Bug fix of sequential scheduling for many object instances (without the new wipe tower code) (SPE-2722)

This commit is contained in:
surynek 2025-03-21 00:07:22 +01:00 committed by Lukas Matena
parent 5aca536459
commit 774137a602

View File

@ -522,7 +522,7 @@ void introduce_ConsequentialTemporalLepoxAgainstFixed(z3::solver
}
#endif
//Solver.add(dec_vars_T[undecided[i]] + temporal_spread < dec_vars_T[next_i] && dec_vars_T[undecided[i]] + temporal_spread + temporal_spread / 2 > dec_vars_T[next_i]);
Solver.add((dec_vars_T[undecided[i]] < 0 || dec_vars_T[next_i] < 0) || dec_vars_T[undecided[i]] + temporal_spread < dec_vars_T[next_i] && dec_vars_T[undecided[i]] + temporal_spread + temporal_spread / 2 > dec_vars_T[next_i]);
Solver.add((dec_vars_T[undecided[i]] < 0 || dec_vars_T[next_i] < 0) || (dec_vars_T[undecided[i]] + temporal_spread < dec_vars_T[next_i] && dec_vars_T[undecided[i]] + temporal_spread + temporal_spread / 2 > dec_vars_T[next_i]));
}
/* Undecided --> missing */
else
@ -11371,9 +11371,9 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
int progress_total_object_phases,
std::function<void(int)> progress_callback)
{
std::vector<int> undecided;
std::vector<int> undecided;
decided_polygons.clear();
remaining_polygons.clear();
dec_values_X.resize(solvable_objects.size());
@ -11419,9 +11419,10 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
unreachable_polygons.push_back(solvable_object.unreachable_polygons);
lepox_to_next.push_back(solvable_object.lepox_to_next);
}
for (unsigned int curr_polygon = 0; curr_polygon < solvable_objects.size(); /* nothing */)
{
unsigned int curr_polygon;
for (curr_polygon = 0; curr_polygon < solvable_objects.size(); /* nothing */)
{
bool optimized = false;
z3::set_param("timeout", solver_configuration.optimization_timeout.c_str());
@ -11500,13 +11501,13 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
polygons,
lepox_to_next,
trans_bed_lepox);
std::vector<int> missing;
std::vector<int> remaining_local;
std::vector<int> remaining_local;
while(object_group_size > 0)
{
{
z3::expr_vector presence_assumptions(z_context);
assume_ConsequentialObjectPresence(z_context, local_dec_vars_T, undecided, missing, presence_assumptions);
assume_ConsequentialObjectPresence(z_context, local_dec_vars_T, undecided, remaining_local, presence_assumptions);
#ifdef DEBUG
{
@ -11630,7 +11631,7 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
progress_callback((SEQ_PROGRESS_RANGE * progress_object_phases_done) / progress_total_object_phases);
return true;
}
curr_polygon += solver_configuration.object_group_size;
curr_polygon += object_group_size;
progress_callback((SEQ_PROGRESS_RANGE * progress_object_phases_done) / progress_total_object_phases);
break;
}
@ -11646,18 +11647,30 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
++progress_object_phases_done;
}
remaining_local.push_back(undecided.back());
}
missing.push_back(undecided.back());
undecided.pop_back();
undecided.pop_back();
--object_group_size;
progress_callback((SEQ_PROGRESS_RANGE * progress_object_phases_done) / progress_total_object_phases);
--object_group_size;
progress_callback((SEQ_PROGRESS_RANGE * progress_object_phases_done) / progress_total_object_phases);
}
}
std::reverse(remaining_local.begin(), remaining_local.end());
remaining_polygons.insert(remaining_polygons.end(), remaining_local.begin(), remaining_local.end());
if (!optimized)
if (optimized)
{
if (object_group_size < solver_configuration.object_group_size)
{
int group_size_diff = solver_configuration.object_group_size - object_group_size;
if (curr_polygon + group_size_diff < solvable_objects.size())
{
curr_polygon += group_size_diff;
break;
}
return true;
}
}
else
{
if (curr_polygon <= 0)
{
@ -11668,17 +11681,24 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
if (curr_polygon + solver_configuration.object_group_size < solvable_objects.size())
{
curr_polygon += solver_configuration.object_group_size;
for (; curr_polygon < solvable_objects.size(); ++curr_polygon)
{
remaining_polygons.push_back(curr_polygon);
}
break;
}
return true;
}
}
}
assert(remaining_polygons.empty());
for (; curr_polygon < solvable_objects.size(); ++curr_polygon)
{
remaining_polygons.push_back(curr_polygon);
}
#ifdef DEBUG
{
for (unsigned int i = 0; i < remaining_polygons.size(); ++i)
{
printf("Remaining: %d\n", remaining_polygons[i]);
}
}
#endif
return true;
}