new step for overhangs

This commit is contained in:
Pavel Mikus 2023-07-18 17:28:22 +02:00 committed by Vojtech Bubnik
parent 98c011d59b
commit 28cd3ac212
3 changed files with 123 additions and 1 deletions

View File

@ -211,6 +211,92 @@ std::vector<ExtendedPoint> estimate_points_properties(const POINTS
return points;
}
void calculate_and_split_overhanging_extrusions(ExtrusionPath &path,
AABBTreeLines::LinesDistancer<Line> prev_layer_polygon,
AABBTreeLines::LinesDistancer<CurledLine> prev_layer_curled_lines)
{
std::vector<ExtendedPoint> extended_points = estimate_points_properties<true, true, true, true>(path.polyline.points,
prev_layer_polygon, path.width());
for (size_t i = 0; i < extended_points.size(); i++) {
const ExtendedPoint &curr = extended_points[i];
const ExtendedPoint &next = extended_points[i + 1 < extended_points.size() ? i + 1 : i];
// The following code artifically increases the distance to provide slowdown for extrusions that are over curled lines
float artificial_distance_to_curled_lines = 0.0;
const double dist_limit = 10.0 * path.width();
{
Vec2d middle = 0.5 * (curr.position + next.position);
auto line_indices = prev_layer_curled_lines.all_lines_in_radius(Point::new_scale(middle), scale_(dist_limit));
if (!line_indices.empty()) {
double len = (next.position - curr.position).norm();
// For long lines, there is a problem with the additional slowdown. If by accident, there is small curled line near the middle
// of this long line
// The whole segment gets slower unnecesarily. For these long lines, we do additional check whether it is worth slowing down.
// NOTE that this is still quite rough approximation, e.g. we are still checking lines only near the middle point
// TODO maybe split the lines into smaller segments before running this alg? but can be demanding, and GCode will be huge
if (len > 8) {
Vec2d dir = Vec2d(next.position - curr.position) / len;
Vec2d right = Vec2d(-dir.y(), dir.x());
Polygon box_of_influence = {
scaled(Vec2d(curr.position + right * dist_limit)),
scaled(Vec2d(next.position + right * dist_limit)),
scaled(Vec2d(next.position - right * dist_limit)),
scaled(Vec2d(curr.position - right * dist_limit)),
};
double projected_lengths_sum = 0;
for (size_t idx : line_indices) {
const CurledLine &line = prev_layer_curled_lines.get_line(idx);
Lines inside = intersection_ln({{line.a, line.b}}, {box_of_influence});
if (inside.empty())
continue;
double projected_length = abs(dir.dot(unscaled(Vec2d((inside.back().b - inside.back().a).cast<double>()))));
projected_lengths_sum += projected_length;
}
if (projected_lengths_sum < 0.4 * len) {
line_indices.clear();
}
}
for (size_t idx : line_indices) {
const CurledLine &line = prev_layer_curled_lines.get_line(idx);
float distance_from_curled = unscaled(line_alg::distance_to(line, Point::new_scale(middle)));
float dist = path.width() * (1.0 - (distance_from_curled / dist_limit)) * (1.0 - (distance_from_curled / dist_limit)) *
(line.curled_height / (path.height() * 10.0f)); // max_curled_height_factor from SupportSpotGenerator
artificial_distance_to_curled_lines = std::max(artificial_distance_to_curled_lines, dist);
}
}
}
auto interpolate_speed = [](const std::map<float, float> &values, float distance) {
auto upper_dist = values.lower_bound(distance);
if (upper_dist == values.end()) {
return values.rbegin()->second;
}
if (upper_dist == values.begin()) {
return upper_dist->second;
}
auto lower_dist = std::prev(upper_dist);
float t = (distance - lower_dist->first) / (upper_dist->first - lower_dist->first);
return (1.0f - t) * lower_dist->second + t * upper_dist->second;
};
float extrusion_speed = std::min(interpolate_speed(speed_sections, curr.distance), interpolate_speed(speed_sections, next.distance));
float curled_base_speed = interpolate_speed(speed_sections, artificial_distance_to_curled_lines);
float final_speed = std::min(curled_base_speed, extrusion_speed);
float fan_speed = std::min(interpolate_speed(fan_speed_sections, curr.distance),
interpolate_speed(fan_speed_sections, next.distance));
processed_points.push_back({scaled(curr.position), final_speed, int(fan_speed)});
}
return processed_points;
}
struct ProcessedPoint
{
Point p;

View File

@ -67,7 +67,7 @@ enum PrintStep : unsigned int {
enum PrintObjectStep : unsigned int {
posSlice, posPerimeters, posPrepareInfill,
posInfill, posIroning, posSupportSpotsSearch, posSupportMaterial, posEstimateCurledExtrusions, posCount,
posInfill, posIroning, posSupportSpotsSearch, posSupportMaterial, posEstimateCurledExtrusions, posCalculateOverhangingPerimeters, posCount,
};
// A PrintRegion object represents a group of volumes to print
@ -376,6 +376,7 @@ private:
void generate_support_spots();
void generate_support_material();
void estimate_curled_extrusions();
void calculate_overhanging_perimeters();
void slice_volumes();
// Has any support (not counting the raft).

View File

@ -4,6 +4,7 @@
#include "Exception.hpp"
#include "Flow.hpp"
#include "KDTreeIndirect.hpp"
#include "Line.hpp"
#include "Point.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"
@ -533,6 +534,40 @@ void PrintObject::estimate_curled_extrusions()
}
}
void PrintObject::calculate_overhanging_perimeters()
{
if (this->set_started(posCalculateOverhangingPerimeters)) {
std::unordered_set<const PrintRegion *> regions_with_dynamic_overhangs;
for (const PrintRegion *pr : this->print()->m_print_regions) {
if (pr->config().enable_dynamic_overhang_speeds.getBool()) {
regions_with_dynamic_overhangs.insert(pr);
}
}
if (!regions_with_dynamic_overhangs.empty()) {
BOOST_LOG_TRIVIAL(debug) << "Calculating overhanging perimeters - start";
m_print->set_status(89, _u8L("Calculating overhanging perimeters"));
std::unordered_map<size_t, AABBTreeLines::LinesDistancer<CurledLine>> curled_lines;
for (const Layer *l : this->layers()) {
curled_lines[l->id()] = AABBTreeLines::LinesDistancer<CurledLine>{l->curled_lines};
}
for (Layer *l : this->layers()) {
for (const LayerRegion *layer_region : l->regions()) {
if (regions_with_dynamic_overhangs.find(layer_region->m_region) == regions_with_dynamic_overhangs.end()) {
continue;
}
}
}
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Calculating overhanging perimeters - end";
}
this->set_done(posCalculateOverhangingPerimeters);
}
}
std::pair<FillAdaptive::OctreePtr, FillAdaptive::OctreePtr> PrintObject::prepare_adaptive_infill_data(
const std::vector<std::pair<const Surface *, float>> &surfaces_w_bottom_z) const
{