
float len;
|
||||
const ExtrusionEntity *origin_entity;
|
||||
|
||||
std::optional<SupportSpotsGenerator::SupportPointCause> support_point_generated = {};
|
||||
float form_quality = 1.0f;
|
||||
float curled_up_height = 0.0f;
|
||||
|
||||
static const constexpr int Dim = 2;
|
||||
using Scalar = Vec2f::Scalar;
|
||||
};
|
||||
assert(origin_entity != nullptr);
|
||||
return origin_entity->role().is_external_perimeter();
|
||||
}
|
||||
|
||||
auto get_a(ExtrusionLine &&l) { return l.a; }
|
||||
auto get_b(ExtrusionLine &&l) { return l.b; }
|
||||
|
||||
namespace SupportSpotsGenerator {
|
||||
|
||||
using LD = AABBTreeLines::LinesDistancer<ExtrusionLine>;
|
||||
|
||||
@ -151,33 +134,25 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
struct SliceConnection
|
||||
void SliceConnection::add(const SliceConnection &other)
|
||||
{
|
||||
float area{};
|
||||
Vec3f centroid_accumulator = Vec3f::Zero();
|
||||
Vec2f second_moment_of_area_accumulator = Vec2f::Zero();
|
||||
float second_moment_of_area_covariance_accumulator{};
|
||||
this->area += other.area;
|
||||
this->centroid_accumulator += other.centroid_accumulator;
|
||||
this->second_moment_of_area_accumulator += other.second_moment_of_area_accumulator;
|
||||
this->second_moment_of_area_covariance_accumulator += other.second_moment_of_area_covariance_accumulator;
|
||||
}
|
||||
|
||||
void add(const SliceConnection &other)
|
||||
{
|
||||
this->area += other.area;
|
||||
this->centroid_accumulator += other.centroid_accumulator;
|
||||
this->second_moment_of_area_accumulator += other.second_moment_of_area_accumulator;
|
||||
this->second_moment_of_area_covariance_accumulator += other.second_moment_of_area_covariance_accumulator;
|
||||
}
|
||||
|
||||
void print_info(const std::string &tag) const
|
||||
{
|
||||
Vec3f centroid = centroid_accumulator / area;
|
||||
Vec2f variance = (second_moment_of_area_accumulator / area - centroid.head<2>().cwiseProduct(centroid.head<2>()));
|
||||
float covariance = second_moment_of_area_covariance_accumulator / area - centroid.x() * centroid.y();
|
||||
std::cout << tag << std::endl;
|
||||
std::cout << "area: " << area << std::endl;
|
||||
std::cout << "centroid: " << centroid.x() << " " << centroid.y() << " " << centroid.z() << std::endl;
|
||||
std::cout << "variance: " << variance.x() << " " << variance.y() << std::endl;
|
||||
std::cout << "covariance: " << covariance << std::endl;
|
||||
}
|
||||
};
|
||||
void SliceConnection::print_info(const std::string &tag) const
|
||||
{
|
||||
Vec3f centroid = centroid_accumulator / area;
|
||||
Vec2f variance = (second_moment_of_area_accumulator / area - centroid.head<2>().cwiseProduct(centroid.head<2>()));
|
||||
float covariance = second_moment_of_area_covariance_accumulator / area - centroid.x() * centroid.y();
|
||||
std::cout << tag << std::endl;
|
||||
std::cout << "area: " << area << std::endl;
|
||||
std::cout << "centroid: " << centroid.x() << " " << centroid.y() << " " << centroid.z() << std::endl;
|
||||
std::cout << "variance: " << variance.x() << " " << variance.y() << std::endl;
|
||||
std::cout << "covariance: " << covariance << std::endl;
|
||||
}
|
||||
|
||||
Integrals::Integrals (const Polygons& polygons) {
|
||||
for (const Polygon &polygon : polygons) {
|
||||
@ -479,222 +454,210 @@ float compute_second_moment(
|
||||
return moment_at_0_0 - area * distance;
|
||||
}
|
||||
|
||||
class ObjectPart
|
||||
{
|
||||
public:
|
||||
float volume{};
|
||||
Vec3f volume_centroid_accumulator = Vec3f::Zero();
|
||||
float sticking_area{};
|
||||
Vec3f sticking_centroid_accumulator = Vec3f::Zero();
|
||||
Vec2f sticking_second_moment_of_area_accumulator = Vec2f::Zero();
|
||||
float sticking_second_moment_of_area_covariance_accumulator{};
|
||||
bool connected_to_bed = false;
|
||||
ObjectPart::ObjectPart(
|
||||
const std::vector<const ExtrusionEntityCollection*>& extrusion_collections,
|
||||
const bool connected_to_bed,
|
||||
const coordf_t print_head_z,
|
||||
const coordf_t layer_height,
|
||||
const std::optional<Polygons>& brim
|
||||
) {
|
||||
if (connected_to_bed) {
|
||||
this->connected_to_bed = true;
|
||||
}
|
||||
|
||||
ObjectPart(
|
||||
const std::vector<const ExtrusionEntityCollection*>& extrusion_collections,
|
||||
const bool connected_to_bed,
|
||||
const coordf_t print_head_z,
|
||||
const coordf_t layer_height,
|
||||
const std::optional<Polygons>& brim
|
||||
) {
|
||||
if (connected_to_bed) {
|
||||
this->connected_to_bed = true;
|
||||
const auto bottom_z = print_head_z - layer_height;
|
||||
const auto center_z = print_head_z - layer_height / 2;
|
||||
|
||||
for (const ExtrusionEntityCollection* collection : extrusion_collections) {
|
||||
if (collection->empty()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto bottom_z = print_head_z - layer_height;
|
||||
const auto center_z = print_head_z - layer_height / 2;
|
||||
const Polygons polygons{collection->polygons_covered_by_width()};
|
||||
|
||||
for (const ExtrusionEntityCollection* collection : extrusion_collections) {
|
||||
if (collection->empty()) {
|
||||
continue;
|
||||
}
|
||||
const Integrals integrals{polygons};
|
||||
const float volume = integrals.area * layer_height;
|
||||
this->volume += volume;
|
||||
this->volume_centroid_accumulator += to_3d(integrals.x_i, center_z * integrals.area) / integrals.area * volume; // TODO check that it is correct
|
||||
|
||||
const Polygons polygons{collection->polygons_covered_by_width()};
|
||||
|
||||
const Integrals integrals{polygons};
|
||||
const float volume = integrals.area * layer_height;
|
||||
this->volume += volume;
|
||||
this->volume_centroid_accumulator += to_3d(integrals.x_i, center_z * integrals.area) / integrals.area * volume; // TODO check that it is correct
|
||||
|
||||
if (this->connected_to_bed) {
|
||||
this->sticking_area += integrals.area;
|
||||
this->sticking_centroid_accumulator += to_3d(integrals.x_i, bottom_z * integrals.area); // TODO check that it layer height should be added
|
||||
this->sticking_second_moment_of_area_accumulator += integrals.x_i_squared;
|
||||
this->sticking_second_moment_of_area_covariance_accumulator += integrals.xy;
|
||||
}
|
||||
}
|
||||
|
||||
if (brim) {
|
||||
Integrals integrals{*brim};
|
||||
if (this->connected_to_bed) {
|
||||
this->sticking_area += integrals.area;
|
||||
this->sticking_centroid_accumulator += to_3d(integrals.x_i, bottom_z * integrals.area);
|
||||
this->sticking_centroid_accumulator += to_3d(integrals.x_i, bottom_z * integrals.area); // TODO check that it layer height should be added
|
||||
this->sticking_second_moment_of_area_accumulator += integrals.x_i_squared;
|
||||
this->sticking_second_moment_of_area_covariance_accumulator += integrals.xy;
|
||||
}
|
||||
}
|
||||
|
||||
void add(const ObjectPart &other)
|
||||
{
|
||||
this->connected_to_bed = this->connected_to_bed || other.connected_to_bed;
|
||||
this->volume_centroid_accumulator += other.volume_centroid_accumulator;
|
||||
this->volume += other.volume;
|
||||
this->sticking_area += other.sticking_area;
|
||||
this->sticking_centroid_accumulator += other.sticking_centroid_accumulator;
|
||||
this->sticking_second_moment_of_area_accumulator += other.sticking_second_moment_of_area_accumulator;
|
||||
this->sticking_second_moment_of_area_covariance_accumulator += other.sticking_second_moment_of_area_covariance_accumulator;
|
||||
if (brim) {
|
||||
Integrals integrals{*brim};
|
||||
this->sticking_area += integrals.area;
|
||||
this->sticking_centroid_accumulator += to_3d(integrals.x_i, bottom_z * integrals.area);
|
||||
this->sticking_second_moment_of_area_accumulator += integrals.x_i_squared;
|
||||
this->sticking_second_moment_of_area_covariance_accumulator += integrals.xy;
|
||||
}
|
||||
}
|
||||
|
||||
void add_support_point(const Vec3f &position, float sticking_area)
|
||||
{
|
||||
this->sticking_area += sticking_area;
|
||||
this->sticking_centroid_accumulator += sticking_area * position;
|
||||
this->sticking_second_moment_of_area_accumulator += sticking_area * position.head<2>().cwiseProduct(position.head<2>());
|
||||
this->sticking_second_moment_of_area_covariance_accumulator += sticking_area * position.x() * position.y();
|
||||
}
|
||||
void ObjectPart::add(const ObjectPart &other)
|
||||
{
|
||||
this->connected_to_bed = this->connected_to_bed || other.connected_to_bed;
|
||||
this->volume_centroid_accumulator += other.volume_centroid_accumulator;
|
||||
this->volume += other.volume;
|
||||
this->sticking_area += other.sticking_area;
|
||||
this->sticking_centroid_accumulator += other.sticking_centroid_accumulator;
|
||||
this->sticking_second_moment_of_area_accumulator += other.sticking_second_moment_of_area_accumulator;
|
||||
this->sticking_second_moment_of_area_covariance_accumulator += other.sticking_second_moment_of_area_covariance_accumulator;
|
||||
}
|
||||
|
||||
void ObjectPart::add_support_point(const Vec3f &position, float sticking_area)
|
||||
{
|
||||
this->sticking_area += sticking_area;
|
||||
this->sticking_centroid_accumulator += sticking_area * position;
|
||||
this->sticking_second_moment_of_area_accumulator += sticking_area * position.head<2>().cwiseProduct(position.head<2>());
|
||||
this->sticking_second_moment_of_area_covariance_accumulator += sticking_area * position.x() * position.y();
|
||||
}
|
||||
|
||||
|
||||
float compute_elastic_section_modulus(
|
||||
const Vec2f &line_dir,
|
||||
const Vec3f &extreme_point,
|
||||
const Integrals& integrals
|
||||
) const {
|
||||
float second_moment_of_area = compute_second_moment(integrals, Vec2f{-line_dir.y(), line_dir.x()});
|
||||
float ObjectPart::compute_elastic_section_modulus(
|
||||
const Vec2f &line_dir,
|
||||
const Vec3f &extreme_point,
|
||||
const Integrals& integrals
|
||||
) const {
|
||||
float second_moment_of_area = compute_second_moment(integrals, Vec2f{-line_dir.y(), line_dir.x()});
|
||||
|
||||
if (second_moment_of_area < EPSILON) { return 0.0f; }
|
||||
if (second_moment_of_area < EPSILON) { return 0.0f; }
|
||||
|
||||
Vec2f centroid = integrals.x_i / integrals.area;
|
||||
float extreme_fiber_dist = line_alg::distance_to(Linef(centroid.head<2>().cast<double>(),
|
||||
(centroid.head<2>() + Vec2f(line_dir.y(), -line_dir.x())).cast<double>()),
|
||||
extreme_point.head<2>().cast<double>());
|
||||
Vec2f centroid = integrals.x_i / integrals.area;
|
||||
float extreme_fiber_dist = line_alg::distance_to(Linef(centroid.head<2>().cast<double>(),
|
||||
(centroid.head<2>() + Vec2f(line_dir.y(), -line_dir.x())).cast<double>()),
|
||||
extreme_point.head<2>().cast<double>());
|
||||
|
||||
float elastic_section_modulus = second_moment_of_area / extreme_fiber_dist;
|
||||
float elastic_section_modulus = second_moment_of_area / extreme_fiber_dist;
|
||||
|
||||
#ifdef DETAILED_DEBUG_LOGS
|
||||
BOOST_LOG_TRIVIAL(debug) << "extreme_fiber_dist: " << extreme_fiber_dist;
|
||||
BOOST_LOG_TRIVIAL(debug) << "elastic_section_modulus: " << elastic_section_modulus;
|
||||
BOOST_LOG_TRIVIAL(debug) << "extreme_fiber_dist: " << extreme_fiber_dist;
|
||||
BOOST_LOG_TRIVIAL(debug) << "elastic_section_modulus: " << elastic_section_modulus;
|
||||
#endif
|
||||
|
||||
return elastic_section_modulus;
|
||||
}
|
||||
return elastic_section_modulus;
|
||||
}
|
||||
|
||||
std::tuple<float, SupportPointCause> is_stable_while_extruding(const SliceConnection &connection,
|
||||
const ExtrusionLine &extruded_line,
|
||||
const Vec3f &extreme_point,
|
||||
float layer_z,
|
||||
const Params ¶ms) const
|
||||
std::tuple<float, SupportPointCause> ObjectPart::is_stable_while_extruding(const SliceConnection &connection,
|
||||
const ExtrusionLine &extruded_line,
|
||||
const Vec3f &extreme_point,
|
||||
float layer_z,
|
||||
const Params ¶ms) const
|
||||
{
|
||||
// Note that exteme point is calculated for the current layer, while it should
|
||||
// be computed for the first layer. The shape of the first layer however changes a lot,
|
||||
// during support points additions (for organic supports it is not even clear how)
|
||||
// and during merging. Using the current layer is heuristics and also small optimization,
|
||||
// as the AABB tree for it is calculated anyways. This heuristic should usually be
|
||||
// on the safe side.
|
||||
Vec2f line_dir = (extruded_line.b - extruded_line.a).normalized();
|
||||
const Vec3f &mass_centroid = this->volume_centroid_accumulator / this->volume;
|
||||
float mass = this->volume * params.filament_density;
|
||||
float weight = mass * params.gravity_constant;
|
||||
|
||||
float movement_force = params.max_acceleration * mass;
|
||||
|
||||
float extruder_conflict_force = params.standard_extruder_conflict_force +
|
||||
std::min(extruded_line.curled_up_height, 1.0f) * params.malformations_additive_conflict_extruder_force;
|
||||
|
||||
// section for bed calculations
|
||||
{
|
||||
// Note that exteme point is calculated for the current layer, while it should
|
||||
// be computed for the first layer. The shape of the first layer however changes a lot,
|
||||
// during support points additions (for organic supports it is not even clear how)
|
||||
// and during merging. Using the current layer is heuristics and also small optimization,
|
||||
// as the AABB tree for it is calculated anyways. This heuristic should usually be
|
||||
// on the safe side.
|
||||
Vec2f line_dir = (extruded_line.b - extruded_line.a).normalized();
|
||||
const Vec3f &mass_centroid = this->volume_centroid_accumulator / this->volume;
|
||||
float mass = this->volume * params.filament_density;
|
||||
float weight = mass * params.gravity_constant;
|
||||
if (this->sticking_area < EPSILON) return {1.0f, SupportPointCause::UnstableFloatingPart};
|
||||
|
||||
float movement_force = params.max_acceleration * mass;
|
||||
Integrals integrals;
|
||||
integrals.area = this->sticking_area;
|
||||
integrals.x_i = this->sticking_centroid_accumulator.head<2>();
|
||||
integrals.x_i_squared = this->sticking_second_moment_of_area_accumulator;
|
||||
integrals.xy = this->sticking_second_moment_of_area_covariance_accumulator;
|
||||
|
||||
float extruder_conflict_force = params.standard_extruder_conflict_force +
|
||||
std::min(extruded_line.curled_up_height, 1.0f) * params.malformations_additive_conflict_extruder_force;
|
||||
Vec3f bed_centroid = this->sticking_centroid_accumulator / this->sticking_area;
|
||||
float bed_yield_torque = -compute_elastic_section_modulus(line_dir, extreme_point, integrals) * params.get_bed_adhesion_yield_strength();
|
||||
|
||||
// section for bed calculations
|
||||
{
|
||||
if (this->sticking_area < EPSILON) return {1.0f, SupportPointCause::UnstableFloatingPart};
|
||||
Vec2f bed_weight_arm = (mass_centroid.head<2>() - bed_centroid.head<2>());
|
||||
float bed_weight_arm_len = bed_weight_arm.norm();
|
||||
|
||||
Integrals integrals;
|
||||
integrals.area = this->sticking_area;
|
||||
integrals.x_i = this->sticking_centroid_accumulator.head<2>();
|
||||
integrals.x_i_squared = this->sticking_second_moment_of_area_accumulator;
|
||||
integrals.xy = this->sticking_second_moment_of_area_covariance_accumulator;
|
||||
float bed_weight_dir_xy_variance = compute_second_moment(integrals, {-bed_weight_arm.y(), bed_weight_arm.x()}) / this->sticking_area;
|
||||
float bed_weight_sign = bed_weight_arm_len < 2.0f * sqrt(bed_weight_dir_xy_variance) ? -1.0f : 1.0f;
|
||||
float bed_weight_torque = bed_weight_sign * bed_weight_arm_len * weight;
|
||||
|
||||
Vec3f bed_centroid = this->sticking_centroid_accumulator / this->sticking_area;
|
||||
float bed_yield_torque = -compute_elastic_section_modulus(line_dir, extreme_point, integrals) * params.get_bed_adhesion_yield_strength();
|
||||
float bed_movement_arm = std::max(0.0f, mass_centroid.z() - bed_centroid.z());
|
||||
float bed_movement_torque = movement_force * bed_movement_arm;
|
||||
|
||||
Vec2f bed_weight_arm = (mass_centroid.head<2>() - bed_centroid.head<2>());
|
||||
float bed_weight_arm_len = bed_weight_arm.norm();
|
||||
float bed_conflict_torque_arm = layer_z - bed_centroid.z();
|
||||
float bed_extruder_conflict_torque = extruder_conflict_force * bed_conflict_torque_arm;
|
||||
|
||||
float bed_weight_dir_xy_variance = compute_second_moment(integrals, {-bed_weight_arm.y(), bed_weight_arm.x()}) / this->sticking_area;
|
||||
float bed_weight_sign = bed_weight_arm_len < 2.0f * sqrt(bed_weight_dir_xy_variance) ? -1.0f : 1.0f;
|
||||
float bed_weight_torque = bed_weight_sign * bed_weight_arm_len * weight;
|
||||
|
||||
float bed_movement_arm = std::max(0.0f, mass_centroid.z() - bed_centroid.z());
|
||||
float bed_movement_torque = movement_force * bed_movement_arm;
|
||||
|
||||
float bed_conflict_torque_arm = layer_z - bed_centroid.z();
|
||||
float bed_extruder_conflict_torque = extruder_conflict_force * bed_conflict_torque_arm;
|
||||
|
||||
float bed_total_torque = bed_movement_torque + bed_extruder_conflict_torque + bed_weight_torque + bed_yield_torque;
|
||||
float bed_total_torque = bed_movement_torque + bed_extruder_conflict_torque + bed_weight_torque + bed_yield_torque;
|
||||
|
||||
#ifdef DETAILED_DEBUG_LOGS
|
||||
BOOST_LOG_TRIVIAL(debug) << "bed_centroid: " << bed_centroid.x() << " " << bed_centroid.y() << " " << bed_centroid.z();
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_yield_torque: " << bed_yield_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_weight_arm: " << bed_weight_arm_len;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_weight_torque: " << bed_weight_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_movement_arm: " << bed_movement_arm;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_movement_torque: " << bed_movement_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_conflict_torque_arm: " << bed_conflict_torque_arm;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: extruded_line.curled_up_height: " << extruded_line.curled_up_height;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: extruded_line.form_quality: " << extruded_line.form_quality;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: extruder_conflict_force: " << extruder_conflict_force;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_extruder_conflict_torque: " << bed_extruder_conflict_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: total_torque: " << bed_total_torque << " layer_z: " << layer_z;
|
||||
BOOST_LOG_TRIVIAL(debug) << "bed_centroid: " << bed_centroid.x() << " " << bed_centroid.y() << " " << bed_centroid.z();
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_yield_torque: " << bed_yield_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_weight_arm: " << bed_weight_arm_len;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_weight_torque: " << bed_weight_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_movement_arm: " << bed_movement_arm;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_movement_torque: " << bed_movement_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_conflict_torque_arm: " << bed_conflict_torque_arm;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: extruded_line.curled_up_height: " << extruded_line.curled_up_height;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: extruded_line.form_quality: " << extruded_line.form_quality;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: extruder_conflict_force: " << extruder_conflict_force;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: bed_extruder_conflict_torque: " << bed_extruder_conflict_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: total_torque: " << bed_total_torque << " layer_z: " << layer_z;
|
||||
#endif
|
||||
|
||||
if (bed_total_torque > 0) {
|
||||
return {bed_total_torque / bed_conflict_torque_arm,
|
||||
(this->connected_to_bed ? SupportPointCause::SeparationFromBed : SupportPointCause::UnstableFloatingPart)};
|
||||
}
|
||||
}
|
||||
|
||||
// section for weak connection calculations
|
||||
{
|
||||
if (connection.area < EPSILON) return {1.0f, SupportPointCause::UnstableFloatingPart};
|
||||
|
||||
Vec3f conn_centroid = connection.centroid_accumulator / connection.area;
|
||||
|
||||
if (layer_z - conn_centroid.z() < 3.0f) { return {-1.0f, SupportPointCause::WeakObjectPart}; }
|
||||
|
||||
Integrals integrals;
|
||||
integrals.area = connection.area;
|
||||
integrals.x_i = connection.centroid_accumulator.head<2>();
|
||||
integrals.x_i_squared = connection.second_moment_of_area_accumulator;
|
||||
integrals.xy = connection.second_moment_of_area_covariance_accumulator;
|
||||
|
||||
float conn_yield_torque = compute_elastic_section_modulus(line_dir, extreme_point, integrals) * params.material_yield_strength;
|
||||
|
||||
float conn_weight_arm = (conn_centroid.head<2>() - mass_centroid.head<2>()).norm();
|
||||
if (layer_z - conn_centroid.z() < 30.0) {
|
||||
conn_weight_arm = 0.0f; // Given that we do not have very good info about the weight distribution between the connection and current layer,
|
||||
// do not consider the weight until quite far away from the weak connection segment
|
||||
}
|
||||
float conn_weight_torque = conn_weight_arm * weight * (1.0f - conn_centroid.z() / layer_z) * (1.0f - conn_centroid.z() / layer_z);
|
||||
|
||||
float conn_movement_arm = std::max(0.0f, mass_centroid.z() - conn_centroid.z());
|
||||
float conn_movement_torque = movement_force * conn_movement_arm;
|
||||
|
||||
float conn_conflict_torque_arm = layer_z - conn_centroid.z();
|
||||
float conn_extruder_conflict_torque = extruder_conflict_force * conn_conflict_torque_arm;
|
||||
|
||||
float conn_total_torque = conn_movement_torque + conn_extruder_conflict_torque + conn_weight_torque - conn_yield_torque;
|
||||
|
||||
#ifdef DETAILED_DEBUG_LOGS
|
||||
BOOST_LOG_TRIVIAL(debug) << "conn_centroid: " << conn_centroid.x() << " " << conn_centroid.y() << " " << conn_centroid.z();
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_yield_torque: " << conn_yield_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_weight_arm: " << conn_weight_arm;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_weight_torque: " << conn_weight_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_movement_arm: " << conn_movement_arm;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_movement_torque: " << conn_movement_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_conflict_torque_arm: " << conn_conflict_torque_arm;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_extruder_conflict_torque: " << conn_extruder_conflict_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: total_torque: " << conn_total_torque << " layer_z: " << layer_z;
|
||||
#endif
|
||||
|
||||
return {conn_total_torque / conn_conflict_torque_arm, SupportPointCause::WeakObjectPart};
|
||||
if (bed_total_torque > 0) {
|
||||
return {bed_total_torque / bed_conflict_torque_arm,
|
||||
(this->connected_to_bed ? SupportPointCause::SeparationFromBed : SupportPointCause::UnstableFloatingPart)};
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// section for weak connection calculations
|
||||
{
|
||||
if (connection.area < EPSILON) return {1.0f, SupportPointCause::UnstableFloatingPart};
|
||||
|
||||
Vec3f conn_centroid = connection.centroid_accumulator / connection.area;
|
||||
|
||||
if (layer_z - conn_centroid.z() < 3.0f) { return {-1.0f, SupportPointCause::WeakObjectPart}; }
|
||||
|
||||
Integrals integrals;
|
||||
integrals.area = connection.area;
|
||||
integrals.x_i = connection.centroid_accumulator.head<2>();
|
||||
integrals.x_i_squared = connection.second_moment_of_area_accumulator;
|
||||
integrals.xy = connection.second_moment_of_area_covariance_accumulator;
|
||||
|
||||
float conn_yield_torque = compute_elastic_section_modulus(line_dir, extreme_point, integrals) * params.material_yield_strength;
|
||||
|
||||
float conn_weight_arm = (conn_centroid.head<2>() - mass_centroid.head<2>()).norm();
|
||||
if (layer_z - conn_centroid.z() < 30.0) {
|
||||
conn_weight_arm = 0.0f; // Given that we do not have very good info about the weight distribution between the connection and current layer,
|
||||
// do not consider the weight until quite far away from the weak connection segment
|
||||
}
|
||||
float conn_weight_torque = conn_weight_arm * weight * (1.0f - conn_centroid.z() / layer_z) * (1.0f - conn_centroid.z() / layer_z);
|
||||
|
||||
float conn_movement_arm = std::max(0.0f, mass_centroid.z() - conn_centroid.z());
|
||||
float conn_movement_torque = movement_force * conn_movement_arm;
|
||||
|
||||
float conn_conflict_torque_arm = layer_z - conn_centroid.z();
|
||||
float conn_extruder_conflict_torque = extruder_conflict_force * conn_conflict_torque_arm;
|
||||
|
||||
float conn_total_torque = conn_movement_torque + conn_extruder_conflict_torque + conn_weight_torque - conn_yield_torque;
|
||||
|
||||
#ifdef DETAILED_DEBUG_LOGS
|
||||
BOOST_LOG_TRIVIAL(debug) << "conn_centroid: " << conn_centroid.x() << " " << conn_centroid.y() << " " << conn_centroid.z();
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_yield_torque: " << conn_yield_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_weight_arm: " << conn_weight_arm;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_weight_torque: " << conn_weight_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_movement_arm: " << conn_movement_arm;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_movement_torque: " << conn_movement_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_conflict_torque_arm: " << conn_conflict_torque_arm;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: conn_extruder_conflict_torque: " << conn_extruder_conflict_torque;
|
||||
BOOST_LOG_TRIVIAL(debug) << "SSG: total_torque: " << conn_total_torque << " layer_z: " << layer_z;
|
||||
#endif
|
||||
|
||||
return {conn_total_torque / conn_conflict_torque_arm, SupportPointCause::WeakObjectPart};
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const ExtrusionEntityCollection*> gather_extrusions(const LayerSlice& slice, const Layer* layer) {
|
||||
// TODO reserve might be good, benchmark
|
||||
@ -1352,4 +1315,3 @@ std::vector<std::pair<SupportPointCause, bool>> gather_issues(const SupportPoint
|
||||
}
|
||||
|
||||
} // namespace SupportSpotsGenerator
|
||||
} // namespace Slic3r
|
||||
|
@ -174,6 +174,77 @@ float compute_second_moment(
|
||||
const Vec2f& axis_direction
|
||||
);
|
||||
|
||||
class ExtrusionLine
|
||||
{
|
||||
public:
|
||||
ExtrusionLine();
|
||||
ExtrusionLine(const Vec2f &a, const Vec2f &b, float len, const ExtrusionEntity *origin_entity);
|
||||
ExtrusionLine(const Vec2f &a, const Vec2f &b);
|
||||
|
||||
bool is_external_perimeter() const;
|
||||
|
||||
Vec2f a;
|
||||
Vec2f b;
|
||||
float len;
|
||||
const ExtrusionEntity *origin_entity;
|
||||
|
||||
std::optional<SupportSpotsGenerator::SupportPointCause> support_point_generated = {};
|
||||
float form_quality = 1.0f;
|
||||
float curled_up_height = 0.0f;
|
||||
|
||||
static const constexpr int Dim = 2;
|
||||
using Scalar = Vec2f::Scalar;
|
||||
};
|
||||
|
||||
struct SliceConnection
|
||||
{
|
||||
float area{};
|
||||
Vec3f centroid_accumulator = Vec3f::Zero();
|
||||
Vec2f second_moment_of_area_accumulator = Vec2f::Zero();
|
||||
float second_moment_of_area_covariance_accumulator{};
|
||||
|
||||
void add(const SliceConnection &other);
|
||||
|
||||
void print_info(const std::string &tag) const;
|
||||
};
|
||||
|
||||
class ObjectPart
|
||||
{
|
||||
public:
|
||||
float volume{};
|
||||
Vec3f volume_centroid_accumulator = Vec3f::Zero();
|
||||
float sticking_area{};
|
||||
Vec3f sticking_centroid_accumulator = Vec3f::Zero();
|
||||
Vec2f sticking_second_moment_of_area_accumulator = Vec2f::Zero();
|
||||
float sticking_second_moment_of_area_covariance_accumulator{};
|
||||
bool connected_to_bed = false;
|
||||
|
||||
ObjectPart(
|
||||
const std::vector<const ExtrusionEntityCollection*>& extrusion_collections,
|
||||
const bool connected_to_bed,
|
||||
const coordf_t print_head_z,
|
||||
const coordf_t layer_height,
|
||||
const std::optional<Polygons>& brim
|
||||
);
|
||||
|
||||
void add(const ObjectPart &other);
|
||||
|
||||
void add_support_point(const Vec3f &position, float sticking_area);
|
||||
|
||||
|
||||
float compute_elastic_section_modulus(
|
||||
const Vec2f &line_dir,
|
||||
const Vec3f &extreme_point,
|
||||
const Integrals& integrals
|
||||
) const;
|
||||
|
||||
std::tuple<float, SupportPointCause> is_stable_while_extruding(const SliceConnection &connection,
|
||||
const ExtrusionLine &extruded_line,
|
||||
const Vec3f &extreme_point,
|
||||
float layer_z,
|
||||
const Params ¶ms) const;
|
||||
};
|
||||
|
||||
using PartialObjects = std::vector<PartialObject>;
|
||||
|
||||
// Both support points and partial objects are sorted from the lowest z to the highest
|
||||
|
@ -95,3 +95,24 @@ TEST_CASE("Moments calculation for rotated axis.", "[SupportSpotsGenerator]") {
|
||||
|
||||
CHECK(moment_calculated_then_rotated == Approx(moment_rotated_polygon));
|
||||
}
|
||||
|
||||
TEST_CASE("TODO", "[SupportSpotsGenerator]") {
|
||||
const Polyline polyline{
|
||||
Point{scaled(Vec2f{0, 0})},
|
||||
Point{scaled(Vec2f{1, 0})},
|
||||
};
|
||||
ExtrusionAttributes attributes;
|
||||
attributes.width = 0.1;
|
||||
const ExtrusionPath path{polyline, attributes};
|
||||
ExtrusionEntityCollection collection;
|
||||
collection.append(path);
|
||||
std::vector<const ExtrusionEntityCollection*> collections{&collection};
|
||||
|
||||
Polygons polygons = path.polygons_covered_by_width();
|
||||
for (const Polygon& polygon : polygons) {
|
||||
std::cout << "Polygon: " << std::endl;
|
||||
for (const Line& line : polygon.lines()) {
|
||||
std::cout << "(" << line.a.x() << ", " << line.a.y() << ")" << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user