From 30224e8ae5d68d23e632d0a197aad5eddf83a34c Mon Sep 17 00:00:00 2001 From: enricoturri1966 Date: Thu, 21 Apr 2022 14:13:01 +0200 Subject: [PATCH] Port of 1a2ba70fcf59ed063668ba91cdd600cf0e729928 to OpenGL ES --- resources/shaders/ES/gouraud.vs | 154 +++++++++--------- resources/shaders/ES/gouraud_light.vs | 90 +++++----- .../shaders/ES/gouraud_light_instanced.vs | 100 ++++++------ resources/shaders/ES/mm_gouraud.fs | 132 +++++++-------- resources/shaders/ES/toolpaths_cog.vs | 94 +++++------ resources/shaders/ES/variable_layer_height.vs | 120 +++++++------- 6 files changed, 345 insertions(+), 345 deletions(-) diff --git a/resources/shaders/ES/gouraud.vs b/resources/shaders/ES/gouraud.vs index 1efb9e92b6..c2354ee6eb 100644 --- a/resources/shaders/ES/gouraud.vs +++ b/resources/shaders/ES/gouraud.vs @@ -1,77 +1,77 @@ -#version 100 - -#define INTENSITY_CORRECTION 0.6 - -// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) -const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); -#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SHININESS 20.0 - -// normalized values for (1./1.43, 0.2/1.43, 1./1.43) -const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); -#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) -//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) -//#define LIGHT_FRONT_SHININESS 5.0 - -#define INTENSITY_AMBIENT 0.3 - -const vec3 ZERO = vec3(0.0, 0.0, 0.0); - -struct SlopeDetection -{ - bool actived; - float normal_z; - mat3 volume_world_normal_matrix; -}; - -uniform mat4 view_model_matrix; -uniform mat4 projection_matrix; -uniform mat3 normal_matrix; -uniform mat4 volume_world_matrix; -uniform SlopeDetection slope; - -// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane. -uniform vec2 z_range; -// Clipping plane - general orientation. Used by the SLA gizmo. -uniform vec4 clipping_plane; - -attribute vec3 v_position; -attribute vec3 v_normal; - -// x = diffuse, y = specular; -varying vec2 intensity; - -varying vec3 clipping_planes_dots; - -varying vec4 world_pos; -varying float world_normal_z; -varying vec3 eye_normal; - -void main() -{ - // First transform the normal into camera space and normalize the result. - eye_normal = normalize(normal_matrix * v_normal); - - // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. - // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. - float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); - - intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; - vec4 position = view_model_matrix * vec4(v_position, 1.0); - intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); - - // Perform the same lighting calculation for the 2nd light source (no specular applied). - NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); - intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; - - // Point in homogenous coordinates. - world_pos = volume_world_matrix * vec4(v_position, 1.0); - - // z component of normal vector in world coordinate used for slope shading - world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * v_normal)).z : 0.0; - - gl_Position = projection_matrix * position; - // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded. - clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z); -} +#version 100 + +#define INTENSITY_CORRECTION 0.6 + +// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) +const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); +#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SHININESS 20.0 + +// normalized values for (1./1.43, 0.2/1.43, 1./1.43) +const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); +#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) +//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) +//#define LIGHT_FRONT_SHININESS 5.0 + +#define INTENSITY_AMBIENT 0.3 + +const vec3 ZERO = vec3(0.0, 0.0, 0.0); + +struct SlopeDetection +{ + bool actived; + float normal_z; + mat3 volume_world_normal_matrix; +}; + +uniform mat4 view_model_matrix; +uniform mat4 projection_matrix; +uniform mat3 view_normal_matrix; +uniform mat4 volume_world_matrix; +uniform SlopeDetection slope; + +// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane. +uniform vec2 z_range; +// Clipping plane - general orientation. Used by the SLA gizmo. +uniform vec4 clipping_plane; + +attribute vec3 v_position; +attribute vec3 v_normal; + +// x = diffuse, y = specular; +varying vec2 intensity; + +varying vec3 clipping_planes_dots; + +varying vec4 world_pos; +varying float world_normal_z; +varying vec3 eye_normal; + +void main() +{ + // First transform the normal into camera space and normalize the result. + eye_normal = normalize(view_normal_matrix * v_normal); + + // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. + // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. + float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); + + intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; + vec4 position = view_model_matrix * vec4(v_position, 1.0); + intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); + + // Perform the same lighting calculation for the 2nd light source (no specular applied). + NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); + intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; + + // Point in homogenous coordinates. + world_pos = volume_world_matrix * vec4(v_position, 1.0); + + // z component of normal vector in world coordinate used for slope shading + world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * v_normal)).z : 0.0; + + gl_Position = projection_matrix * position; + // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded. + clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z); +} diff --git a/resources/shaders/ES/gouraud_light.vs b/resources/shaders/ES/gouraud_light.vs index f09492437c..a212be75eb 100644 --- a/resources/shaders/ES/gouraud_light.vs +++ b/resources/shaders/ES/gouraud_light.vs @@ -1,45 +1,45 @@ -#version 100 - -#define INTENSITY_CORRECTION 0.6 - -// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) -const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); -#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SHININESS 20.0 - -// normalized values for (1./1.43, 0.2/1.43, 1./1.43) -const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); -#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) - -#define INTENSITY_AMBIENT 0.3 - -uniform mat4 view_model_matrix; -uniform mat4 projection_matrix; -uniform mat3 normal_matrix; - -attribute vec3 v_position; -attribute vec3 v_normal; - -// x = tainted, y = specular; -varying vec2 intensity; - -void main() -{ - // First transform the normal into camera space and normalize the result. - vec3 normal = normalize(normal_matrix * v_normal); - - // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. - // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. - float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); - - intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; - vec4 position = view_model_matrix * vec4(v_position, 1.0); - intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); - - // Perform the same lighting calculation for the 2nd light source (no specular applied). - NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); - intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; - - gl_Position = projection_matrix * position; -} +#version 100 + +#define INTENSITY_CORRECTION 0.6 + +// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) +const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); +#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SHININESS 20.0 + +// normalized values for (1./1.43, 0.2/1.43, 1./1.43) +const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); +#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) + +#define INTENSITY_AMBIENT 0.3 + +uniform mat4 view_model_matrix; +uniform mat4 projection_matrix; +uniform mat3 view_normal_matrix; + +attribute vec3 v_position; +attribute vec3 v_normal; + +// x = tainted, y = specular; +varying vec2 intensity; + +void main() +{ + // First transform the normal into camera space and normalize the result. + vec3 normal = normalize(view_normal_matrix * v_normal); + + // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. + // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. + float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); + + intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; + vec4 position = view_model_matrix * vec4(v_position, 1.0); + intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); + + // Perform the same lighting calculation for the 2nd light source (no specular applied). + NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); + intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; + + gl_Position = projection_matrix * position; +} diff --git a/resources/shaders/ES/gouraud_light_instanced.vs b/resources/shaders/ES/gouraud_light_instanced.vs index b1b35c1225..018e3bafd2 100644 --- a/resources/shaders/ES/gouraud_light_instanced.vs +++ b/resources/shaders/ES/gouraud_light_instanced.vs @@ -1,50 +1,50 @@ -#version 100 - -#define INTENSITY_CORRECTION 0.6 - -// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) -const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); -#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SHININESS 20.0 - -// normalized values for (1./1.43, 0.2/1.43, 1./1.43) -const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); -#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) - -#define INTENSITY_AMBIENT 0.3 - -uniform mat4 view_model_matrix; -uniform mat4 projection_matrix; -uniform mat3 normal_matrix; - -// vertex attributes -attribute vec3 v_position; -attribute vec3 v_normal; -// instance attributes -attribute vec3 i_offset; -attribute vec2 i_scales; - -// x = tainted, y = specular; -varying vec2 intensity; - -void main() -{ - // First transform the normal into camera space and normalize the result. - vec3 eye_normal = normalize(normal_matrix * v_normal); - - // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. - // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. - float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); - - intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; - vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0); - vec4 eye_position = view_model_matrix * world_position; - intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); - - // Perform the same lighting calculation for the 2nd light source (no specular applied). - NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); - intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; - - gl_Position = projection_matrix * eye_position; -} +#version 100 + +#define INTENSITY_CORRECTION 0.6 + +// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) +const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); +#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SHININESS 20.0 + +// normalized values for (1./1.43, 0.2/1.43, 1./1.43) +const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); +#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) + +#define INTENSITY_AMBIENT 0.3 + +uniform mat4 view_model_matrix; +uniform mat4 projection_matrix; +uniform mat3 view_normal_matrix; + +// vertex attributes +attribute vec3 v_position; +attribute vec3 v_normal; +// instance attributes +attribute vec3 i_offset; +attribute vec2 i_scales; + +// x = tainted, y = specular; +varying vec2 intensity; + +void main() +{ + // First transform the normal into camera space and normalize the result. + vec3 eye_normal = normalize(view_normal_matrix * v_normal); + + // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. + // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. + float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); + + intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; + vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0); + vec4 eye_position = view_model_matrix * world_position; + intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); + + // Perform the same lighting calculation for the 2nd light source (no specular applied). + NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); + intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; + + gl_Position = projection_matrix * eye_position; +} diff --git a/resources/shaders/ES/mm_gouraud.fs b/resources/shaders/ES/mm_gouraud.fs index 9df4dbf6ec..69c6e107d2 100644 --- a/resources/shaders/ES/mm_gouraud.fs +++ b/resources/shaders/ES/mm_gouraud.fs @@ -1,66 +1,66 @@ -#version 100 -#extension GL_OES_standard_derivatives : enable - -precision highp float; - -#define INTENSITY_CORRECTION 0.6 - -// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) -const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); -#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SHININESS 20.0 - -// normalized values for (1./1.43, 0.2/1.43, 1./1.43) -const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); -#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) - -#define INTENSITY_AMBIENT 0.3 - -const vec3 ZERO = vec3(0.0, 0.0, 0.0); -const float EPSILON = 0.0001; - -uniform vec4 uniform_color; - -uniform bool volume_mirrored; - -uniform mat4 view_model_matrix; -uniform mat3 normal_matrix; - -varying vec3 clipping_planes_dots; -varying vec4 model_pos; - -void main() -{ - if (any(lessThan(clipping_planes_dots, ZERO))) - discard; - vec3 color = uniform_color.rgb; - float alpha = uniform_color.a; - - vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz))); -#ifdef FLIP_TRIANGLE_NORMALS - triangle_normal = -triangle_normal; -#endif - - if (volume_mirrored) - triangle_normal = -triangle_normal; - - // First transform the normal into camera space and normalize the result. - vec3 eye_normal = normalize(normal_matrix * triangle_normal); - - // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. - // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. - float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); - - // x = diffuse, y = specular; - vec2 intensity = vec2(0.0); - intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; - vec3 position = (view_model_matrix * model_pos).xyz; - intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); - - // Perform the same lighting calculation for the 2nd light source (no specular applied). - NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); - intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; - - gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha); -} +#version 100 +#extension GL_OES_standard_derivatives : enable + +precision highp float; + +#define INTENSITY_CORRECTION 0.6 + +// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) +const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); +#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SHININESS 20.0 + +// normalized values for (1./1.43, 0.2/1.43, 1./1.43) +const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); +#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) + +#define INTENSITY_AMBIENT 0.3 + +const vec3 ZERO = vec3(0.0, 0.0, 0.0); +const float EPSILON = 0.0001; + +uniform vec4 uniform_color; + +uniform bool volume_mirrored; + +uniform mat4 view_model_matrix; +uniform mat3 view_normal_matrix; + +varying vec3 clipping_planes_dots; +varying vec4 model_pos; + +void main() +{ + if (any(lessThan(clipping_planes_dots, ZERO))) + discard; + vec3 color = uniform_color.rgb; + float alpha = uniform_color.a; + + vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz))); +#ifdef FLIP_TRIANGLE_NORMALS + triangle_normal = -triangle_normal; +#endif + + if (volume_mirrored) + triangle_normal = -triangle_normal; + + // First transform the normal into camera space and normalize the result. + vec3 eye_normal = normalize(view_normal_matrix * triangle_normal); + + // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. + // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. + float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); + + // x = diffuse, y = specular; + vec2 intensity = vec2(0.0); + intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; + vec3 position = (view_model_matrix * model_pos).xyz; + intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); + + // Perform the same lighting calculation for the 2nd light source (no specular applied). + NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); + intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; + + gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha); +} diff --git a/resources/shaders/ES/toolpaths_cog.vs b/resources/shaders/ES/toolpaths_cog.vs index 3350c9e006..44706126b8 100644 --- a/resources/shaders/ES/toolpaths_cog.vs +++ b/resources/shaders/ES/toolpaths_cog.vs @@ -1,47 +1,47 @@ -#version 100 - -#define INTENSITY_CORRECTION 0.6 - -// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) -const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); -#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SHININESS 20.0 - -// normalized values for (1./1.43, 0.2/1.43, 1./1.43) -const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); -#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) - -#define INTENSITY_AMBIENT 0.3 - -uniform mat4 view_model_matrix; -uniform mat4 projection_matrix; -uniform mat3 normal_matrix; - -attribute vec3 v_position; -attribute vec3 v_normal; - -// x = tainted, y = specular; -varying vec2 intensity; -varying vec3 world_position; - -void main() -{ - // First transform the normal into camera space and normalize the result. - vec3 normal = normalize(normal_matrix * v_normal); - - // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. - // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. - float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); - - intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; - vec4 position = view_model_matrix * vec4(v_position, 1.0); - intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); - - // Perform the same lighting calculation for the 2nd light source (no specular applied). - NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); - intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; - - world_position = v_position; - gl_Position = projection_matrix * position; -} +#version 100 + +#define INTENSITY_CORRECTION 0.6 + +// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) +const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); +#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SHININESS 20.0 + +// normalized values for (1./1.43, 0.2/1.43, 1./1.43) +const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); +#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) + +#define INTENSITY_AMBIENT 0.3 + +uniform mat4 view_model_matrix; +uniform mat4 projection_matrix; +uniform mat3 view_normal_matrix; + +attribute vec3 v_position; +attribute vec3 v_normal; + +// x = tainted, y = specular; +varying vec2 intensity; +varying vec3 world_position; + +void main() +{ + // First transform the normal into camera space and normalize the result. + vec3 normal = normalize(view_normal_matrix * v_normal); + + // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. + // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. + float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); + + intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; + vec4 position = view_model_matrix * vec4(v_position, 1.0); + intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); + + // Perform the same lighting calculation for the 2nd light source (no specular applied). + NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); + intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; + + world_position = v_position; + gl_Position = projection_matrix * position; +} diff --git a/resources/shaders/ES/variable_layer_height.vs b/resources/shaders/ES/variable_layer_height.vs index ecfb64f8d1..417bd79c7b 100644 --- a/resources/shaders/ES/variable_layer_height.vs +++ b/resources/shaders/ES/variable_layer_height.vs @@ -1,60 +1,60 @@ -#version 100 - -#define INTENSITY_CORRECTION 0.6 - -const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); -#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SHININESS 20.0 - -const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); -#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) -//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) -//#define LIGHT_FRONT_SHININESS 5.0 - -#define INTENSITY_AMBIENT 0.3 - -uniform mat4 view_model_matrix; -uniform mat4 projection_matrix; -uniform mat3 normal_matrix; -uniform mat4 volume_world_matrix; -uniform float object_max_z; - -attribute vec3 v_position; -attribute vec3 v_normal; -attribute vec2 v_tex_coord; - -// x = tainted, y = specular; -varying vec2 intensity; - -varying float object_z; - -void main() -{ - // ===================================================== - // NOTE: - // when object_max_z > 0.0 we are rendering the overlay - // when object_max_z == 0.0 we are rendering the volumes - // ===================================================== - - // First transform the normal into camera space and normalize the result. - vec3 normal = (object_max_z > 0.0) ? vec3(0.0, 0.0, 1.0) : normalize(normal_matrix * v_normal); - - // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. - // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. - float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); - - intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; - vec4 position = view_model_matrix * vec4(v_position, 1.0); - intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); - - // Perform the same lighting calculation for the 2nd light source (no specular) - NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); - - intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; - - // Scaled to widths of the Z texture. - object_z = (object_max_z > 0.0) ? object_max_z * v_tex_coord.y : (volume_world_matrix * vec4(v_position, 1.0)).z; - - gl_Position = projection_matrix * position; -} +#version 100 + +#define INTENSITY_CORRECTION 0.6 + +const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); +#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SHININESS 20.0 + +const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); +#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) +//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) +//#define LIGHT_FRONT_SHININESS 5.0 + +#define INTENSITY_AMBIENT 0.3 + +uniform mat4 view_model_matrix; +uniform mat4 projection_matrix; +uniform mat3 view_normal_matrix; +uniform mat4 volume_world_matrix; +uniform float object_max_z; + +attribute vec3 v_position; +attribute vec3 v_normal; +attribute vec2 v_tex_coord; + +// x = tainted, y = specular; +varying vec2 intensity; + +varying float object_z; + +void main() +{ + // ===================================================== + // NOTE: + // when object_max_z > 0.0 we are rendering the overlay + // when object_max_z == 0.0 we are rendering the volumes + // ===================================================== + + // First transform the normal into camera space and normalize the result. + vec3 normal = (object_max_z > 0.0) ? vec3(0.0, 0.0, 1.0) : normalize(view_normal_matrix * v_normal); + + // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. + // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. + float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); + + intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; + vec4 position = view_model_matrix * vec4(v_position, 1.0); + intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); + + // Perform the same lighting calculation for the 2nd light source (no specular) + NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); + + intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; + + // Scaled to widths of the Z texture. + object_z = (object_max_z > 0.0) ? object_max_z * v_tex_coord.y : (volume_world_matrix * vec4(v_position, 1.0)).z; + + gl_Position = projection_matrix * position; +}