Fixed several issues with smoothening of the slowdown, but there are still artefacts in the preview, on curved into flat srufaces

This commit is contained in:
PavelMikus 2023-04-12 17:24:11 +02:00 committed by Pavel Mikuš
parent aa0e21eed1
commit 798396d918
2 changed files with 53 additions and 89 deletions

View File

@ -31,8 +31,6 @@ struct ExtendedPoint
{ {
Vec2d position; Vec2d position;
float distance; float distance;
size_t nearest_prev_layer_line;
Vec2d nearest_prev_layer_point;
float curvature; float curvature;
}; };
@ -55,16 +53,12 @@ std::vector<ExtendedPoint> estimate_points_properties(const std::vector<P>
ExtendedPoint start_point{maybe_unscale(input_points.front())}; ExtendedPoint start_point{maybe_unscale(input_points.front())};
auto [distance, nearest_line, x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(start_point.position.cast<AABBScalar>()); auto [distance, nearest_line, x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(start_point.position.cast<AABBScalar>());
start_point.distance = distance + boundary_offset; start_point.distance = distance + boundary_offset;
start_point.nearest_prev_layer_line = nearest_line;
start_point.nearest_prev_layer_point = x.template cast<double>();
points.push_back(start_point); points.push_back(start_point);
} }
for (size_t i = 1; i < input_points.size(); i++) { for (size_t i = 1; i < input_points.size(); i++) {
ExtendedPoint next_point{maybe_unscale(input_points[i])}; ExtendedPoint next_point{maybe_unscale(input_points[i])};
auto [distance, nearest_line, x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(next_point.position.cast<AABBScalar>()); auto [distance, nearest_line, x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(next_point.position.cast<AABBScalar>());
next_point.distance = distance + boundary_offset; next_point.distance = distance + boundary_offset;
next_point.nearest_prev_layer_line = nearest_line;
next_point.nearest_prev_layer_point = x.template cast<double>();
if (ADD_INTERSECTIONS && if (ADD_INTERSECTIONS &&
((points.back().distance > boundary_offset + EPSILON) != (next_point.distance > boundary_offset + EPSILON))) { ((points.back().distance > boundary_offset + EPSILON) != (next_point.distance > boundary_offset + EPSILON))) {
@ -74,8 +68,6 @@ std::vector<ExtendedPoint> estimate_points_properties(const std::vector<P>
ExtendedPoint p{}; ExtendedPoint p{};
p.position = intersection.first.template cast<double>(); p.position = intersection.first.template cast<double>();
p.distance = boundary_offset; p.distance = boundary_offset;
p.nearest_prev_layer_line = intersection.second;
p.nearest_prev_layer_point = p.position;
points.push_back(p); points.push_back(p);
} }
} }
@ -105,8 +97,6 @@ std::vector<ExtendedPoint> estimate_points_properties(const std::vector<P>
ExtendedPoint new_p{}; ExtendedPoint new_p{};
new_p.position = p0; new_p.position = p0;
new_p.distance = float(p0_dist + boundary_offset); new_p.distance = float(p0_dist + boundary_offset);
new_p.nearest_prev_layer_line = p0_near_l;
new_p.nearest_prev_layer_point = p0_x.template cast<double>();
new_points.push_back(new_p); new_points.push_back(new_p);
} }
if (t1 > 0.0) { if (t1 > 0.0) {
@ -115,8 +105,6 @@ std::vector<ExtendedPoint> estimate_points_properties(const std::vector<P>
ExtendedPoint new_p{}; ExtendedPoint new_p{};
new_p.position = p1; new_p.position = p1;
new_p.distance = float(p1_dist + boundary_offset); new_p.distance = float(p1_dist + boundary_offset);
new_p.nearest_prev_layer_line = p1_near_l;
new_p.nearest_prev_layer_point = p1_x.template cast<double>();
new_points.push_back(new_p); new_points.push_back(new_p);
} }
} }
@ -144,8 +132,6 @@ std::vector<ExtendedPoint> estimate_points_properties(const std::vector<P>
ExtendedPoint new_p{}; ExtendedPoint new_p{};
new_p.position = pos; new_p.position = pos;
new_p.distance = float(p_dist + boundary_offset); new_p.distance = float(p_dist + boundary_offset);
new_p.nearest_prev_layer_line = p_near_l;
new_p.nearest_prev_layer_point = p_x.template cast<double>();
new_points.push_back(new_p); new_points.push_back(new_p);
} }
} }
@ -279,13 +265,15 @@ public:
std::vector<ExtendedPoint> extended_points = std::vector<ExtendedPoint> extended_points =
estimate_points_properties<true, true, true, true>(path.polyline.points, prev_layer_boundaries[current_object], path.width); estimate_points_properties<true, true, true, true>(path.polyline.points, prev_layer_boundaries[current_object], path.width);
for (ExtendedPoint &ep : extended_points) { for (size_t i = 0; i < int(extended_points.size()) - 1; i++) {
ExtendedPoint& ep = extended_points[i];
// We are going to enforce slowdown over curled extrusions by increasing the point distance. The overhang speed is based on // We are going to enforce slowdown over curled extrusions by increasing the point distance. The overhang speed is based on
// signed distance from the prev layer, where 0 means fully overlapping extrusions and thus no slowdown, while extrusion_width // signed distance from the prev layer, where 0 means fully overlapping extrusions and thus no slowdown, while extrusion_width
// and more means full overhang, thus full slowdown. However, for curling, we take unsinged distance from the curled lines and // and more means full overhang, thus full slowdown. However, for curling, we take unsinged distance from the curled lines and
// artifically modifiy the distance // artifically modifiy the distance
Vec2d middle = 0.5 * (ep.position + extended_points[i + 1].position);
auto [distance_from_curled, line_idx, auto [distance_from_curled, line_idx,
p] = prev_curled_extrusions[current_object].distance_from_lines_extra<false>(Point::new_scale(ep.position)); p] = prev_curled_extrusions[current_object].distance_from_lines_extra<false>(Point::new_scale(middle));
if (distance_from_curled < scale_(2.0 * path.width)) { if (distance_from_curled < scale_(2.0 * path.width)) {
float artificially_increased_distance = path.width * float artificially_increased_distance = path.width *
(1.0 - (unscaled(distance_from_curled) / (2.0 * path.width)) * (1.0 - (unscaled(distance_from_curled) / (2.0 * path.width)) *

View File

@ -25,6 +25,7 @@
#include <cstddef> #include <cstddef>
#include <cstdio> #include <cstdio>
#include <functional> #include <functional>
#include <limits>
#include <math.h> #include <math.h>
#include <optional> #include <optional>
#include <unordered_map> #include <unordered_map>
@ -40,7 +41,7 @@
#include "Geometry/ConvexHull.hpp" #include "Geometry/ConvexHull.hpp"
// #define DETAILED_DEBUG_LOGS // #define DETAILED_DEBUG_LOGS
// #define DEBUG_FILES #define DEBUG_FILES
#ifdef DEBUG_FILES #ifdef DEBUG_FILES
#include <boost/nowide/cstdio.hpp> #include <boost/nowide/cstdio.hpp>
@ -208,19 +209,19 @@ std::vector<ExtrusionLine> to_short_lines(const ExtrusionEntity *e, float length
} }
float estimate_curled_up_height( float estimate_curled_up_height(
const ExtendedPoint &point, float layer_height, float flow_width, float prev_line_curled_height, Params params) float distance, float curvature, float layer_height, float flow_width, float prev_line_curled_height, Params params)
{ {
float curled_up_height = 0; float curled_up_height = 0;
if (fabs(point.distance) < 1.1 * flow_width) { if (fabs(distance) < 2.5 * flow_width) {
curled_up_height = std::max(prev_line_curled_height - layer_height * 0.5, 0.0); curled_up_height = std::max(prev_line_curled_height - layer_height * 0.75f, 0.0f);
} }
if (point.distance > params.malformation_distance_factors.first * flow_width && if (distance > params.malformation_distance_factors.first * flow_width &&
point.distance < params.malformation_distance_factors.second * flow_width) { distance < params.malformation_distance_factors.second * flow_width) {
// imagine the extrusion profile. The part that has been glued (melted) with the previous layer will be called anchored section // imagine the extrusion profile. The part that has been glued (melted) with the previous layer will be called anchored section
// and the rest will be called curling section // and the rest will be called curling section
// float anchored_section = flow_width - point.distance; // float anchored_section = flow_width - point.distance;
float curling_section = point.distance; float curling_section = distance;
// after extruding, the curling (floating) part of the extrusion starts to shrink back to the rounded shape of the nozzle // after extruding, the curling (floating) part of the extrusion starts to shrink back to the rounded shape of the nozzle
// The anchored part not, because the melted material holds to the previous layer well. // The anchored part not, because the melted material holds to the previous layer well.
@ -228,17 +229,15 @@ float estimate_curled_up_height(
float swelling_radius = (layer_height + curling_section) / 2.0f; float swelling_radius = (layer_height + curling_section) / 2.0f;
curled_up_height += std::max(0.f, (swelling_radius - layer_height) / 2.0f); curled_up_height += std::max(0.f, (swelling_radius - layer_height) / 2.0f);
// There is one more effect. On convex turns, there is larger tension on the floating edge of the extrusion then on the middle section. // On convex turns, there is larger tension on the floating edge of the extrusion then on the middle section.
// The tension is caused by the shrinking tendency of the filament, and on outer edge of convex trun, the expansion is greater and thus shrinking force is greater. // The tension is caused by the shrinking tendency of the filament, and on outer edge of convex trun, the expansion is greater and
// This tension will cause the curling section to curle up (Why not down? maybe the previous layer works as a heat block, releasing the heat // thus shrinking force is greater. This tension will cause the curling section to curle up
// faster or slower than thin air, thus the extrusion always curles up) if (curvature > 0.01) {
float radius = (1.0 / curvature);
if (point.curvature > 0.01){
float radius = (1.0 / point.curvature);
float curling_t = sqrt(radius / 100); float curling_t = sqrt(radius / 100);
float b = curling_t * flow_width; float b = curling_t * flow_width;
float a = curling_section; float a = curling_section;
float c = sqrt(std::max(0.0f,a*a - b*b)); float c = sqrt(std::max(0.0f, a * a - b * b));
curled_up_height += c; curled_up_height += c;
} }
@ -248,32 +247,6 @@ float estimate_curled_up_height(
return curled_up_height; return curled_up_height;
} }
std::tuple<float, float> get_bottom_extrusions_quality_and_curling(const LD &prev_layer_lines, const ExtendedPoint &curr_point)
{
if (prev_layer_lines.get_lines().empty()) {
return {1.0,0.0};
}
const ExtrusionLine nearest_prev_layer_line = prev_layer_lines.get_line(curr_point.nearest_prev_layer_line);
float quality = nearest_prev_layer_line.form_quality;
float curling = nearest_prev_layer_line.curled_up_height;
if ((curr_point.nearest_prev_layer_point.cast<float>() - nearest_prev_layer_line.a).squaredNorm() < 0.1) {
const auto& prev_line = prev_layer_lines.get_line(prev_idx_modulo(curr_point.nearest_prev_layer_line, prev_layer_lines.get_lines().size()));
if ((curr_point.nearest_prev_layer_point.cast<float>() - prev_line.b).squaredNorm() < 0.1) {
quality = 0.5 * (quality + prev_line.form_quality);
curling = 0.5 * (curling + prev_line.curled_up_height);
}
} else if ((curr_point.nearest_prev_layer_point.cast<float>() - nearest_prev_layer_line.b).squaredNorm() < 0.1) {
const auto &next_line = prev_layer_lines.get_line(
next_idx_modulo(curr_point.nearest_prev_layer_line, prev_layer_lines.get_lines().size()));
if ((curr_point.nearest_prev_layer_point.cast<float>() - next_line.a).squaredNorm() < 0.1) {
quality = 0.5 * (quality + next_line.form_quality);
curling = 0.5 * (curling + next_line.curled_up_height);
}
}
return {quality, curling};
}
std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntity *entity, std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntity *entity,
const LayerRegion *layer_region, const LayerRegion *layer_region,
const LD &prev_layer_lines, const LD &prev_layer_lines,
@ -362,7 +335,9 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
float line_len = (prev_point.position - curr_point.position).norm(); float line_len = (prev_point.position - curr_point.position).norm();
ExtrusionLine line_out{prev_point.position.cast<float>(), curr_point.position.cast<float>(), line_len, entity}; ExtrusionLine line_out{prev_point.position.cast<float>(), curr_point.position.cast<float>(), line_len, entity};
auto [prev_layer_quality, prev_layer_curling] = get_bottom_extrusions_quality_and_curling(prev_layer_lines, curr_point); Vec2f middle = 0.5 * (line_out.a + line_out.b);
auto [middle_distance, bottom_line_idx, x] = prev_layer_lines.distance_from_lines_extra<false>(middle);
ExtrusionLine bottom_line = prev_layer_lines.get_lines().empty() ? ExtrusionLine{} : prev_layer_lines.get_line(bottom_line_idx);
// correctify the distance sign using slice polygons // correctify the distance sign using slice polygons
float sign = (prev_layer_boundary.distance_from_lines<true>(curr_point.position) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f; float sign = (prev_layer_boundary.distance_from_lines<true>(curr_point.position) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f;
@ -387,7 +362,7 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
} }
} else if (curr_point.distance > flow_width * 0.8f) { } else if (curr_point.distance > flow_width * 0.8f) {
bridged_distance += line_len; bridged_distance += line_len;
line_out.form_quality = prev_layer_quality - 0.3f; line_out.form_quality = bottom_line.form_quality - 0.3f;
if (line_out.form_quality < 0 && bridged_distance > max_bridge_len) { if (line_out.form_quality < 0 && bridged_distance > max_bridge_len) {
line_out.support_point_generated = potential_cause; line_out.support_point_generated = potential_cause;
line_out.form_quality = 0.5f; line_out.form_quality = 0.5f;
@ -397,8 +372,9 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
bridged_distance = 0.0f; bridged_distance = 0.0f;
} }
line_out.curled_up_height = estimate_curled_up_height(layer_region->layer()->id() % 2 == 0 ? curr_point : prev_point, line_out.curled_up_height = estimate_curled_up_height(middle_distance, 0.5 * (prev_point.curvature + curr_point.curvature),
layer_region->layer()->height, flow_width, prev_layer_curling, params); layer_region->layer()->height, flow_width, bottom_line.curled_up_height,
params);
lines_out.push_back(line_out); lines_out.push_back(line_out);
} }
@ -1102,25 +1078,23 @@ void estimate_supports_malformations(SupportLayerPtrs &layers, float flow_width,
auto annotated_points = estimate_points_properties<true, true, false, false>(pol.points, prev_layer_lines, flow_width); auto annotated_points = estimate_points_properties<true, true, false, false>(pol.points, prev_layer_lines, flow_width);
for (size_t i = 0; i < annotated_points.size(); ++i) { for (size_t i = 0; i < annotated_points.size(); ++i) {
ExtendedPoint &a = i > 0 ? annotated_points[i - 1] : annotated_points[i]; const ExtendedPoint &a = i > 0 ? annotated_points[i - 1] : annotated_points[i];
ExtendedPoint &b = annotated_points[i]; const ExtendedPoint &b = annotated_points[i];
ExtrusionLine line_out{a.position.cast<float>(), b.position.cast<float>(), float((a.position - b.position).norm()), ExtrusionLine line_out{a.position.cast<float>(), b.position.cast<float>(), float((a.position - b.position).norm()),
extrusion}; extrusion};
ExtendedPoint &pivot = l->id() % 2 == 0 ? a : b; Vec2f middle = 0.5 * (line_out.a + line_out.b);
auto [prev_layer_quality, prev_layer_curling] = get_bottom_extrusions_quality_and_curling(prev_layer_lines, pivot); auto [middle_distance, bottom_line_idx, x] = prev_layer_lines.distance_from_lines_extra<false>(middle);
const ExtrusionLine nearest_prev_layer_line = prev_layer_lines.get_lines().size() > 0 ? ExtrusionLine bottom_line = prev_layer_lines.get_lines().empty() ? ExtrusionLine{} :
prev_layer_lines.get_line(pivot.nearest_prev_layer_line) : prev_layer_lines.get_line(bottom_line_idx);
ExtrusionLine{};
Vec2f v1 = (nearest_prev_layer_line.b - nearest_prev_layer_line.a); Vec2f v1 = (bottom_line.b - bottom_line.a);
Vec2f v2 = (pivot.position.cast<float>() - nearest_prev_layer_line.a); Vec2f v2 = (a.position.cast<float>() - bottom_line.a);
auto d = (v1.x() * v2.y()) - (v1.y() * v2.x()); auto d = (v1.x() * v2.y()) - (v1.y() * v2.x());
if (d > 0) { float sign = (d > 0) ? -1.0f : 1.0f;
pivot.distance *= -1.0f;
}
line_out.curled_up_height = estimate_curled_up_height(pivot, l->height, flow_width, prev_layer_curling, params); line_out.curled_up_height = estimate_curled_up_height(middle_distance * sign, 0.5 * (a.curvature + b.curvature), l->height,
flow_width, bottom_line.curled_up_height, params);
current_layer_lines.push_back(line_out); current_layer_lines.push_back(line_out);
} }
@ -1176,22 +1150,24 @@ void estimate_malformations(LayerPtrs &layers, const Params &params)
Points extrusion_pts; Points extrusion_pts;
extrusion->collect_points(extrusion_pts); extrusion->collect_points(extrusion_pts);
float flow_width = get_flow_width(layer_region, extrusion->role()); float flow_width = get_flow_width(layer_region, extrusion->role());
auto annotated_points = estimate_points_properties<true, false, false, false>(extrusion_pts, prev_layer_lines, flow_width, auto annotated_points = estimate_points_properties<true, true, false, false>(extrusion_pts, prev_layer_lines, flow_width,
params.bridge_distance); params.bridge_distance);
for (size_t i = 0; i < annotated_points.size(); ++i) { for (size_t i = 0; i < annotated_points.size(); ++i) {
ExtendedPoint &a = i > 0 ? annotated_points[i - 1] : annotated_points[i]; const ExtendedPoint &a = i > 0 ? annotated_points[i - 1] : annotated_points[i];
ExtendedPoint &b = annotated_points[i]; const ExtendedPoint &b = annotated_points[i];
ExtrusionLine line_out{a.position.cast<float>(), b.position.cast<float>(), float((a.position - b.position).norm()), ExtrusionLine line_out{a.position.cast<float>(), b.position.cast<float>(), float((a.position - b.position).norm()),
extrusion}; extrusion};
ExtendedPoint &pivot = l->id() % 2 == 0 ? a : b; Vec2f middle = 0.5 * (line_out.a + line_out.b);
auto [prev_layer_quality, prev_layer_curling] = get_bottom_extrusions_quality_and_curling(prev_layer_lines, pivot); auto [middle_distance, bottom_line_idx, x] = prev_layer_lines.distance_from_lines_extra<false>(middle);
ExtrusionLine bottom_line = prev_layer_lines.get_lines().empty() ? ExtrusionLine{} :
prev_layer_lines.get_line(bottom_line_idx);
float sign = (prev_layer_boundary.distance_from_lines<true>(pivot.position) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f; // correctify the distance sign using slice polygons
pivot.distance *= sign; float sign = (prev_layer_boundary.distance_from_lines<true>(middle.cast<double>()) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f;
line_out.curled_up_height = estimate_curled_up_height(pivot, layer_region->layer()->height, flow_width, line_out.curled_up_height = estimate_curled_up_height(middle_distance * sign, 0.5 * (a.curvature + b.curvature),
prev_layer_curling, params); l->height, flow_width, bottom_line.curled_up_height, params);
current_layer_lines.push_back(line_out); current_layer_lines.push_back(line_out);
} }