Autogenerate supportPoints by surface angle

This commit is contained in:
Filip Sykala - NTB T15p 2024-09-11 22:33:04 +02:00 committed by Lukas Matena
parent 63f6b293bf
commit 7a375abddb
11 changed files with 652 additions and 1538 deletions

View File

@ -444,8 +444,6 @@ set(SLIC3R_SOURCES
SLA/SupportPoint.hpp SLA/SupportPoint.hpp
SLA/SupportPointGenerator.hpp SLA/SupportPointGenerator.hpp
SLA/SupportPointGenerator.cpp SLA/SupportPointGenerator.cpp
SLA/SupportPointGeneratorNew.hpp
SLA/SupportPointGeneratorNew.cpp
SLA/Clustering.hpp SLA/Clustering.hpp
SLA/Clustering.cpp SLA/Clustering.cpp
SLA/ReprojectPointsOnMesh.hpp SLA/ReprojectPointsOnMesh.hpp

View File

@ -1420,20 +1420,21 @@ namespace Slic3r {
if (version == 0) { if (version == 0) {
for (unsigned int i=0; i<object_data_points.size(); i+=3) for (unsigned int i=0; i<object_data_points.size(); i+=3)
sla_support_points.emplace_back(float(std::atof(object_data_points[i+0].c_str())), sla_support_points.push_back(sla::SupportPoint{Vec3f(
float(std::atof(object_data_points[i+0].c_str())),
float(std::atof(object_data_points[i+1].c_str())), float(std::atof(object_data_points[i+1].c_str())),
float(std::atof(object_data_points[i+2].c_str())), float(std::atof(object_data_points[i+2].c_str()))),
0.4f, 0.4f});
false);
} }
if (version == 1) { if (version == 1) {
for (unsigned int i=0; i<object_data_points.size(); i+=5) for (unsigned int i=0; i<object_data_points.size(); i+=5)
sla_support_points.emplace_back(float(std::atof(object_data_points[i+0].c_str())), sla_support_points.push_back(sla::SupportPoint{Vec3f(
float(std::atof(object_data_points[i+0].c_str())),
float(std::atof(object_data_points[i+1].c_str())), float(std::atof(object_data_points[i+1].c_str())),
float(std::atof(object_data_points[i+2].c_str())), float(std::atof(object_data_points[i+2].c_str()))),
float(std::atof(object_data_points[i+3].c_str())), float(std::atof(object_data_points[i+3].c_str()))});
//FIXME storing boolean as 0 / 1 and importing it as float. //FIXME storing boolean as 0 / 1 and importing it as float.
std::abs(std::atof(object_data_points[i+4].c_str()) - 1.) < EPSILON); //std::abs(std::atof(object_data_points[i+4].c_str()) - 1.) < EPSILON);
} }
if (!sla_support_points.empty()) if (!sla_support_points.empty())
@ -3542,7 +3543,7 @@ namespace Slic3r {
// Store the layer height profile as a single space separated list. // Store the layer height profile as a single space separated list.
for (size_t i = 0; i < sla_support_points.size(); ++i) { for (size_t i = 0; i < sla_support_points.size(); ++i) {
sprintf(buffer, (i==0 ? "%f %f %f %f %f" : " %f %f %f %f %f"), sla_support_points[i].pos(0), sla_support_points[i].pos(1), sla_support_points[i].pos(2), sla_support_points[i].head_front_radius, (float)sla_support_points[i].is_new_island); sprintf(buffer, (i==0 ? "%f %f %f %f %f" : " %f %f %f %f %f"), sla_support_points[i].pos(0), sla_support_points[i].pos(1), sla_support_points[i].pos(2), sla_support_points[i].head_front_radius, (float)(sla_support_points[i].is_island()));
out += buffer; out += buffer;
} }
out += "\n"; out += "\n";

View File

@ -774,7 +774,7 @@ void AMFParserContext::endElement(const char * /* name */)
point(coord_idx) = float(atof(p)); point(coord_idx) = float(atof(p));
if (++coord_idx == 5) { if (++coord_idx == 5) {
m_object->sla_support_points.push_back(sla::SupportPoint(point)); m_object->sla_support_points.push_back(sla::SupportPoint{Vec3f(point[0], point[1], point[2]), point[3]});
coord_idx = 0; coord_idx = 0;
} }
if (end == nullptr) if (end == nullptr)

View File

@ -7,11 +7,7 @@
#include <libslic3r/Point.hpp> #include <libslic3r/Point.hpp>
namespace Slic3r { namespace Slic3r::sla {
class ModelObject;
namespace sla {
// An enum to keep track of where the current points on the ModelObject came from. // An enum to keep track of where the current points on the ModelObject came from.
enum class PointsStatus { enum class PointsStatus {
@ -21,58 +17,47 @@ enum class PointsStatus {
UserModified // User has done some edits. UserModified // User has done some edits.
}; };
// Reason of automatic support placement usage
enum class SupportPointType {
manual_add,
island, // no move, island should be grouped
slope,
thin,
stability,
edge
};
/// <summary>
/// Stereolithography(SLA) support point
/// </summary>
struct SupportPoint struct SupportPoint
{ {
Vec3f pos; // Position on model surface
float head_front_radius; Vec3f pos = Vec3f::Zero(); // [in mm]
bool is_new_island;
SupportPoint() // radius of the touching interface
: pos(Vec3f::Zero()), head_front_radius(0.f), is_new_island(false) // Also define force it must keep
{} float head_front_radius = 0.f; // [in mm]
SupportPoint(float pos_x, // type
float pos_y, SupportPointType type{SupportPointType::manual_add};
float pos_z,
float head_radius,
bool new_island = false)
: pos(pos_x, pos_y, pos_z)
, head_front_radius(head_radius)
, is_new_island(new_island)
{}
SupportPoint(Vec3f position, float head_radius, bool new_island = false) bool is_island() const { return type == SupportPointType::island; }
: pos(position) template<class Archive> void serialize(Archive &ar){
, head_front_radius(head_radius) ar(pos, head_front_radius, type);
, is_new_island(new_island) }
{}
SupportPoint(Eigen::Matrix<float, 5, 1, Eigen::DontAlign> data) // unsaved changes + cache invalidation
: pos(data(0), data(1), data(2)) bool operator==(const SupportPoint &sp) const {
, head_front_radius(data(3))
, is_new_island(data(4) != 0.f)
{}
bool operator==(const SupportPoint &sp) const
{
float rdiff = std::abs(head_front_radius - sp.head_front_radius); float rdiff = std::abs(head_front_radius - sp.head_front_radius);
return (pos == sp.pos) && rdiff < float(EPSILON) && return (pos == sp.pos) && rdiff < float(EPSILON) && type == sp.type;
is_new_island == sp.is_new_island;
} }
bool operator!=(const SupportPoint &sp) const { return !(sp == (*this)); } bool operator!=(const SupportPoint &sp) const { return !(sp == (*this)); }
template<class Archive> void serialize(Archive &ar)
{
ar(pos, head_front_radius, is_new_island);
}
}; };
using SupportPoints = std::vector<SupportPoint>; using SupportPoints = std::vector<SupportPoint>;
SupportPoints transformed_support_points(const ModelObject &mo, } // namespace Slic3r::sla
const Transform3d &trafo);
}} // namespace Slic3r::sla
#endif // SUPPORTPOINT_HPP #endif // SUPPORTPOINT_HPP

File diff suppressed because it is too large Load Diff

View File

@ -1,262 +1,191 @@
///|/ Copyright (c) Prusa Research 2020 - 2022 Vojtěch Bubník @bubnikv, Tomáš Mészáros @tamasmeszaros, Lukáš Matěna @lukasmatena ///|/ Copyright (c) Prusa Research 2024 Filip Sykala @Jony01
///|/ ///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher ///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/ ///|/
#ifndef SLA_SUPPORTPOINTGENERATOR_HPP #ifndef SLA_SUPPORTPOINTGENERATOR_HPP
#define SLA_SUPPORTPOINTGENERATOR_HPP #define SLA_SUPPORTPOINTGENERATOR_HPP
#include <libslic3r/AABBMesh.hpp>
#include <libslic3r/SLA/SupportPoint.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/Point.hpp>
#include <boost/container/small_vector.hpp>
#include <stdint.h>
#include <random>
#include <cmath>
#include <cstddef>
#include <functional>
#include <unordered_map>
#include <utility>
#include <vector> #include <vector>
#include <cinttypes> #include <functional>
#include <boost/container/small_vector.hpp>
#include "libslic3r/Point.hpp"
#include "libslic3r/ExPolygon.hpp" #include "libslic3r/ExPolygon.hpp"
#include "libslic3r/Polygon.hpp" #include "libslic3r/SLA/SupportPoint.hpp"
#include "libslic3r/libslic3r.h"
namespace Slic3r { namespace Slic3r::sla {
class AABBMesh;
} // namespace Slic3r
// #define SLA_SUPPORTPOINTGEN_DEBUG /// <summary>
/// Configuration for automatic support placement
/// </summary>
struct SupportPointGeneratorConfig{
/// <summary>
/// 0 mean only one support point for each island
/// lower than one mean less amount of support points
/// 1 mean fine tuned sampling
/// more than one mean bigger amout of support points
/// </summary>
float density_relative{1.f};
namespace Slic3r { namespace sla { /// <summary>
/// Size range for support point interface (head)
/// </summary>
MinMax<float> head_diameter = {0.2f, 0.6f}; // [in mm]
class SupportPointGenerator { // FIXME: calculate actual pixel area from printer config:
public: // const float pixel_area =
struct Config final { // pow(wxGetApp().preset_bundle->project_config.option<ConfigOptionFloat>("display_width") /
float density_relative {1.f}; // wxGetApp().preset_bundle->project_config.option<ConfigOptionInt>("display_pixels_x"), 2.f); //
float minimal_distance {1.f}; // Minimal island Area to print - TODO: Should be modifiable from UI
float head_diameter {0.4f}; // !! Filter should be out of sampling algorithm !!
float minimal_island_area = pow(0.047f, 2.f); // [in mm^2] pixel_area
// Originally calibrated to 7.7f, reduced density by Tamas to 70% which is 11.1 (7.7 / 0.7) to adjust for new algorithm changes in tm_suppt_gen_improve
inline float support_force() const { return 11.1f / density_relative; } // a force one point can support (arbitrary force unit)
// FIXME: calculate actual pixel area from printer config:
//const float pixel_area = pow(wxGetApp().preset_bundle->project_config.option<ConfigOptionFloat>("display_width") / wxGetApp().preset_bundle->project_config.option<ConfigOptionInt>("display_pixels_x"), 2.f); //
// Minimal island Area to print - TODO: Should be modifiable from UI
const float minimal_island_area = pow(0.047f, 2.f); // [in mm^2] pixel_area
};
SupportPointGenerator(const AABBMesh& emesh, const std::vector<ExPolygons>& slices,
const std::vector<float>& heights, const Config& config, std::function<void(void)> throw_on_cancel, std::function<void(int)> statusfn);
SupportPointGenerator(const AABBMesh& emesh, const Config& config, std::function<void(void)> throw_on_cancel, std::function<void(int)> statusfn);
const std::vector<SupportPoint>& output() const { return m_output; }
std::vector<SupportPoint>& output() { return m_output; }
struct MyLayer;
// Keep data for one area(ExPlygon) on the layer(on slice Expolygons)
struct Structure {
Structure(MyLayer &layer, const ExPolygon& poly, const BoundingBox &bbox, float area) :
layer(&layer), polygon(&poly), bbox(bbox), area(area)
#ifdef SLA_SUPPORTPOINTGEN_DEBUG
, unique_id(std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()))
#endif /* SLA_SUPPORTPOINTGEN_DEBUG */
{}
// Parent layer - with all ExPolygons in layer + layer_height
MyLayer *layer;
// Source ExPolygon
const ExPolygon* polygon = nullptr;
// Cache bounding box of polygon
const BoundingBox bbox;
// area of polygon [in mm^2] without holes
const float area = 0.f;
// How well is this ExPolygon held to the print base?
// Positive number, the higher the better.
float supports_force_this_layer = 0.f;
float supports_force_inherited = 0.f;
float supports_force_total() const { return this->supports_force_this_layer + this->supports_force_inherited; }
#ifdef SLA_SUPPORTPOINTGEN_DEBUG
std::chrono::milliseconds unique_id;
#endif /* SLA_SUPPORTPOINTGEN_DEBUG */
struct Link {
Link(Structure *island, float overlap_area) : island(island), overlap_area(overlap_area) {}
Structure *island;
float overlap_area;
};
#ifdef NDEBUG
// In release mode, use the optimized container.
boost::container::small_vector<Link, 4> islands_above;
boost::container::small_vector<Link, 4> islands_below;
#else
// In debug mode, use the standard vector, which is well handled by debugger visualizer.
std::vector<Link> islands_above;
std::vector<Link> islands_below;
#endif
// Overhangs, that are dangling considerably.
ExPolygons dangling_areas;
// Complete overhangs.
ExPolygons overhangs;
// Overhangs, where the surface must slope.
ExPolygons overhangs_slopes;
// Sum of all overhang areas from structure
float overhangs_area = 0.f; // [in mm^2]
bool overlaps(const Structure &rhs) const {
return this->bbox.overlap(rhs.bbox) && this->polygon->overlaps(*rhs.polygon);
}
float overlap_area(const Structure &rhs) const {
double out = 0.;
if (this->bbox.overlap(rhs.bbox)) {
Polygons polys = intersection(*this->polygon, *rhs.polygon);
for (const Polygon &poly : polys)
out += poly.area();
}
return float(out);
}
float area_below() const {
float area = 0.f;
for (const Link &below : this->islands_below)
area += below.island->area;
return area;
}
Polygons polygons_below() const {
size_t cnt = 0;
for (const Link &below : this->islands_below)
cnt += 1 + below.island->polygon->holes.size();
Polygons out;
out.reserve(cnt);
for (const Link &below : this->islands_below) {
out.emplace_back(below.island->polygon->contour);
append(out, below.island->polygon->holes);
}
return out;
}
ExPolygons expolygons_below() const {
ExPolygons out;
out.reserve(this->islands_below.size());
for (const Link &below : this->islands_below)
out.emplace_back(*below.island->polygon);
return out;
}
// Positive deficit of the supports. If negative, this area is well supported. If positive, more supports need to be added.
float support_force_deficit(const float tear_pressure) const { return this->area * tear_pressure - this->supports_force_total(); }
};
struct MyLayer {
MyLayer(const size_t layer_id, coordf_t print_z) : layer_id(layer_id), print_z(print_z) {}
// index into heights + slices
size_t layer_id;
// Absolute distance from Zero - copy value from heights<float>
coordf_t print_z; // [in mm]
std::vector<Structure> islands;
};
struct RichSupportPoint {
Vec3f position;
Structure *island;
};
struct PointGrid3D {
struct GridHash {
std::size_t operator()(const Vec3i &cell_id) const {
return std::hash<int>()(cell_id.x()) ^ std::hash<int>()(cell_id.y() * 593) ^ std::hash<int>()(cell_id.z() * 7919);
}
};
typedef std::unordered_multimap<Vec3i, RichSupportPoint, GridHash> Grid;
Vec3f cell_size;
Grid grid;
Vec3i cell_id(const Vec3f &pos) {
return Vec3i(int(floor(pos.x() / cell_size.x())),
int(floor(pos.y() / cell_size.y())),
int(floor(pos.z() / cell_size.z())));
}
void insert(const Vec2f &pos, Structure *island) {
RichSupportPoint pt;
pt.position = Vec3f(pos.x(), pos.y(), float(island->layer->print_z));
pt.island = island;
grid.emplace(cell_id(pt.position), pt);
}
bool collides_with(const Vec2f &pos, float print_z, float radius) {
Vec3f pos3d(pos.x(), pos.y(), print_z);
Vec3i cell = cell_id(pos3d);
std::pair<Grid::const_iterator, Grid::const_iterator> it_pair = grid.equal_range(cell);
if (collides_with(pos3d, radius, it_pair.first, it_pair.second))
return true;
for (int i = -1; i < 2; ++ i)
for (int j = -1; j < 2; ++ j)
for (int k = -1; k < 1; ++ k) {
if (i == 0 && j == 0 && k == 0)
continue;
it_pair = grid.equal_range(cell + Vec3i(i, j, k));
if (collides_with(pos3d, radius, it_pair.first, it_pair.second))
return true;
}
return false;
}
private:
bool collides_with(const Vec3f &pos, float radius, Grid::const_iterator it_begin, Grid::const_iterator it_end) {
for (Grid::const_iterator it = it_begin; it != it_end; ++ it) {
float dist2 = (it->second.position - pos).squaredNorm();
if (dist2 < radius * radius)
return true;
}
return false;
}
};
void execute(const std::vector<ExPolygons> &slices,
const std::vector<float> & heights);
void seed(std::mt19937::result_type s) { m_rng.seed(s); }
private:
std::vector<SupportPoint> m_output;
// Configuration
SupportPointGenerator::Config m_config;
void process(const std::vector<ExPolygons>& slices, const std::vector<float>& heights);
public:
enum IslandCoverageFlags : uint8_t { icfNone = 0x0, icfIsNew = 0x1, icfWithBoundary = 0x2 };
private:
void uniformly_cover(const ExPolygons& islands, Structure& structure, float deficit, PointGrid3D &grid3d, IslandCoverageFlags flags = icfNone);
void add_support_points(Structure& structure, PointGrid3D &grid3d);
void project_onto_mesh(std::vector<SupportPoint>& points) const;
#ifdef SLA_SUPPORTPOINTGEN_DEBUG
static void output_expolygons(const ExPolygons& expolys, const std::string &filename);
static void output_structures(const std::vector<Structure> &structures);
#endif // SLA_SUPPORTPOINTGEN_DEBUG
const AABBMesh& m_emesh;
std::function<void(void)> m_throw_on_cancel;
std::function<void(int)> m_statusfn;
std::mt19937 m_rng;
}; };
void remove_bottom_points(std::vector<SupportPoint> &pts, float lvl); struct LayerPart; // forward decl.
using LayerParts = std::vector<LayerPart>;
std::vector<Vec2f> sample_expolygon(const ExPolygon &expoly, float samples_per_mm2, std::mt19937 &rng); struct PartLink
void sample_expolygon_boundary(const ExPolygon &expoly, float samples_per_mm, std::vector<Vec2f> &out, std::mt19937 &rng); {
LayerParts::const_iterator part_it;
// float overlap_area; // sum of overlap areas
// ExPolygons overlap; // clipper intersection_ex
// ExPolygons overhang; // clipper diff_ex
};
#ifdef NDEBUG
// In release mode, use the optimized container.
using PartLinks = boost::container::small_vector<PartLink, 4>;
#else
// In debug mode, use the standard vector, which is well handled by debugger visualizer.
using PartLinks = std::vector<PartLink>;
#endif
}} // namespace Slic3r::sla // Part on layer is defined by its shape
struct LayerPart {
// Pointer to expolygon stored in input
const ExPolygon *shape;
#endif // SUPPORTPOINTGENERATOR_HPP // rectangular bounding box of shape
BoundingBox shape_extent;
// uniformly sampled shape contour
Slic3r::Points samples;
// IMPROVE: sample only overhangs part of shape
// Parts from previous printed layer, which is connected to current part
PartLinks prev_parts;
PartLinks next_parts;
};
/// <summary>
/// Extend support point with information from layer
/// </summary>
struct LayerSupportPoint: public SupportPoint
{
// Pointer on source ExPolygon otherwise nullptr
//const LayerPart *part{nullptr};
// 2d coordinate on layer
// use only when part is not nullptr
Point position_on_layer; // [scaled_ unit]
// 2d direction into expolygon mass
// used as ray to positioning 3d point on mesh surface
// Island has direction [0,0] - should be placed on surface from bottom
Point direction_to_mass;
};
using LayerSupportPoints = std::vector<LayerSupportPoint>;
/// <summary>
/// One slice divided into
/// </summary>
struct Layer
{
// index into parent Layesr + heights + slices
// [[deprecated]] Use index to layers insted of adress from item
size_t layer_id;
// Absolute distance from Zero - copy value from heights<float>
// [[deprecated]] Use index to layers insted of adress from item
double print_z; // [in mm]
// data for one expolygon
LayerParts parts;
};
using Layers = std::vector<Layer>;
/// <summary>
/// Keep state of Support Point generation
/// Used for resampling with different configuration
/// </summary>
struct SupportPointGeneratorData
{
// Input slices of mesh
std::vector<ExPolygons> slices;
// Same size as slices
std::vector<float> heights;
// link to slices
Layers layers;
};
// call during generation of support points to check cancel event
using ThrowOnCancel = std::function<void(void)>;
// call to say progress of generation into gui in range from 0 to 100
using StatusFunction= std::function<void(int)>;
/// <summary>
/// Prepare data for generate support points
/// Used for interactive resampling to store permanent data between configuration changes.,
/// Everything which could be prepared are stored into result.
/// Need to regenerate on mesh change(Should be connected with ObjectId) OR change of slicing heights
/// </summary>
/// <param name="slices">Countour cut from mesh</param>
/// <param name="heights">Heights of the slices - Same size as slices</param>
/// <param name="throw_on_cancel">Call in meanwhile to check cancel event</param>
/// <param name="statusfn">Say progress of generation into gui</param>
/// <returns>Data prepared for generate support points</returns>
SupportPointGeneratorData prepare_generator_data(
std::vector<ExPolygons> &&slices,
std::vector<float> &&heights,
ThrowOnCancel throw_on_cancel,
StatusFunction statusfn
);
/// <summary>
/// Generate support points on islands by configuration parameters
/// </summary>
/// <param name="data">Preprocessed data needed for sampling</param>
/// <param name="config">Define density of samples</param>
/// <param name="throw_on_cancel">Call in meanwhile to check cancel event</param>
/// <param name="statusfn">Progress of generation into gui</param>
/// <returns>Generated support points</returns>
LayerSupportPoints generate_support_points(
const SupportPointGeneratorData &data,
const SupportPointGeneratorConfig &config,
ThrowOnCancel throw_on_cancel,
StatusFunction statusfn
);
} // namespace Slic3r::sla
// TODO: Not sure if it is neccessary & Should be in another file
namespace Slic3r{
class AABBMesh;
namespace sla {
/// <summary>
/// Move support points on surface of mesh
/// </summary>
/// <param name="points">Support points to move on surface</param>
/// <param name="mesh">Define surface for move points</param>
/// <param name="throw_on_cancel">Call in meanwhile to check cancel event</param>
/// <returns>Support points laying on mesh surface</returns>
SupportPoints move_on_mesh_surface(
const LayerSupportPoints &points,
const AABBMesh &mesh,
double allowed_move,
ThrowOnCancel throw_on_cancel
);
}}
#endif // SLA_SUPPORTPOINTGENERATOR_HPP

View File

@ -1,382 +0,0 @@
///|/ Copyright (c) Prusa Research 2024 Filip Sykala @Jony01
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#include "SupportPointGeneratorNew.hpp"
#include <unordered_map> // point grid
#include "libslic3r/Execution/ExecutionTBB.hpp" // parallel preparation of data for sampling
#include "libslic3r/Execution/Execution.hpp"
using namespace Slic3r;
using namespace Slic3r::sla;
namespace {
/// <summary>
/// Struct to store support points in 2d grid to faster search for nearest support points
/// </summary>
class Grid2D
{
coord_t m_cell_size; // Squar: x and y are same
coord_t m_cell_size_half;
using Key = Point;
using Grid = std::unordered_multimap<Key, SupportPoint>;
Grid m_grid;
public:
/// <summary>
/// Set cell size for grid
/// </summary>
/// <param name="cell_size">Granularity of stored points
/// Must be bigger than maximal used radius</param>
explicit Grid2D(const coord_t &cell_size)
: m_cell_size(cell_size), m_cell_size_half(cell_size / 2) {}
Key cell_id(const Point &point) const {
return Key(point.x() / m_cell_size, point.y() / m_cell_size);
}
void add(SupportPoint &&point) {
m_grid.emplace(cell_id(point.position_on_layer), std::move(point));
}
using CheckFnc = std::function<bool(const SupportPoint &, const Point&)>;
bool exist_true_in_4cell_neighbor(const Point &pos, const CheckFnc& fnc) const {
Key key = cell_id(pos);
if (exist_true_for_cell(key, pos, fnc)) return true;
Point un_cell_pos(
key.x() * m_cell_size + m_cell_size_half,
key.y() * m_cell_size + m_cell_size_half );
Key key2(
(un_cell_pos.x() > pos.x()) ? key.x() + 1 : key.x() - 1,
(un_cell_pos.y() > pos.y()) ? key.y() + 1 : key.y() - 1);
if (exist_true_for_cell(key2, pos, fnc)) return true;
if (exist_true_for_cell({key.x(), key2.y()}, pos, fnc)) return true;
if (exist_true_for_cell({key2.x(), key.y()}, pos, fnc)) return true;
return false;
}
void merge(Grid2D &&grid) {
// support to merge only grid with same size
assert(m_cell_size == grid.m_cell_size);
m_grid.merge(std::move(grid.m_grid));
}
SupportPoints get_points() const {
SupportPoints result;
result.reserve(m_grid.size());
for (const auto& [key, support] : m_grid)
result.push_back(support);
return result;
}
private:
bool exist_true_for_cell(const Key &key, const Point &pos, const CheckFnc& fnc) const{
auto [begin_it, end_it] = m_grid.equal_range(key);
for (Grid::const_iterator it = begin_it; it != end_it; ++it) {
const SupportPoint &support_point = it->second;
if (fnc(support_point, pos))
return true;
}
return false;
}
};
/// <summary>
/// Intersection of line segment and circle
/// </summary>
/// <param name="p1">Line segment point A, Point lay inside circle</param>
/// <param name="p2">Line segment point B, Point lay outside or on circle</param>
/// <param name="cnt">Circle center point</param>
/// <param name="r2">squared value of Circle Radius (r2 = r*r)</param>
/// <returns>Intersection point</returns>
Point intersection(const Point &p1, const Point &p2, const Point &cnt, double r2) {
// Vector from p1 to p2
Vec2d dp_d((p2 - p1).cast<double>());
// Vector from circle center to p1
Vec2d f_d((p1 - cnt).cast<double>());
double a = dp_d.squaredNorm();
double b = 2 * (f_d.x() * dp_d.x() + f_d.y() * dp_d.y());
double c = f_d.squaredNorm() - r2;
// Discriminant of the quadratic equation
double discriminant = b * b - 4 * a * c;
// No intersection if discriminant is negative
assert(discriminant > 0);
if (discriminant < 0)
return {}; // No intersection
// Calculate the two possible values of t (parametric parameter)
discriminant = sqrt(discriminant);
double t1 = (-b - discriminant) / (2 * a);
// Check for valid intersection points within the line segment
if (t1 >= 0 && t1 <= 1) {
return {p1.x() + t1 * dp_d.x(), p1.y() + t1 * dp_d.y()};
}
// should not be in use
double t2 = (-b + discriminant) / (2 * a);
if (t2 >= 0 && t2 <= 1 && t1 != t2) {
return {p1.x() + t2 * dp_d.x(), p1.y() + t2 * dp_d.y()};
}
return {};
}
/// <summary>
/// Uniformly sample Polygon,
/// Use first point and each next point is first crosing radius from last added
/// </summary>
/// <param name="p">Polygon to sample</param>
/// <param name="dist2">Squared distance for sampling</param>
/// <returns>Uniformly distributed points laying on input polygon
/// with exception of first and last point(they are closer than dist2)</returns>
Slic3r::Points sample(const Polygon &p, double dist2) {
if (p.empty())
return {};
Slic3r::Points r;
r.push_back(p.front());
const Point *prev_pt = nullptr;
for (size_t prev_i = 0; prev_i < p.size(); prev_i++) {
size_t curr_i = (prev_i != p.size() - 1) ? prev_i + 1 : 0;
const Point &pt = p.points[curr_i];
double p_dist2 = (r.back() - pt).cast<double>().squaredNorm();
while (p_dist2 > dist2) { // line segment goes out of radius
if (prev_pt == nullptr)
prev_pt = &p.points[prev_i];
r.push_back(intersection(*prev_pt, pt, r.back(), dist2));
p_dist2 = (r.back() - pt).cast<double>().squaredNorm();
prev_pt = &r.back();
}
prev_pt = nullptr;
}
return r;
}
coord_t get_supported_radius(const SupportPoint &p, float z_distance, const SupportPointGeneratorConfig &config
) {
// TODO: calculate support radius
return scale_(5.);
}
void sample_part(
const LayerPart &part,
size_t layer_id,
const SupportPointGeneratorData &data,
const SupportPointGeneratorConfig &config,
std::vector<Grid2D> &grids,
std::vector<Grid2D> &prev_grids
) {
// NOTE: first layer do not have prev part
assert(layer_id != 0);
const Layers &layers = data.layers;
const LayerParts &prev_layer_parts = layers[layer_id - 1].parts;
const LayerParts::const_iterator &prev_part_it = part.prev_parts.front().part_it;
size_t index_of_prev_part = prev_part_it - prev_layer_parts.begin();
if (prev_part_it->next_parts.size() == 1) {
grids.push_back(std::move(prev_grids[index_of_prev_part]));
} else { // Need a copy there are multiple parts above previus one
grids.push_back(prev_grids[index_of_prev_part]); // copy
}
// current part grid
Grid2D &part_grid = grids.back();
// merge other grid in case of multiple previous parts
for (size_t i = 1; i < part.prev_parts.size(); ++i) {
const LayerParts::const_iterator &prev_part_it = part.prev_parts[i].part_it;
size_t index_of_prev_part = prev_part_it - prev_layer_parts.begin();
if (prev_part_it->next_parts.size() == 1) {
part_grid.merge(std::move(prev_grids[index_of_prev_part]));
} else { // Need a copy there are multiple parts above previus one
Grid2D grid_ = prev_grids[index_of_prev_part]; // copy
part_grid.merge(std::move(grid_));
}
}
float part_height = data.heights[layer_id];
Grid2D::CheckFnc is_supported = [part_height, &config]
(const SupportPoint &support_point, const Point &p) -> bool {
float diff_height = part_height - support_point.z_height;
coord_t r_ = get_supported_radius(support_point, diff_height, config);
Point dp = support_point.position_on_layer - p;
if (std::abs(dp.x()) > r_) return false;
if (std::abs(dp.y()) > r_) return false;
double r2 = static_cast<double>(r_);
r2 *= r2;
return dp.cast<double>().squaredNorm() < r2;
};
// check distance to nearest support points from grid
float maximal_radius = scale_(5.f);
for (const Point &p : part.samples) {
if (!part_grid.exist_true_in_4cell_neighbor(p, is_supported)) {
// not supported sample, soo create new support point
part_grid.add(SupportPoint{
/* head_front_radius */ 0.4,
SupportPointType::slope,
&part,
/* position_on_layer */ p,
part_height,
/* direction_to_mass */ Point(1,0)
});
}
}
}
Points uniformly_sample(const ExPolygon &island, const SupportPointGeneratorConfig &cfg) {
// TODO: Implement it
return Points{island.contour.centroid()};
}
Grid2D support_island(const LayerPart &part, float part_z, const SupportPointGeneratorConfig &cfg) {
// Maximal radius of supported area of one support point
double max_support_radius = 10.; // cfg.cell_size;
// maximal radius of support
coord_t cell_size = scale_(max_support_radius);
Grid2D part_grid(cell_size);
Points pts = uniformly_sample(*part.shape, cfg);
for (const Point &pt : pts)
part_grid.add(SupportPoint{
/* head_front_radius */ 0.4,
SupportPointType::island,
&part,
/* position_on_layer */ pt,
part_z,
/* direction_to_mass */ Point(0,0) // from bottom
});
}
};
SupportPointGeneratorData Slic3r::sla::prepare_generator_data(
std::vector<ExPolygons> &&slices,
std::vector<float> &&heights,
ThrowOnCancel throw_on_cancel,
StatusFunction statusfn
) {
// check input
assert(!slices.empty());
assert(slices.size() == heights.size());
if (slices.empty() || slices.size() != heights.size())
return SupportPointGeneratorData{};
// Move input into result
SupportPointGeneratorData result;
result.slices = std::move(slices);
result.heights = std::move(heights);
// Allocate empty layers.
result.layers = Layers(result.slices.size(), {});
// Generate Extents and SampleLayers
execution::for_each(ex_tbb, size_t(0), result.slices.size(),
[&result, throw_on_cancel](size_t layer_id) {
if ((layer_id % 8) == 0)
// Don't call the following function too often as it flushes
// CPU write caches due to synchronization primitves.
throw_on_cancel();
const double sample_distance_in_mm = scale_(2);
const double sample_distance_in_mm2 = sample_distance_in_mm * sample_distance_in_mm;
Layer &layer = result.layers[layer_id];
const ExPolygons &islands = result.slices[layer_id];
layer.parts.reserve(islands.size());
for (const ExPolygon &island : islands)
layer.parts.push_back(LayerPart{
&island,
get_extents(island.contour),
sample(island.contour, sample_distance_in_mm2)
});
}, 32 /*gransize*/);
// Link parts by intersections
execution::for_each(ex_tbb, size_t(1), result.slices.size(),
[&result, throw_on_cancel] (size_t layer_id) {
if ((layer_id % 2) == 0)
// Don't call the following function too often as it flushes CPU write caches due to synchronization primitves.
throw_on_cancel();
LayerParts &parts_above = result.layers[layer_id].parts;
LayerParts &parts_below = result.layers[layer_id-1].parts;
for (auto it_above = parts_above.begin(); it_above < parts_above.end(); ++it_above) {
for (auto it_below = parts_below.begin(); it_below < parts_below.end(); ++it_below) {
// Improve: do some sort of parts + skip some of them
if (!it_above->shape_extent.overlap(it_below->shape_extent))
continue; // no bounding box overlap
// Improve: test could be done faster way
Polygons polys = intersection(*it_above->shape, *it_below->shape);
if (polys.empty())
continue; // no intersection
// TODO: check minimal intersection!
it_above->prev_parts.emplace_back(PartLink{it_below});
it_below->next_parts.emplace_back(PartLink{it_above});
}
}
}, 8 /* gransize */);
return result;
}
SupportPoints Slic3r::sla::generate_support_points(
const SupportPointGeneratorData &data,
const SupportPointGeneratorConfig &config,
ThrowOnCancel throw_on_cancel,
StatusFunction statusfn
){
const Layers &layers = data.layers;
double increment = 100.0 / static_cast<double>(layers.size());
double status = 0; // current progress
int status_int = 0;
SupportPoints result;
std::vector<Grid2D> prev_grids; // same count as previous layer item size
for (size_t layer_id = 0; layer_id < layers.size(); ++layer_id) {
const Layer &layer = layers[layer_id];
std::vector<Grid2D> grids;
grids.reserve(layer.parts.size());
for (const LayerPart &part : layer.parts) {
if (part.prev_parts.empty()) {
// new island - needs support no doubt
float part_z = data.heights[layer_id];
grids.push_back(support_island(part, part_z, config));
} else {
sample_part(part, layer_id, data, config, grids, prev_grids);
}
// collect result from grid of top part
if (part.next_parts.empty()) {
const Grid2D &part_grid = grids.back();
SupportPoints sps = part_grid.get_points();
result.insert(result.end(),
std::make_move_iterator(sps.begin()),
std::make_move_iterator(sps.end()));
}
}
prev_grids = std::move(grids);
throw_on_cancel();
int old_status_int = status_int;
status += increment;
status_int = static_cast<int>(std::round(status));
if (old_status_int < status_int)
statusfn(status_int);
}
return result;
}

View File

@ -1,190 +0,0 @@
///|/ Copyright (c) Prusa Research 2024 Filip Sykala @Jony01
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#ifndef SLA_SUPPORTPOINTGENERATOR_NEW_HPP
#define SLA_SUPPORTPOINTGENERATOR_NEW_HPP
#include <vector>
#include <functional>
#include <boost/container/small_vector.hpp>
#include "libslic3r/Point.hpp"
#include "libslic3r/ExPolygon.hpp"
namespace Slic3r::sla {
/// <summary>
/// Configuration for automatic support placement
/// </summary>
struct SupportPointGeneratorConfig{
/// <summary>
/// 0 mean only one support point for each island
/// lower than one mean less amount of support points
/// 1 mean fine tuned sampling
/// more than one mean bigger amout of support points
/// </summary>
float density_relative{1.f};
/// <summary>
/// Size range for support point interface (head)
/// </summary>
MinMax<float> head_diameter = {0.2f, 0.6f}; // [in mm]
// FIXME: calculate actual pixel area from printer config:
// const float pixel_area =
// pow(wxGetApp().preset_bundle->project_config.option<ConfigOptionFloat>("display_width") /
// wxGetApp().preset_bundle->project_config.option<ConfigOptionInt>("display_pixels_x"), 2.f); //
// Minimal island Area to print - TODO: Should be modifiable from UI
// !! Filter should be out of sampling algorithm !!
float minimal_island_area = pow(0.047f, 2.f); // [in mm^2] pixel_area
};
struct LayerPart; // forward decl.
using LayerParts = std::vector<LayerPart>;
struct PartLink
{
LayerParts::const_iterator part_it;
// float overlap_area; // sum of overlap areas
// ExPolygons overlap; // clipper intersection_ex
// ExPolygons overhang; // clipper diff_ex
};
#ifdef NDEBUG
// In release mode, use the optimized container.
using PartLinks = boost::container::small_vector<PartLink, 4>;
#else
// In debug mode, use the standard vector, which is well handled by debugger visualizer.
using PartLinks = std::vector<PartLink>;
#endif
// Part on layer is defined by its shape
struct LayerPart {
// Pointer to expolygon stored in input
const ExPolygon *shape;
// rectangular bounding box of shape
BoundingBox shape_extent;
// uniformly sampled shape contour
Slic3r::Points samples;
// IMPROVE: sample only overhangs part of shape
// Parts from previous printed layer, which is connected to current part
PartLinks prev_parts;
PartLinks next_parts;
};
/// <summary>
/// One slice divided into
/// </summary>
struct Layer
{
// index into parent Layesr + heights + slices
// [[deprecated]] Use index to layers insted of adress from item
size_t layer_id;
// Absolute distance from Zero - copy value from heights<float>
// [[deprecated]] Use index to layers insted of adress from item
double print_z; // [in mm]
// data for one expolygon
LayerParts parts;
};
using Layers = std::vector<Layer>;
/// <summary>
/// Keep state of Support Point generation
/// Used for resampling with different configuration
/// </summary>
struct SupportPointGeneratorData
{
// Input slices of mesh
std::vector<ExPolygons> slices;
// Same size as slices
std::vector<float> heights;
// link to slices
Layers layers;
};
// Reason of automatic support placement usage
enum class SupportPointType {
manual_add,
island, // no move
slope,
thin,
stability,
edge
};
/// <summary>
/// Generated support point
/// </summary>
struct SupportPoint
{
// radius of the touching interface
// Also define force it must keep
float head_front_radius{1.f};
// type
SupportPointType type{SupportPointType::manual_add};
// Pointer on source ExPolygon otherwise nullptr
const LayerPart *part{nullptr};
// 2d coordinate on layer
// use only when part is not nullptr
Point position_on_layer; // [scaled_ unit]
// height of part
float z_height;
// 2d direction into expolygon mass
// used as ray to positioning point on mesh surface
Point direction_to_mass;
};
using SupportPoints = std::vector<SupportPoint>;
// call during generation of support points to check cancel event
using ThrowOnCancel = std::function<void(void)>;
// call to say progress of generation into gui in range from 0 to 100
using StatusFunction= std::function<void(int)>;
/// <summary>
/// Prepare data for generate support points
/// Used for interactive resampling to store permanent data between configuration changes.,
/// Everything which could be prepared are stored into result.
/// Need to regenerate on mesh change(Should be connected with ObjectId) OR change of slicing heights
/// </summary>
/// <param name="slices">Countour cut from mesh</param>
/// <param name="heights">Heights of the slices - Same size as slices</param>
/// <param name="throw_on_cancel">Call in meanwhile to check cancel event</param>
/// <param name="statusfn">Say progress of generation into gui</param>
/// <returns>Data prepared for generate support points</returns>
SupportPointGeneratorData prepare_generator_data(
std::vector<ExPolygons> &&slices,
std::vector<float> &&heights,
ThrowOnCancel throw_on_cancel,
StatusFunction statusfn
);
/// <summary>
/// Generate support points on islands by configuration parameters
/// </summary>
/// <param name="data">Preprocessed data needed for sampling</param>
/// <param name="config">Define density of samples</param>
/// <param name="throw_on_cancel">Call in meanwhile to check cancel event</param>
/// <param name="statusfn">Progress of generation into gui</param>
/// <returns>Generated support points</returns>
SupportPoints generate_support_points(
const SupportPointGeneratorData &data,
const SupportPointGeneratorConfig &config,
ThrowOnCancel throw_on_cancel,
StatusFunction statusfn
);
} // namespace Slic3r::sla
#endif // SLA_SUPPORTPOINTGENERATOR_NEW_HPP

View File

@ -1255,8 +1255,12 @@ SLAPrintObject::get_parts_to_slice(SLAPrintObjectStep untilstep) const
sla::SupportPoints SLAPrintObject::transformed_support_points() const sla::SupportPoints SLAPrintObject::transformed_support_points() const
{ {
assert(model_object()); assert(model_object());
auto spts = model_object()->sla_support_points;
return sla::transformed_support_points(*model_object(), trafo()); Transform3f tr = trafo().cast<float>();
for (sla::SupportPoint &suppt : spts) {
suppt.pos = tr * suppt.pos;
}
return spts;
} }
sla::DrainHoles SLAPrintObject::transformed_drainhole_points() const sla::DrainHoles SLAPrintObject::transformed_drainhole_points() const

View File

@ -51,7 +51,6 @@
#include "libslic3r/SLA/Hollowing.hpp" #include "libslic3r/SLA/Hollowing.hpp"
#include "libslic3r/SLA/JobController.hpp" #include "libslic3r/SLA/JobController.hpp"
#include "libslic3r/SLA/RasterBase.hpp" #include "libslic3r/SLA/RasterBase.hpp"
#include "libslic3r/SLA/SupportPoint.hpp"
#include "libslic3r/SLA/SupportTree.hpp" #include "libslic3r/SLA/SupportTree.hpp"
#include "libslic3r/SLA/SupportTreeStrategies.hpp" #include "libslic3r/SLA/SupportTreeStrategies.hpp"
#include "libslic3r/SLAPrint.hpp" #include "libslic3r/SLAPrint.hpp"
@ -632,24 +631,20 @@ void SLAPrint::Steps::support_points(SLAPrintObject &po)
// we will do the autoplacement. Otherwise we will just blindly copy the // we will do the autoplacement. Otherwise we will just blindly copy the
// frontend data into the backend cache. // frontend data into the backend cache.
if (mo.sla_points_status != sla::PointsStatus::UserModified) { if (mo.sla_points_status != sla::PointsStatus::UserModified) {
// calculate heights of slices (slices are calculated already)
const std::vector<float>& heights = po.m_model_height_levels;
throw_if_canceled(); throw_if_canceled();
sla::SupportPointGenerator::Config config; sla::SupportPointGeneratorConfig config;
const SLAPrintObjectConfig& cfg = po.config(); const SLAPrintObjectConfig& cfg = po.config();
// the density config value is in percents: // the density config value is in percents:
config.density_relative = float(cfg.support_points_density_relative / 100.f); config.density_relative = float(cfg.support_points_density_relative / 100.f);
config.minimal_distance = float(cfg.support_points_minimal_distance);
switch (cfg.support_tree_type) { switch (cfg.support_tree_type) {
case sla::SupportTreeType::Default: case sla::SupportTreeType::Default:
case sla::SupportTreeType::Organic: case sla::SupportTreeType::Organic:
config.head_diameter = float(cfg.support_head_front_diameter); config.head_diameter = {float(cfg.support_head_front_diameter), .0};
break; break;
case sla::SupportTreeType::Branching: case sla::SupportTreeType::Branching:
config.head_diameter = float(cfg.branchingsupport_head_front_diameter); config.head_diameter = {float(cfg.branchingsupport_head_front_diameter), .0};
break; break;
} }
@ -666,12 +661,29 @@ void SLAPrint::Steps::support_points(SLAPrintObject &po)
// Construction of this object does the calculation. // Construction of this object does the calculation.
throw_if_canceled(); throw_if_canceled();
sla::SupportPointGenerator auto_supports(
po.m_supportdata->input.emesh, po.get_model_slices(),
heights, config, [this]() { throw_if_canceled(); }, statuscb);
// Now let's extract the result. // TODO: filter small unprintable islands in slices
std::vector<sla::SupportPoint>& points = auto_supports.output(); // (Island with area smaller than 1 pixel was skipped in support generator)
std::vector<ExPolygons> slices = po.get_model_slices(); // copy
std::vector<float> heights = po.m_model_height_levels; // copy
sla::ThrowOnCancel cancel = [this]() { throw_if_canceled(); };
sla::StatusFunction status = statuscb;
sla::SupportPointGeneratorData data =
sla::prepare_generator_data(std::move(slices), std::move(heights), cancel, status);
sla::LayerSupportPoints layer_support_points =
sla::generate_support_points(data, config, cancel, status);
const AABBMesh& emesh = po.m_supportdata->input.emesh;
// Maximal move of support point to mesh surface,
// no more than height of layer
assert(po.m_model_height_levels.size() > 1);
double allowed_move = (po.m_model_height_levels[1] - po.m_model_height_levels[0]) +
std::numeric_limits<float>::epsilon();
sla::SupportPoints support_points =
sla::move_on_mesh_surface(layer_support_points, emesh, allowed_move, cancel);
throw_if_canceled(); throw_if_canceled();
MeshSlicingParamsEx params; MeshSlicingParamsEx params;
@ -691,9 +703,9 @@ void SLAPrint::Steps::support_points(SLAPrintObject &po)
}); });
SuppPtMask mask{blockers, enforcers, po.config().support_enforcers_only.getBool()}; SuppPtMask mask{blockers, enforcers, po.config().support_enforcers_only.getBool()};
filter_support_points_by_modifiers(points, mask, po.m_model_height_levels); filter_support_points_by_modifiers(support_points, mask, po.m_model_height_levels);
po.m_supportdata->input.pts = points; po.m_supportdata->input.pts = support_points;
BOOST_LOG_TRIVIAL(debug) BOOST_LOG_TRIVIAL(debug)
<< "Automatic support points: " << "Automatic support points: "
@ -717,10 +729,17 @@ void SLAPrint::Steps::support_tree(SLAPrintObject &po)
// If the zero elevation mode is engaged, we have to filter out all the // If the zero elevation mode is engaged, we have to filter out all the
// points that are on the bottom of the object // points that are on the bottom of the object
if (is_zero_elevation(po.config())) { if (is_zero_elevation(po.config())) {
remove_bottom_points(po.m_supportdata->input.pts, // remove_bottom_points
float( std::vector<sla::SupportPoint> &pts = po.m_supportdata->input.pts;
po.m_supportdata->input.zoffset + float lvl(po.m_supportdata->input.zoffset + EPSILON);
EPSILON));
// get iterator to the reorganized vector end
auto endit = std::remove_if(pts.begin(), pts.end(),
[lvl](const sla::SupportPoint &sp) {
return sp.pos.z() <= lvl; });
// erase all elements after the new end
pts.erase(endit, pts.end());
} }
po.m_supportdata->input.cfg = make_support_cfg(po.m_config); po.m_supportdata->input.cfg = make_support_cfg(po.m_config);

View File

@ -212,7 +212,7 @@ void GLGizmoSlaSupports::render_points(const Selection& selection)
if (size_t(m_hover_id) == i && m_editing_mode) // ignore hover state unless editing mode is active if (size_t(m_hover_id) == i && m_editing_mode) // ignore hover state unless editing mode is active
render_color = { 0.f, 1.f, 1.f, 1.f }; render_color = { 0.f, 1.f, 1.f, 1.f };
else { // neigher hover nor picking else { // neigher hover nor picking
bool supports_new_island = m_lock_unique_islands && support_point.is_new_island; bool supports_new_island = m_lock_unique_islands && support_point.type == sla::SupportPointType::island;
if (m_editing_mode) { if (m_editing_mode) {
if (point_selected) if (point_selected)
render_color = { 1.f, 0.3f, 0.3f, 1.f}; render_color = { 1.f, 0.3f, 0.3f, 1.f};
@ -324,7 +324,7 @@ bool GLGizmoSlaSupports::gizmo_event(SLAGizmoEventType action, const Vec2d& mous
std::pair<Vec3f, Vec3f> pos_and_normal; std::pair<Vec3f, Vec3f> pos_and_normal;
if (unproject_on_mesh(mouse_position, pos_and_normal)) { // we got an intersection if (unproject_on_mesh(mouse_position, pos_and_normal)) { // we got an intersection
Plater::TakeSnapshot snapshot(wxGetApp().plater(), _L("Add support point")); Plater::TakeSnapshot snapshot(wxGetApp().plater(), _L("Add support point"));
m_editing_cache.emplace_back(sla::SupportPoint(pos_and_normal.first, m_new_point_head_diameter/2.f, false), false, pos_and_normal.second); m_editing_cache.emplace_back(sla::SupportPoint{pos_and_normal.first, m_new_point_head_diameter/2.f}, false, pos_and_normal.second);
m_parent.set_as_dirty(); m_parent.set_as_dirty();
m_wait_for_up_event = true; m_wait_for_up_event = true;
unregister_point_raycasters_for_picking(); unregister_point_raycasters_for_picking();
@ -479,7 +479,7 @@ void GLGizmoSlaSupports::delete_selected_points(bool force)
Plater::TakeSnapshot snapshot(wxGetApp().plater(), _L("Delete support point")); Plater::TakeSnapshot snapshot(wxGetApp().plater(), _L("Delete support point"));
for (unsigned int idx=0; idx<m_editing_cache.size(); ++idx) { for (unsigned int idx=0; idx<m_editing_cache.size(); ++idx) {
if (m_editing_cache[idx].selected && (!m_editing_cache[idx].support_point.is_new_island || !m_lock_unique_islands || force)) { if (m_editing_cache[idx].selected && (!m_editing_cache[idx].support_point.is_island() || !m_lock_unique_islands || force)) {
m_editing_cache.erase(m_editing_cache.begin() + (idx--)); m_editing_cache.erase(m_editing_cache.begin() + (idx--));
} }
} }
@ -914,7 +914,7 @@ void GLGizmoSlaSupports::on_dragging(const UpdateData &data)
{ {
assert(m_hover_id != -1); assert(m_hover_id != -1);
if (!m_editing_mode) return; if (!m_editing_mode) return;
if (m_editing_cache[m_hover_id].support_point.is_new_island && m_lock_unique_islands) if (m_editing_cache[m_hover_id].support_point.is_island() && m_lock_unique_islands)
return; return;
std::pair<Vec3f, Vec3f> pos_and_normal; std::pair<Vec3f, Vec3f> pos_and_normal;
@ -922,7 +922,7 @@ void GLGizmoSlaSupports::on_dragging(const UpdateData &data)
return; return;
m_editing_cache[m_hover_id].support_point.pos = pos_and_normal.first; m_editing_cache[m_hover_id].support_point.pos = pos_and_normal.first;
m_editing_cache[m_hover_id].support_point.is_new_island = false; m_editing_cache[m_hover_id].support_point.type = sla::SupportPointType::manual_add;
m_editing_cache[m_hover_id].normal = pos_and_normal.second; m_editing_cache[m_hover_id].normal = pos_and_normal.second;
} }
@ -1124,7 +1124,7 @@ void GLGizmoSlaSupports::get_data_from_backend()
const std::vector<sla::SupportPoint>& points = po->get_support_points(); const std::vector<sla::SupportPoint>& points = po->get_support_points();
auto mat = po->trafo().inverse().cast<float>(); auto mat = po->trafo().inverse().cast<float>();
for (unsigned int i=0; i<points.size();++i) for (unsigned int i=0; i<points.size();++i)
m_normal_cache.emplace_back(sla::SupportPoint(mat * points[i].pos, points[i].head_front_radius, points[i].is_new_island)); m_normal_cache.emplace_back(sla::SupportPoint{mat * points[i].pos, points[i].head_front_radius});
mo->sla_points_status = sla::PointsStatus::AutoGenerated; mo->sla_points_status = sla::PointsStatus::AutoGenerated;
break; break;