Longest path in multi circles searching

This commit is contained in:
Filip Sykala 2021-02-22 18:17:30 +01:00
parent 3d5d6e3cb7
commit 3ea090d75b

View File

@ -1993,20 +1993,16 @@ struct VoronoiGraph::Node::Neighbor
const VD::edge_type *edge; const VD::edge_type *edge;
// length edge between vertices // length edge between vertices
double edge_length; double edge_length;
// Sum of edge length to farest border of island
double longest_distance;
// pointer on graph node structure // pointer on graph node structure
Node *graph_node; Node *node;
public: public:
Neighbor(const VD::edge_type *edge, Neighbor(const VD::edge_type *edge,
double edge_length, double edge_length,
double longest_distance, Node *node)
Node *graph_node)
: edge(edge) : edge(edge)
, edge_length(edge_length) , edge_length(edge_length)
, longest_distance(longest_distance) , node(node)
, graph_node(graph_node)
{} {}
}; };
@ -2024,9 +2020,15 @@ struct VoronoiGraph::Path
double length; double length;
public: public:
Path() : path(), length(0.) {} Path() : path(), length(0.) {}
Path(const VoronoiGraph::Node *node) : path({node}), length(0.) {}
Path(VoronoiGraph::Nodes nodes, double length) Path(VoronoiGraph::Nodes nodes, double length)
: path(std::move(nodes)), length(length) : path(std::move(nodes)), length(length)
{} {}
void append(const VoronoiGraph::Node *node, double length) {
path.push_back(node);
this->length += length;
}
}; };
/// <summary> /// <summary>
@ -2042,19 +2044,12 @@ struct VoronoiGraph::ExPath : public VoronoiGraph::Path
// circles // circles
std::vector<VoronoiGraph::Circle> circles; std::vector<VoronoiGraph::Circle> circles;
// every connected circle have two records(firs to second & second to first)
// index_to_circles i1, i2; --> connected_circle[i1] = i2; connected_circle[i2] = i1;
std::map<size_t, std::set<size_t>> connected_circle;
public: public:
ExPath() = default; ExPath() = default;
/// <summary>
/// Append new node to path
/// </summary>
/// <param name="neighbor">node to be append</param>
/// <param name="neighbor_distance">distance of new neighbor</param>
ExPath(const VoronoiGraph::Node *neighbor_node,
double neighbor_distance)
{
this->path.push_back(neighbor_node);
this->length += neighbor_distance;
}
}; };
/// <summary> /// <summary>
@ -2110,9 +2105,9 @@ VoronoiGraph getSkeleton(const VD &vd, const Lines &lines)
VoronoiGraph::Node* node1 = getNode(skeleton, v1, &edge, lines); VoronoiGraph::Node* node1 = getNode(skeleton, v1, &edge, lines);
// add extended Edge to graph, both side // add extended Edge to graph, both side
VoronoiGraph::Node::Neighbor neighbor0(&edge, length, 0., node1); VoronoiGraph::Node::Neighbor neighbor0(&edge, length, node1);
node0->neighbors.push_back(neighbor0); node0->neighbors.push_back(neighbor0);
VoronoiGraph::Node::Neighbor neighbor1(edge.twin(), length, 0., node0); VoronoiGraph::Node::Neighbor neighbor1(edge.twin(), length, node0);
node1->neighbors.push_back(neighbor1); node1->neighbors.push_back(neighbor1);
} }
return skeleton; return skeleton;
@ -2151,7 +2146,7 @@ const VoronoiGraph::Node::Neighbor* get_neighbor(
const VoronoiGraph::Node *to) const VoronoiGraph::Node *to)
{ {
for (const VoronoiGraph::Node::Neighbor &neighbor : from->neighbors) for (const VoronoiGraph::Node::Neighbor &neighbor : from->neighbors)
if (neighbor.graph_node == to) return &neighbor; if (neighbor.node == to) return &neighbor;
return nullptr; return nullptr;
} }
double get_neighbor_distance(const VoronoiGraph::Node *from, double get_neighbor_distance(const VoronoiGraph::Node *from,
@ -2170,14 +2165,10 @@ double get_neighbor_distance(const VoronoiGraph::Node *from,
/// <param name="side_branches">Circle side branches</param> /// <param name="side_branches">Circle side branches</param>
/// <param name="start_path">Path before circle</param> /// <param name="start_path">Path before circle</param>
/// <returns>Longest nodes path and its length</returns> /// <returns>Longest nodes path and its length</returns>
std::pair<VoronoiGraph::Nodes, double> find_longest_path_on_circle( VoronoiGraph::Path find_longest_path_on_circle(
VoronoiGraph::Circle & circle, const VoronoiGraph::Circle &circle,
const VoronoiGraph::ExPath::SideBranches &side_branches, const VoronoiGraph::ExPath::SideBranches &side_branches)
const VoronoiGraph::Path & start_path)
{ {
// !! this FIX circle lenght because at detection of circle it will cost time to calculate it
circle.length -= start_path.length;
double half_circle_length = circle.length / 2.; double half_circle_length = circle.length / 2.;
double distance_on_circle = 0; double distance_on_circle = 0;
@ -2240,6 +2231,96 @@ std::pair<VoronoiGraph::Nodes, double> find_longest_path_on_circle(
return {circle_path, longest_branch_length}; return {circle_path, longest_branch_length};
} }
struct OrderByLength
{
bool operator()(const VoronoiGraph::Path &path1, const VoronoiGraph::Path &path2)
{
return path1.length > path2.length;
}
};
VoronoiGraph::Path find_longest_path_on_circles(
const VoronoiGraph::Node &input_node,
size_t finished_circle_index,
const VoronoiGraph::ExPath &ex_path)
{
const std::vector<VoronoiGraph::Circle> &circles = ex_path.circles;
const auto &circle = circles[finished_circle_index];
auto connected_circle_item = ex_path.connected_circle.find(finished_circle_index);
// is only one circle
if (connected_circle_item == ex_path.connected_circle.end()) {
// find longest path over circle and store it into next_path
return find_longest_path_on_circle(circle, ex_path.side_branches);
}
// multi circle
// find longest path over circles
const std::set<size_t> &connected_circles = connected_circle_item->second;
// collect all circle ndoes
std::set<const VoronoiGraph::Node *> nodes;
nodes.insert(circle.path.begin(), circle.path.end());
for (size_t circle_index : connected_circles) {
const auto &circle = circles[circle_index];
nodes.insert(circle.path.begin(), circle.path.end());
}
// nodes are path throw circles
// length is sum path throw circles PLUS length of longest side_branch
VoronoiGraph::Path longest_path;
// wide search by shortest distance for path over circle's node
// !! do NOT use recursion, may cause stack overflow
std::set<const VoronoiGraph::Node*> done; // all ready checked
// on top is shortest path
std::priority_queue<VoronoiGraph::Path, std::vector<VoronoiGraph::Path>,
OrderByLength> search_queue;
VoronoiGraph::Path start_path({&input_node}, 0.);
search_queue.emplace(start_path);
while (!search_queue.empty()) {
// shortest path from input_node
VoronoiGraph::Path path(std::move(search_queue.top()));
search_queue.pop();
const VoronoiGraph::Node &node = *path.path.back();
if (done.find(&node) != done.end()) { // already checked
continue;
}
done.insert(&node);
for (const VoronoiGraph::Node::Neighbor &neighbor : node.neighbors) {
if (nodes.find(neighbor.node) == nodes.end()) continue; // out of circles
if (done.find(neighbor.node) != done.end()) continue;
VoronoiGraph::Path neighbor_path = path; // make copy
neighbor_path.append(neighbor.node, neighbor.edge_length);
search_queue.push(neighbor_path);
auto branches_item = ex_path.side_branches.find(neighbor.node);
// exist side from this neighbor node ?
if (branches_item == ex_path.side_branches.end()) continue;
const VoronoiGraph::Path &longest_branch =
branches_item->second.front();
double length = longest_branch.length + neighbor_path.length;
if (longest_path.length < length) {
longest_path.length = length;
longest_path.path = neighbor_path.path; // copy path
}
}
}
// create result path
assert(!longest_path.path.empty());
longest_path.path.erase(longest_path.path.begin()); // remove start of circle
assert(!longest_path.path.empty());
auto branches_item = ex_path.side_branches.find(longest_path.path.back());
if (branches_item == ex_path.side_branches.end()) {
// longest path ends on circle
return longest_path;
}
const VoronoiGraph::Path &longest_branch = branches_item->second.front();
longest_path.path.insert(longest_path.path.end(),
longest_branch.path.begin(),
longest_branch.path.end());
return longest_path;
}
void sort_path_by_length(std::vector<VoronoiGraph::Path> &paths) void sort_path_by_length(std::vector<VoronoiGraph::Path> &paths)
{ {
@ -2265,17 +2346,79 @@ std::optional<VoronoiGraph::Circle> create_circle(
// not neccesary to check last one in path // not neccesary to check last one in path
auto end_find = passed_nodes.end() - 1; auto end_find = passed_nodes.end() - 1;
const auto &path_item = std::find(passed_nodes.begin(), end_find, const auto &path_item = std::find(passed_nodes.begin(), end_find,
neighbor.graph_node); neighbor.node);
if (path_item == end_find) return {}; // circle not detected if (path_item == end_find) return {}; // circle not detected
// separate Circle: // separate Circle:
VoronoiGraph::Nodes circle_path(path_item, passed_nodes.end()); VoronoiGraph::Nodes circle_path(path_item, passed_nodes.end());
// !!! Real circle lenght is calculated in function find_longest_path_on_circle // !!! Real circle lenght is calculated on detection of end circle
// now circle_length contain also lenght of path before circle // now circle_length contain also lenght of path before circle
double circle_length = path.length + neighbor.edge_length; double circle_length = path.length + neighbor.edge_length;
// solve of branch length will be at begin of cirlce // solve of branch length will be at begin of cirlce
return VoronoiGraph::Circle(std::move(circle_path), circle_length); return VoronoiGraph::Circle(std::move(circle_path), circle_length);
}; };
void merge_connected_circle(
std::map<size_t, std::set<size_t>>& dst,
std::map<size_t, std::set<size_t>>& src,
size_t dst_circle_count)
{
std::set<size_t> done;
for (const auto &item : src) {
size_t dst_index = dst_circle_count + item.first;
if (done.find(dst_index) != done.end()) continue;
done.insert(dst_index);
std::set<size_t> connected_circle;
for (const size_t &src_index : item.second)
connected_circle.insert(dst_circle_count + src_index);
auto &dst_set = dst[dst_index];
dst_set.merge(connected_circle);
// write same information into connected circles
connected_circle = dst_set; // copy
connected_circle.insert(dst_index);
for (size_t prev_connection_idx : dst_set) {
done.insert(prev_connection_idx);
for (size_t connected_circle_idx : connected_circle) {
if (connected_circle_idx == prev_connection_idx) continue;
dst[prev_connection_idx].insert(connected_circle_idx);
}
}
}
}
/// <summary>
/// PRIVATE:
/// move data from source to destination
/// side_branches + circles + connected_circle
/// </summary>
/// <param name="dst">result path - destination</param>
/// <param name="src">source path - data will be moved to dst</param>
void append_neighbor_branch(VoronoiGraph::ExPath &dst,
VoronoiGraph::ExPath &src)
{
// move side branches
if (!src.side_branches.empty())
dst.side_branches.insert(
std::make_move_iterator(src.side_branches.begin()),
std::make_move_iterator(src.side_branches.end()));
// move circles
if (!src.circles.empty()) {
// copy connected circles indexes
if (!src.connected_circle.empty()) {
merge_connected_circle(dst.connected_circle, src.connected_circle,
dst.circles.size());
}
dst.circles.insert(
dst.circles.end(),
std::make_move_iterator(src.circles.begin()),
std::make_move_iterator(src.circles.end()));
}
}
/// <summary> /// <summary>
/// PRIVATE: /// PRIVATE:
/// Depth search in Voronoi graph for longest path /// Depth search in Voronoi graph for longest path
@ -2289,44 +2432,45 @@ VoronoiGraph::ExPath create_longest_branch_from_node(
double distance_to_node = 0., double distance_to_node = 0.,
const VoronoiGraph::Path &prev_path = VoronoiGraph::Path({},0.)) const VoronoiGraph::Path &prev_path = VoronoiGraph::Path({},0.))
{ {
const VoronoiGraph::Node *prev_node =
(prev_path.path.size() >= 1) ? prev_path.path.back() : nullptr;
// append actual node // append actual node
VoronoiGraph::Path act_path = prev_path; // make copy VoronoiGraph::Path act_path = prev_path; // make copy
act_path.path.push_back(&node); act_path.append(&node, distance_to_node);
act_path.length += distance_to_node;
const VoronoiGraph::Nodes &prev_nodes = prev_path.path;
const VoronoiGraph::Node *prev_node =
(prev_nodes.size() >= 1) ? prev_nodes.back() : nullptr;
const std::vector<VoronoiGraph::Node::Neighbor> &neighbors = node.neighbors; const std::vector<VoronoiGraph::Node::Neighbor> &neighbors = node.neighbors;
size_t neighbor_count = neighbors.size(); size_t neighbor_count = neighbors.size();
std::vector<VoronoiGraph::Path> side_branches; std::vector<VoronoiGraph::Path> side_branches;
side_branches.reserve(neighbor_count - 1); // one neighbor is prev node side_branches.reserve(neighbor_count - 1); // one neighbor is prev node
// when search on cirle store only branches not search for longest Path
bool is_node_on_circle = false;
// skip node on circle when circle start at this node // skip node on circle when circle start at this node
// vector --> multiple cirle could start at same node // vector --> multiple cirle could start at same node
// prev node should be skiped to // prev node should be skiped to
VoronoiGraph::Nodes skip_nodes({prev_node}); // circle std::set<const VoronoiGraph::Node *> skip_nodes({prev_node}); // circle
VoronoiGraph::ExPath result(&node, distance_to_node); VoronoiGraph::ExPath result;
// when search on cirle store only branches not search for longest Path
std::vector<size_t> circle_indexes; // connected circles
std::vector<size_t> end_circle_indexes;
// Depth search for path of all neighbors --> fill paths // Depth search for path of all neighbors --> fill paths
for (const VoronoiGraph::Node::Neighbor &neighbor : neighbors) { for (const VoronoiGraph::Node::Neighbor &neighbor : neighbors) {
if (std::find(skip_nodes.begin(), skip_nodes.end(), if (skip_nodes.find(neighbor.node) != skip_nodes.end()) continue;
neighbor.graph_node) != skip_nodes.end()) continue;
// detection of circle // detection of circle
auto circle_opt = create_circle(act_path, neighbor); auto circle_opt = create_circle(act_path, neighbor);
if (circle_opt.has_value()) { if (circle_opt.has_value()) {
size_t circle_index = result.circles.size();
circle_indexes.push_back(circle_index);
result.circles.emplace_back(std::move(circle_opt.value())); result.circles.emplace_back(std::move(circle_opt.value()));
is_node_on_circle = true;
continue; continue;
} }
// create copy of path(not circles, not side_branches) // create copy of path(not circles, not side_branches)
const VoronoiGraph::Node &next_node = *neighbor.graph_node; const VoronoiGraph::Node &next_node = *neighbor.node;
// is next node leaf ? // is next node leaf ?
if (next_node.neighbors.size() == 1) { if (next_node.neighbors.size() == 1) {
VoronoiGraph::Path side_branch({&next_node}, neighbor.edge_length); VoronoiGraph::Path side_branch({&next_node}, neighbor.edge_length);
@ -2337,52 +2481,68 @@ VoronoiGraph::ExPath create_longest_branch_from_node(
VoronoiGraph::ExPath next_path = VoronoiGraph::ExPath next_path =
create_longest_branch_from_node(next_node, neighbor.edge_length, act_path); create_longest_branch_from_node(next_node, neighbor.edge_length, act_path);
// over all new circles -> check if this node is on circle
bool is_circle_neighbor = false; bool is_circle_neighbor = false;
if (next_path.path.empty()) { // neighbor node is on circle
for (VoronoiGraph::Circle &circle : next_path.circles) { for (VoronoiGraph::Circle &circle : next_path.circles) {
const auto &circle_item = std::find(circle.path.begin(), circle.path.end(), &node); const auto &circle_item = std::find(circle.path.begin(),
if (circle_item != circle.path.end()) { circle.path.end(), &node);
if (circle_item == circle.path.end()) continue; // node is NOT on circle
size_t next_circle_index = &circle - &next_path.circles.front();
size_t circle_index = result.circles.size() + next_circle_index;
circle_indexes.push_back(circle_index);
// check if this node is end of circle // check if this node is end of circle
if (circle_item == circle.path.begin()) { if (circle_item == circle.path.begin()) {
// find longest path over circle and store it into next_path end_circle_indexes.push_back(circle_index);
std::tie(next_path.path, next_path.length) =
find_longest_path_on_circle(circle, next_path.side_branches, act_path); // !! this FIX circle lenght because at detection of
// circle it will cost time to calculate it
circle.length -= act_path.length;
// skip twice checking of circle // skip twice checking of circle
skip_nodes.push_back(circle.path.back()); skip_nodes.insert(circle.path.back());
} else { }
is_node_on_circle = true;
is_circle_neighbor = true; is_circle_neighbor = true;
} }
} }
}
// TODO: move insted of copy append_neighbor_branch(result, next_path);
// copy side branches
if (!next_path.side_branches.empty())
result.side_branches.insert(
next_path.side_branches.begin(),
next_path.side_branches.end());
// TODO: move insted of copy
// copy circles
if (!next_path.circles.empty())
result.circles.insert(
result.circles.end(),
next_path.circles.begin(),
next_path.circles.end());
if (!is_circle_neighbor) if (!is_circle_neighbor)
side_branches.emplace_back(std::move(next_path)); side_branches.emplace_back(std::move(next_path));
} }
// nothing to store
// remember connected circle
if (circle_indexes.size() > 1) {
for (size_t circle_index : circle_indexes) {
for (size_t circle_index2 : circle_indexes) {
if (circle_index == circle_index2) continue;
result.connected_circle[circle_index].insert(circle_index2);
}
}
}
// detect end of circles in this node
if (!end_circle_indexes.empty() &&
end_circle_indexes.size() == circle_indexes.size()) {
size_t circle_index = circle_indexes.front(); // possible any of them
side_branches.push_back(
find_longest_path_on_circles(node, circle_index, result));
circle_indexes.clear(); // resolved circles
}
// simple node on circle --> only input and output neighbor // simple node on circle --> only input and output neighbor
if (side_branches.empty()) return result; if (side_branches.empty()) {
return result;
}
// from longest path // from longest path
sort_path_by_length(side_branches); sort_path_by_length(side_branches);
if (is_node_on_circle) { // is node on unresolved circle?
if (!circle_indexes.empty()) {
// not search for longest path, it will eval on end of circle // not search for longest path, it will eval on end of circle
result.side_branches[&node] = side_branches; result.side_branches[&node] = side_branches;
return result; return result;
@ -2395,7 +2555,7 @@ VoronoiGraph::ExPath create_longest_branch_from_node(
} }
longest_path.path.insert(longest_path.path.begin(), &node); longest_path.path.insert(longest_path.path.begin(), &node);
result.path = std::move(longest_path.path); result.path = std::move(longest_path.path);
result.length += longest_path.length; result.length = distance_to_node + longest_path.length;
return result; return result;
} }
// only for debug purpose // only for debug purpose
@ -2625,8 +2785,8 @@ void draw(SVG &svg, const VoronoiGraph::Nodes& path, coord_t width, const char*
Point to(node->vertex->x(), node->vertex->y()); Point to(node->vertex->x(), node->vertex->y());
svg.draw(Line(from, to), color, width); svg.draw(Line(from, to), color, width);
//svg.draw_text(from, std::to_string(index - 1).c_str(), color); svg.draw_text(from, std::to_string(index - 1).c_str(), color);
//svg.draw_text(to, std::to_string(index).c_str(), color); svg.draw_text(to, std::to_string(index).c_str(), color);
prev_node = node; prev_node = node;
} }
} }
@ -2636,8 +2796,18 @@ void draw(SVG &svg, const VoronoiGraph::ExPath &path, coord_t width) {
const char *sideBranchesColor = "blue"; const char *sideBranchesColor = "blue";
const char *mainPathColor = "red"; const char *mainPathColor = "red";
for (auto &circle : path.circles) for (auto &circle : path.circles) {
draw(svg, circle.path, width, circlePathColor, true); draw(svg, circle.path, width, circlePathColor, true);
Point center(0, 0);
for (auto p : circle.path) {
center.x() += p->vertex->x();
center.y() += p->vertex->y();
}
center.x() /= circle.path.size();
center.y() /= circle.path.size();
svg.draw_text(center, ("C"+std::to_string(&circle - &path.circles.front())).c_str(), circlePathColor);
}
for (auto& branches : path.side_branches) for (auto& branches : path.side_branches)
for (auto &branch : branches.second) { for (auto &branch : branches.second) {
@ -2706,11 +2876,49 @@ TEST_CASE("Sample speed test on FrogLegs", "[VoronoiSkeleton]") {
cfg.curve_sample = 0.1 * size; cfg.curve_sample = 0.1 * size;
cfg.max_length_for_one_support_point = 3 * size; cfg.max_length_for_one_support_point = 3 * size;
for (int i = 0; i < 1; ++i) { for (int i = 0; i < 100; ++i) {
auto points = sample_in_center(frog_leg, cfg, false); auto points = sample_in_center(frog_leg, cfg, false);
} }
} }
TEST_CASE("Move vector", "[VoronoiSkeleton]") {
struct T{
std::vector<int> data;
std::map<const int *, const int *> connectors;
};
T cp;
cp.data = {2, 8, 16};
cp.connectors[&cp.data[0]] = &cp.data[2]; // 2 -> 16
cp.connectors[&cp.data[2]] = &cp.data[0]; // 16 -> 2
std::cout << "test data ";
for (auto &i : cp.data) std::cout << i << ", ";
std::cout << "\n";
for (auto &i : cp.connectors)
std::cout << *(i.first) << " -> " << *(i.second) << "\n";
std::cout << "end ";
{
T t;
t.data = {1, 12, 33, 4, 105, 116};
t.connectors[&t.data[1]] = &t.data[3]; // 12 -> 4
t.connectors[&t.data[3]] = &t.data[1]; // 12 -> 4
cp.data.insert(cp.data.end(), std::move_iterator(t.data.begin()),
std::move_iterator(t.data.end()));
cp.connectors.insert(std::move_iterator(t.connectors.begin()),
std::move_iterator(t.connectors.end()));
}
std::cout << "test data ";
for (auto &i : cp.data) std::cout << i << ", ";
std::cout << "\n";
for (auto &i : cp.connectors)
std::cout << *i.first << " -> " << *i.second << "\n";
std::cout << "end ";
}
TEST_CASE("Sample small islands", "[VoronoiSkeleton]") TEST_CASE("Sample small islands", "[VoronoiSkeleton]")
{ {
double size = 3e7; double size = 3e7;
@ -2769,8 +2977,23 @@ TEST_CASE("Sample small islands", "[VoronoiSkeleton]")
{4 * size5, size5}, {4 * size5, size5},
{3 * size5, size5}}}; {3 * size5, size5}}};
size_t count_cirlce_lines = 10; // test stack overfrow
double r_CCW = size / 2;
double r_CW = r_CCW - size / 6;
// CCW: couter clock wise, CW: clock wise
Points circle_CCW, circle_CW;
circle_CCW.reserve(count_cirlce_lines);
circle_CW.reserve(count_cirlce_lines);
for (size_t i = 0; i < count_cirlce_lines; ++i) {
double alpha = (2 * M_PI * i) / count_cirlce_lines;
double sina = sin(alpha);
double cosa = cos(alpha);
circle_CCW.emplace_back(-r_CCW * sina, r_CCW * cosa);
circle_CW.emplace_back(r_CW * sina, r_CW * cosa);
}
ExPolygon double_circle(circle_CCW, circle_CW);
//* /*
TriangleMesh mesh = load_model("frog_legs.obj"); TriangleMesh mesh = load_model("frog_legs.obj");
TriangleMeshSlicer slicer{&mesh}; TriangleMeshSlicer slicer{&mesh};
std::vector<float> grid({ 0.1f }); std::vector<float> grid({ 0.1f });
@ -2785,7 +3008,7 @@ TEST_CASE("Sample small islands", "[VoronoiSkeleton]")
cfg.curve_sample = 0.1 *size; cfg.curve_sample = 0.1 *size;
cfg.max_length_for_one_support_point = 3 * size; cfg.max_length_for_one_support_point = 3 * size;
ExPolygons islands = { frog_leg, ExPolygons islands = {
triangle triangle
, square , square
, sharp_triangle , sharp_triangle
@ -2794,7 +3017,8 @@ TEST_CASE("Sample small islands", "[VoronoiSkeleton]")
, triangle_with_hole , triangle_with_hole
, rect_with_4_hole , rect_with_4_hole
, mountains , mountains
, frog_leg //, double_circle
//, frog_leg
}; };
for (auto &island : islands) { for (auto &island : islands) {
auto points = test_island_sampling(island, cfg); auto points = test_island_sampling(island, cfg);