diff --git a/lib/Slic3r/GUI/3DScene.pm b/lib/Slic3r/GUI/3DScene.pm index 13460cfed2..75c19d89ef 100644 --- a/lib/Slic3r/GUI/3DScene.pm +++ b/lib/Slic3r/GUI/3DScene.pm @@ -1753,8 +1753,8 @@ sub _vertex_shader_Gouraud { // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SPECULAR (0.25 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SHININESS 200.0 +#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SHININESS 20.0 // normalized values for (1./1.43, 0.2/1.43, 1./1.43) const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); @@ -1784,15 +1784,9 @@ varying vec3 delta_box_max; void main() { - vec3 eye = -normalize((gl_ModelViewMatrix * gl_Vertex).xyz); - // First transform the normal into camera space and normalize the result. vec3 normal = normalize(gl_NormalMatrix * gl_Normal); - // Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space. - // Also since we're talking about a directional light, the position field is actually direction. - vec3 halfVector = normalize(LIGHT_TOP_DIR + eye); - // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); @@ -1801,7 +1795,7 @@ void main() intensity.y = 0.0; if (NdotL > 0.0) - intensity.y += LIGHT_TOP_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_TOP_SHININESS); + intensity.y += LIGHT_TOP_SPECULAR * pow(max(dot(normal, reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); // Perform the same lighting calculation for the 2nd light source (no specular applied). NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); @@ -1926,8 +1920,8 @@ sub _vertex_shader_variable_layer_height { const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SPECULAR (0.25 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SHININESS 200.0 +#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SHININESS 20.0 const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) @@ -1943,15 +1937,9 @@ varying float object_z; void main() { - vec3 eye = -normalize((gl_ModelViewMatrix * gl_Vertex).xyz); - // First transform the normal into camera space and normalize the result. vec3 normal = normalize(gl_NormalMatrix * gl_Normal); - // Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space. - // Also since we're talking about a directional light, the position field is actually direction. - vec3 halfVector = normalize(LIGHT_TOP_DIR + eye); - // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); @@ -1960,7 +1948,7 @@ void main() intensity.y = 0.0; if (NdotL > 0.0) - intensity.y += LIGHT_TOP_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_TOP_SHININESS); + intensity.y += LIGHT_TOP_SPECULAR * pow(max(dot(normal, reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); // Perform the same lighting calculation for the 2nd light source (no specular) NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);