Merge branch 'sp_base_interfaces' of https://github.com/spiky2021/PrusaSlicer into spiky2021-sp_base_interfaces

This commit is contained in:
Vojtech Bubnik 2021-02-11 18:02:22 +01:00
commit 7a869b1ce3
2 changed files with 201 additions and 87 deletions

View File

@ -313,8 +313,17 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating interfaces";
// Propagate top / bottom contact layers to generate interface layers.
// In a first step generate normal interfaces with number_base_interface_layers = zero,
// since generation of those layers is depends on remaining intersection area of intermediate layers.
MyLayersPtr interface_layers = this->generate_interface_layers(
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
bottom_contacts, top_contacts, intermediate_layers, 0, layer_storage);
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating base interfaces";
// Propagate top / bottom contact layers to generate base interface layers in second step.
MyLayersPtr base_interface_layers = this->generate_interface_layers(
bottom_contacts, top_contacts, intermediate_layers, 2, layer_storage);
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft";
@ -330,6 +339,13 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
union_ex((*it)->polygons, false));
#endif /* SLIC3R_DEBUG */
#ifdef SLIC3R_DEBUG
for (MyLayersPtr::const_iterator it = base_interface_layers.begin(); it != base_interface_layers.end(); ++ it)
Slic3r::SVG::export_expolygons(
debug_out_path("support-base-interface-layers-%d-%lf.svg", iRun, (*it)->print_z),
union_ex((*it)->polygons, false));
#endif /* SLIC3R_DEBUG */
/*
// Clip with the pillars.
if (! shape.empty()) {
@ -350,12 +366,14 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
// Install support layers into the object.
// A support layer installed on a PrintObject has a unique print_z.
MyLayersPtr layers_sorted;
layers_sorted.reserve(raft_layers.size() + bottom_contacts.size() + top_contacts.size() + intermediate_layers.size() + interface_layers.size());
layers_sorted.reserve(raft_layers.size() + bottom_contacts.size() + top_contacts.size() + intermediate_layers.size() + interface_layers.size() + base_interface_layers.size());
//layers_sorted.reserve(raft_layers.size() + bottom_contacts.size() + top_contacts.size() + intermediate_layers.size() + interface_layers.size());
layers_append(layers_sorted, raft_layers);
layers_append(layers_sorted, bottom_contacts);
layers_append(layers_sorted, top_contacts);
layers_append(layers_sorted, intermediate_layers);
layers_append(layers_sorted, interface_layers);
layers_append(layers_sorted, base_interface_layers);
// Sort the layers lexicographically by a raising print_z and a decreasing height.
std::sort(layers_sorted.begin(), layers_sorted.end(), MyLayersPtrCompare());
int layer_id = 0;
@ -388,7 +406,8 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
BOOST_LOG_TRIVIAL(info) << "Support generator - Generating tool paths";
// Generate the actual toolpaths and save them into each layer.
this->generate_toolpaths(object.support_layers(), raft_layers, bottom_contacts, top_contacts, intermediate_layers, interface_layers);
this->generate_toolpaths(object, raft_layers, bottom_contacts, top_contacts, intermediate_layers, interface_layers, base_interface_layers);
//this->generate_toolpaths(object, raft_layers, bottom_contacts, top_contacts, intermediate_layers, interface_layers);
#ifdef SLIC3R_DEBUG
{
@ -781,7 +800,7 @@ namespace SupportMaterialInternal {
{
for (const ExtrusionPath &ep : loop.paths)
if (ep.role() == erOverhangPerimeter && ! ep.polyline.empty())
return int(ep.size()) >= (ep.is_closed() ? 3 : 2);
return ep.size() >= (ep.is_closed() ? 3 : 2);
return false;
}
static bool has_bridging_perimeters(const ExtrusionEntityCollection &perimeters)
@ -956,7 +975,8 @@ static int Test()
return 0;
}
static int run_support_test = Test();
#endif /* SLIC3R_DEBUG */
#endif /* SLIC3R_DEBUG
*/
// Generate top contact layers supporting overhangs.
// For a soluble interface material synchronize the layer heights with the object, otherwise leave the layer height undefined.
@ -1128,7 +1148,8 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
// Subtracting them as they are may leave unwanted narrow
// residues of diff_polygons that would then be supported.
diff_polygons = diff(diff_polygons,
offset(union_(to_polygons(std::move(blockers[layer_id]))), float(1000.*SCALED_EPSILON)));
offset(union_(to_polygons(std::move(blockers[layer_id]))),
1000.*SCALED_EPSILON));
}
#ifdef SLIC3R_DEBUG
@ -1581,7 +1602,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_conta
});
Polygons &layer_support_area = layer_support_areas[layer_id];
task_group.run([this, &projection, &projection_raw, &layer, &layer_support_area] {
task_group.run([this, &projection, &projection_raw, &layer, &layer_support_area, layer_id] {
// Remove the areas that touched from the projection that will continue on next, lower, top surfaces.
// Polygons trimming = union_(to_polygons(layer.slices), touching, true);
Polygons trimming = offset(layer.lslices, float(SCALED_EPSILON));
@ -1661,81 +1682,69 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_conta
// If no vec item with Z value >= of an internal threshold of fn_higher_equal is found, return vec.size()
// If the initial idx is size_t(-1), then use binary search.
// Otherwise search linearly upwards.
template<typename IT, typename FN_HIGHER_EQUAL>
size_t idx_higher_or_equal(IT begin, IT end, size_t idx, FN_HIGHER_EQUAL fn_higher_equal)
template<typename T, typename FN_HIGHER_EQUAL>
size_t idx_higher_or_equal(const std::vector<T*> &vec, size_t idx, FN_HIGHER_EQUAL fn_higher_equal)
{
auto size = int(end - begin);
if (size == 0) {
if (vec.empty()) {
idx = 0;
} else if (idx == size_t(-1)) {
// First of the batch of layers per thread pool invocation. Use binary search.
int idx_low = 0;
int idx_high = std::max(0, size - 1);
int idx_high = std::max(0, int(vec.size()) - 1);
while (idx_low + 1 < idx_high) {
int idx_mid = (idx_low + idx_high) / 2;
if (fn_higher_equal(begin[idx_mid]))
if (fn_higher_equal(vec[idx_mid]))
idx_high = idx_mid;
else
idx_low = idx_mid;
}
idx = fn_higher_equal(begin[idx_low]) ? idx_low :
(fn_higher_equal(begin[idx_high]) ? idx_high : size);
idx = fn_higher_equal(vec[idx_low]) ? idx_low :
(fn_higher_equal(vec[idx_high]) ? idx_high : vec.size());
} else {
// For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
while (int(idx) < size && ! fn_higher_equal(begin[idx]))
while (idx < vec.size() && ! fn_higher_equal(vec[idx]))
++ idx;
}
return idx;
}
template<typename T, typename FN_HIGHER_EQUAL>
size_t idx_higher_or_equal(const std::vector<T>& vec, size_t idx, FN_HIGHER_EQUAL fn_higher_equal)
{
return idx_higher_or_equal(vec.begin(), vec.end(), idx, fn_higher_equal);
}
// FN_LOWER_EQUAL: the provided object pointer has a Z value <= of an internal threshold.
// Find the first item with Z value <= of an internal threshold of fn_lower_equal.
// If no vec item with Z value <= of an internal threshold of fn_lower_equal is found, return -1.
// If the initial idx is < -1, then use binary search.
// Otherwise search linearly downwards.
template<typename IT, typename FN_LOWER_EQUAL>
int idx_lower_or_equal(IT begin, IT end, int idx, FN_LOWER_EQUAL fn_lower_equal)
template<typename T, typename FN_LOWER_EQUAL>
int idx_lower_or_equal(const std::vector<T*> &vec, int idx, FN_LOWER_EQUAL fn_lower_equal)
{
auto size = int(end - begin);
if (size == 0) {
if (vec.empty()) {
idx = -1;
} else if (idx < -1) {
// First of the batch of layers per thread pool invocation. Use binary search.
int idx_low = 0;
int idx_high = std::max(0, size - 1);
int idx_high = std::max(0, int(vec.size()) - 1);
while (idx_low + 1 < idx_high) {
int idx_mid = (idx_low + idx_high) / 2;
if (fn_lower_equal(begin[idx_mid]))
if (fn_lower_equal(vec[idx_mid]))
idx_low = idx_mid;
else
idx_high = idx_mid;
}
idx = fn_lower_equal(begin[idx_high]) ? idx_high :
(fn_lower_equal(begin[idx_low ]) ? idx_low : -1);
idx = fn_lower_equal(vec[idx_high]) ? idx_high :
(fn_lower_equal(vec[idx_low ]) ? idx_low : -1);
} else {
// For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
while (idx >= 0 && ! fn_lower_equal(begin[idx]))
while (idx >= 0 && ! fn_lower_equal(vec[idx]))
-- idx;
}
return idx;
}
template<typename T, typename FN_LOWER_EQUAL>
int idx_lower_or_equal(const std::vector<T*> &vec, int idx, FN_LOWER_EQUAL fn_lower_equal)
{
return idx_lower_or_equal(vec.begin(), vec.end(), idx, fn_lower_equal);
}
// Trim the top_contacts layers with the bottom_contacts layers if they overlap, so there would not be enough vertical space for both of them.
void PrintObjectSupportMaterial::trim_top_contacts_by_bottom_contacts(
const PrintObject &object, const MyLayersPtr &bottom_contacts, MyLayersPtr &top_contacts) const
{
tbb::parallel_for(tbb::blocked_range<int>(0, int(top_contacts.size())),
[&bottom_contacts, &top_contacts](const tbb::blocked_range<int>& range) {
[this, &object, &bottom_contacts, &top_contacts](const tbb::blocked_range<int>& range) {
int idx_bottom_overlapping_first = -2;
// For all top contact layers, counting downwards due to the way idx_higher_or_equal caches the last index to avoid repeated binary search.
for (int idx_top = range.end() - 1; idx_top >= range.begin(); -- idx_top) {
@ -1964,7 +1973,7 @@ void PrintObjectSupportMaterial::generate_base_layers(
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_base_layers() in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, intermediate_layers.size()),
[&object, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_support_areas](const tbb::blocked_range<size_t>& range) {
[this, &object, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_support_areas](const tbb::blocked_range<size_t>& range) {
// index -2 means not initialized yet, -1 means intialized and decremented to 0 and then -1.
int idx_top_contact_above = -2;
int idx_bottom_contact_overlapping = -2;
@ -1983,7 +1992,7 @@ void PrintObjectSupportMaterial::generate_base_layers(
Polygons polygons_new;
// Use the precomputed layer_support_areas.
idx_object_layer_above = std::max(0, idx_lower_or_equal(object.layers().begin(), object.layers().end(), idx_object_layer_above,
idx_object_layer_above = std::max(0, idx_lower_or_equal(object.layers(), idx_object_layer_above,
[&layer_intermediate](const Layer *layer){ return layer->print_z <= layer_intermediate.print_z + EPSILON; }));
polygons_new = layer_support_areas[idx_object_layer_above];
@ -2119,7 +2128,7 @@ void PrintObjectSupportMaterial::trim_support_layers_by_object(
// Find the overlapping object layers including the extra above / below gap.
coordf_t z_threshold = support_layer.print_z - support_layer.height - gap_extra_below + EPSILON;
idx_object_layer_overlapping = idx_higher_or_equal(
object.layers().begin(), object.layers().end(), idx_object_layer_overlapping,
object.layers(), idx_object_layer_overlapping,
[z_threshold](const Layer *layer){ return layer->print_z >= z_threshold; });
// Collect all the object layers intersecting with this layer.
Polygons polygons_trimming;
@ -2249,40 +2258,61 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raf
return raft_layers;
}
// Convert some of the intermediate layers into top/bottom interface layers.
// Convert some of the intermediate layers into top/bottom interface layers as well as base interface layers.
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_interface_layers(
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
MyLayersPtr &intermediate_layers,
size_t number_base_interface_layers,
MyLayerStorage &layer_storage) const
{
// my $area_threshold = $self->interface_flow->scaled_spacing ** 2;
MyLayersPtr interface_layers;
// distinguish between interface and base interface layers
// Contact layer is considered an interface layer, therefore run the following block only if support_material_interface_layers > 1.
if (! intermediate_layers.empty() && m_object_config->support_material_interface_layers.value > 1) {
// Contact layer needs a base_interface layer, therefore run the following block if support_material_interface_layers > 0, has soluble support and extruders are different.
bool has_interface_layers = m_object_config->support_material_interface_layers.value > 1;
if(number_base_interface_layers > 0)
has_interface_layers = m_object_config->support_material_interface_layers.value > 0 && m_slicing_params.soluble_interface
&& m_object_config->support_material_interface_extruder.value != m_object_config->support_material_extruder.value;
if (! intermediate_layers.empty() && has_interface_layers) {
// For all intermediate layers, collect top contact surfaces, which are not further than support_material_interface_layers.
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - start";
interface_layers.assign(intermediate_layers.size(), nullptr);
tbb::spin_mutex layer_storage_mutex;
tbb::parallel_for(tbb::blocked_range<size_t>(0, intermediate_layers.size()),
[this, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_storage, &layer_storage_mutex, &interface_layers](const tbb::blocked_range<size_t>& range) {
[this, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_storage, number_base_interface_layers, &layer_storage_mutex, &interface_layers](const tbb::blocked_range<size_t>& range) {
// gather the number of layers below/above object
// FIX The algorithm calculates top_z/bottom_z coordinates refered to the conctacts and above them polygons are projected.
// Since the intermediate layer index starts at zero the number of interface layer needs to be reduced by 1.
size_t number_layers = size_t(m_object_config->support_material_interface_layers.value - 1);
if(number_base_interface_layers > 0)
number_layers = size_t(number_layers + number_base_interface_layers);
// Index of the first top contact layer intersecting the current intermediate layer.
size_t idx_top_contact_first = size_t(-1);
// Index of the first bottom contact layer intersecting the current intermediate layer.
size_t idx_bottom_contact_first = size_t(-1);
for (size_t idx_intermediate_layer = range.begin(); idx_intermediate_layer < range.end(); ++ idx_intermediate_layer) {
MyLayer &intermediate_layer = *intermediate_layers[idx_intermediate_layer];
// Top / bottom Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces.
coordf_t top_z = intermediate_layers[std::min<int>(intermediate_layers.size()-1, idx_intermediate_layer + m_object_config->support_material_interface_layers - 1)]->print_z;
coordf_t bottom_z = intermediate_layers[std::max<int>(0, int(idx_intermediate_layer) - int(m_object_config->support_material_interface_layers) + 1)]->bottom_z;
// Top / bottom Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces
// Indexing is further corrected by the existing constacts, that are interface layers as well.
coordf_t top_z = intermediate_layers[std::min<int>(intermediate_layers.size()-1, idx_intermediate_layer + number_layers -1)]->print_z;
coordf_t bottom_z = intermediate_layers[std::max<int>(0, int(idx_intermediate_layer) - int(number_layers) + 1)]->bottom_z;
// Move idx_top_contact_first up until above the current print_z.
idx_top_contact_first = idx_higher_or_equal(top_contacts, idx_top_contact_first, [&intermediate_layer](const MyLayer *layer){ return layer->print_z >= intermediate_layer.print_z; }); // - EPSILON
// FIX Avoid aditional excess layers (make it mirrow symmetric to the bottonm coding)
// idx_top_contact_first = idx_higher_or_equal(top_contacts, idx_top_contact_first, [&intermediate_layer](const MyLayer *layer){ return layer->print_z >= intermediate_layer.print_z; }); // - EPSILON
idx_top_contact_first = idx_higher_or_equal(top_contacts, idx_top_contact_first, [&intermediate_layer](const MyLayer *layer){ return layer->bottom_z >= intermediate_layer.print_z; }); // - EPSILON
// Collect the top contact areas above this intermediate layer, below top_z.
Polygons polygons_top_contact_projected;
for (size_t idx_top_contact = idx_top_contact_first; idx_top_contact < top_contacts.size(); ++ idx_top_contact) {
const MyLayer &top_contact_layer = *top_contacts[idx_top_contact];
//FIXME maybe this adds one interface layer in excess?
//FIXME maybe this adds one interface layer in excess? removed?
if (top_contact_layer.bottom_z - EPSILON > top_z)
break;
polygons_append(polygons_top_contact_projected, top_contact_layer.polygons);
@ -2301,21 +2331,24 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_int
if (polygons_top_contact_projected.empty() && polygons_bottom_contact_projected.empty())
continue;
// Insert a new layer into top_interface_layers.
MyLayer &layer_new = layer_allocate(layer_storage, layer_storage_mutex,
polygons_top_contact_projected.empty() ? sltBottomInterface : sltTopInterface);
layer_new.print_z = intermediate_layer.print_z;
layer_new.bottom_z = intermediate_layer.bottom_z;
layer_new.height = intermediate_layer.height;
layer_new.bridging = intermediate_layer.bridging;
interface_layers[idx_intermediate_layer] = &layer_new;
polygons_append(polygons_top_contact_projected, polygons_bottom_contact_projected);
polygons_top_contact_projected = union_(polygons_top_contact_projected, true);
layer_new.polygons = intersection(intermediate_layer.polygons, polygons_top_contact_projected);
//FIXME filter layer_new.polygons islands by a minimum area?
// $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
intermediate_layer.polygons = diff(intermediate_layer.polygons, polygons_top_contact_projected, false);
Polygons base_intersection_polys = intersection(intermediate_layer.polygons, polygons_top_contact_projected);
// Insert a new layer into base_interface_layers, if intersection with base exists.
if (! base_intersection_polys.empty()){
MyLayer &layer_new = layer_allocate(layer_storage, layer_storage_mutex,
number_base_interface_layers > 0 ? sltBase : polygons_top_contact_projected.empty() ? sltBottomInterface : sltTopInterface);
layer_new.print_z = intermediate_layer.print_z;
layer_new.bottom_z = intermediate_layer.bottom_z;
layer_new.height = intermediate_layer.height;
layer_new.bridging = intermediate_layer.bridging;
layer_new.polygons = base_intersection_polys;
interface_layers[idx_intermediate_layer] = &layer_new;
//FIXME filter layer_new.polygons islands by a minimum area?
// $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
intermediate_layer.polygons = diff(intermediate_layer.polygons, polygons_top_contact_projected, false);
}
}
});
@ -2327,6 +2360,32 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_int
return interface_layers;
}
static inline void fill_expolygons_generate_paths(
ExtrusionEntitiesPtr &dst,
const ExPolygons &expolygons,
Fill *filler,
float density,
ExtrusionRole role,
const Flow &flow)
{
FillParams fill_params;
fill_params.density = density;
fill_params.dont_adjust = true;
for (const ExPolygon &expoly : expolygons) {
Surface surface(stInternal, expoly);
Polylines polylines;
try {
polylines = filler->fill_surface(&surface, fill_params);
} catch (InfillFailedException &) {
}
extrusion_entities_append_paths(
dst,
std::move(polylines),
role,
flow.mm3_per_mm(), flow.width, flow.height);
}
}
static inline void fill_expolygons_generate_paths(
ExtrusionEntitiesPtr &dst,
ExPolygons &&expolygons,
@ -2373,9 +2432,13 @@ struct MyLayerExtruded
const Polygons& polygons_to_extrude() const { return (m_polygons_to_extrude == nullptr) ? layer->polygons : *m_polygons_to_extrude; }
bool could_merge(const MyLayerExtruded &other) const {
return ! this->empty() && ! other.empty() &&
std::abs(this->layer->height - other.layer->height) < EPSILON &&
this->layer->bridging == other.layer->bridging;
//return ! this->empty() && ! other.empty() && //FIXME Below layer ptr maybe nullptr, works only because full condition is false anyway, but ugly!
// std::abs(this->layer->height - other.layer->height) < EPSILON &&
// this->layer->bridging == other.layer->bridging;
//FIX
bool mergeable = ! this->empty() && ! other.empty();
if (mergeable) mergeable = std::abs(this->layer->height - other.layer->height) < EPSILON && this->layer->bridging == other.layer->bridging;
return mergeable;
}
// Merge regions, perform boolean union over the merged polygons.
@ -2916,12 +2979,13 @@ void modulate_extrusion_by_overlapping_layers(
}
void PrintObjectSupportMaterial::generate_toolpaths(
SupportLayerPtrs &support_layers,
const PrintObject &object,
const MyLayersPtr &raft_layers,
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
const MyLayersPtr &intermediate_layers,
const MyLayersPtr &interface_layers) const
const MyLayersPtr &interface_layers,
const MyLayersPtr &base_interface_layers) const
{
// Slic3r::debugf "Generating patterns\n";
// loop_interface_processor with a given circle radius.
@ -2985,13 +3049,13 @@ void PrintObjectSupportMaterial::generate_toolpaths(
// Insert the raft base layers.
size_t n_raft_layers = size_t(std::max(0, int(m_slicing_params.raft_layers()) - 1));
tbb::parallel_for(tbb::blocked_range<size_t>(0, n_raft_layers),
[this, &support_layers, &raft_layers,
[this, &object, &raft_layers,
infill_pattern, &bbox_object, support_density, interface_density, raft_angle_1st_layer, raft_angle_base, raft_angle_interface, link_max_length_factor, with_sheath]
(const tbb::blocked_range<size_t>& range) {
for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id)
{
assert(support_layer_id < raft_layers.size());
SupportLayer &support_layer = *support_layers[support_layer_id];
SupportLayer &support_layer = *object.support_layers()[support_layer_id];
assert(support_layer.support_fills.entities.empty());
MyLayer &raft_layer = *raft_layers[support_layer_id];
@ -3085,26 +3149,28 @@ void PrintObjectSupportMaterial::generate_toolpaths(
MyLayerExtruded top_contact_layer;
MyLayerExtruded base_layer;
MyLayerExtruded interface_layer;
MyLayerExtruded base_interface_layer;
std::vector<LayerCacheItem> overlaps;
};
std::vector<LayerCache> layer_caches(support_layers.size(), LayerCache());
std::vector<LayerCache> layer_caches(object.support_layers().size(), LayerCache());
tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, support_layers.size()),
[this, &support_layers, &bottom_contacts, &top_contacts, &intermediate_layers, &interface_layers, &layer_caches, &loop_interface_processor,
tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, object.support_layers().size()),
[this, &object, &bottom_contacts, &top_contacts, &intermediate_layers, &interface_layers, &base_interface_layers, &layer_caches, &loop_interface_processor,
infill_pattern, &bbox_object, support_density, interface_density, interface_angle, &angles, link_max_length_factor, with_sheath]
(const tbb::blocked_range<size_t>& range) {
// Indices of the 1st layer in their respective container at the support layer height.
size_t idx_layer_bottom_contact = size_t(-1);
size_t idx_layer_top_contact = size_t(-1);
size_t idx_layer_intermediate = size_t(-1);
size_t idx_layer_inteface = size_t(-1);
size_t idx_layer_interface = size_t(-1);
size_t idx_layer_base_interface = size_t(-1);
std::unique_ptr<Fill> filler_interface = std::unique_ptr<Fill>(Fill::new_from_type(m_slicing_params.soluble_interface ? ipConcentric : ipRectilinear));
std::unique_ptr<Fill> filler_support = std::unique_ptr<Fill>(Fill::new_from_type(infill_pattern));
filler_interface->set_bounding_box(bbox_object);
filler_support->set_bounding_box(bbox_object);
for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id)
{
SupportLayer &support_layer = *support_layers[support_layer_id];
SupportLayer &support_layer = *object.support_layers()[support_layer_id];
LayerCache &layer_cache = layer_caches[support_layer_id];
// Find polygons with the same print_z.
@ -3112,21 +3178,25 @@ void PrintObjectSupportMaterial::generate_toolpaths(
MyLayerExtruded &top_contact_layer = layer_cache.top_contact_layer;
MyLayerExtruded &base_layer = layer_cache.base_layer;
MyLayerExtruded &interface_layer = layer_cache.interface_layer;
MyLayerExtruded &base_interface_layer = layer_cache.base_interface_layer;
// Increment the layer indices to find a layer at support_layer.print_z.
{
auto fun = [&support_layer](const MyLayer *l){ return l->print_z >= support_layer.print_z - EPSILON; };
idx_layer_bottom_contact = idx_higher_or_equal(bottom_contacts, idx_layer_bottom_contact, fun);
idx_layer_top_contact = idx_higher_or_equal(top_contacts, idx_layer_top_contact, fun);
idx_layer_intermediate = idx_higher_or_equal(intermediate_layers, idx_layer_intermediate, fun);
idx_layer_inteface = idx_higher_or_equal(interface_layers, idx_layer_inteface, fun);
idx_layer_interface = idx_higher_or_equal(interface_layers, idx_layer_interface, fun);
idx_layer_base_interface = idx_higher_or_equal(base_interface_layers, idx_layer_base_interface, fun);
}
// Copy polygons from the layers.
if (idx_layer_bottom_contact < bottom_contacts.size() && bottom_contacts[idx_layer_bottom_contact]->print_z < support_layer.print_z + EPSILON)
bottom_contact_layer.layer = bottom_contacts[idx_layer_bottom_contact];
if (idx_layer_top_contact < top_contacts.size() && top_contacts[idx_layer_top_contact]->print_z < support_layer.print_z + EPSILON)
top_contact_layer.layer = top_contacts[idx_layer_top_contact];
if (idx_layer_inteface < interface_layers.size() && interface_layers[idx_layer_inteface]->print_z < support_layer.print_z + EPSILON)
interface_layer.layer = interface_layers[idx_layer_inteface];
if (idx_layer_interface < interface_layers.size() && interface_layers[idx_layer_interface]->print_z < support_layer.print_z + EPSILON)
interface_layer.layer = interface_layers[idx_layer_interface];
if (idx_layer_base_interface < base_interface_layers.size() && base_interface_layers[idx_layer_base_interface]->print_z < support_layer.print_z + EPSILON)
base_interface_layer.layer = base_interface_layers[idx_layer_base_interface];
if (idx_layer_intermediate < intermediate_layers.size() && intermediate_layers[idx_layer_intermediate]->print_z < support_layer.print_z + EPSILON)
base_layer.layer = intermediate_layers[idx_layer_intermediate];
@ -3151,7 +3221,7 @@ void PrintObjectSupportMaterial::generate_toolpaths(
top_contact_layer.merge(std::move(interface_layer));
}
if (! interface_layer.empty() && ! base_layer.empty()) {
if ( ! interface_layer.empty() && ! base_layer.empty()) {
// turn base support into interface when it's contained in our holes
// (this way we get wider interface anchoring)
//FIXME one wants to fill in the inner most holes of the interfaces, not all the holes.
@ -3192,6 +3262,33 @@ void PrintObjectSupportMaterial::generate_toolpaths(
erSupportMaterialInterface, interface_flow);
}
// Base interface layers under soluble interfaces
if ( ! base_interface_layer.empty() && ! base_interface_layer.polygons_to_extrude().empty()){
// FIXME Uses interface filler to provide maximum adhesion with soluble interfaces,
// but maybe rectliner would provide more even surface?
Fill *filler = filler_interface.get();
//FIXME Bottom interfaces are extruded with the briding flow. Some bridging layers have its height slightly reduced, therefore
// the bridging flow does not quite apply. Reduce the flow to area of an ellipse? (A = pi * a * b)
Flow interface_flow(
float(base_interface_layer.layer->bridging ? base_interface_layer.layer->height : m_support_material_flow.width), // m_support_material_interface_flow.width)),
float(base_interface_layer.layer->height),
m_support_material_flow.nozzle_diameter,
base_interface_layer.layer->bridging);
filler->angle = interface_angle;
filler->spacing = m_support_material_interface_flow.spacing();
filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / interface_density));
fill_expolygons_generate_paths(
// Destination
base_interface_layer.extrusions,
//base_layer_interface.extrusions,
// Regions to fill
union_ex(base_interface_layer.polygons_to_extrude(), true),
// Filler and its parameters
filler, float(interface_density),
// Extrusion parameters
erSupportMaterial, interface_flow);
}
// Base support or flange.
if (! base_layer.empty() && ! base_layer.polygons_to_extrude().empty()) {
//FIXME When paralellizing, each thread shall have its own copy of the fillers.
@ -3245,13 +3342,21 @@ void PrintObjectSupportMaterial::generate_toolpaths(
erSupportMaterial, flow);
}
layer_cache.overlaps.reserve(4);
// Merge base_interface_layers to base_layers to avoid unneccessary retractions
if (! base_layer.empty() && ! base_layer.polygons_to_extrude().empty()
&& ! base_interface_layer.empty() && ! base_interface_layer.polygons_to_extrude().empty()
&& base_layer.could_merge(base_interface_layer))
base_layer.merge(std::move(base_interface_layer));
layer_cache.overlaps.reserve(5);
if (! bottom_contact_layer.empty())
layer_cache.overlaps.push_back(&bottom_contact_layer);
if (! top_contact_layer.empty())
layer_cache.overlaps.push_back(&top_contact_layer);
if (! interface_layer.empty())
layer_cache.overlaps.push_back(&interface_layer);
if (! base_interface_layer.empty())
layer_cache.overlaps.push_back(&base_interface_layer);
if (! base_layer.empty())
layer_cache.overlaps.push_back(&base_layer);
// Sort the layers with the same print_z coordinate by their heights, thickest first.
@ -3272,7 +3377,7 @@ void PrintObjectSupportMaterial::generate_toolpaths(
// where it overlaps with another support layer.
//FIXME When printing a briging path, what is an equivalent height of the squished extrudate of the same width?
// Collect overlapping top/bottom surfaces.
layer_cache_item.overlapping.reserve(16);
layer_cache_item.overlapping.reserve(20);
coordf_t bottom_z = layer_cache_item.layer_extruded->layer->bottom_print_z() + EPSILON;
for (int i = int(idx_layer_bottom_contact) - 1; i >= 0 && bottom_contacts[i]->print_z > bottom_z; -- i)
layer_cache_item.overlapping.push_back(bottom_contacts[i]);
@ -3282,8 +3387,10 @@ void PrintObjectSupportMaterial::generate_toolpaths(
// Bottom contact layer may overlap with a base layer, which may be changed to interface layer.
for (int i = int(idx_layer_intermediate) - 1; i >= 0 && intermediate_layers[i]->print_z > bottom_z; -- i)
layer_cache_item.overlapping.push_back(intermediate_layers[i]);
for (int i = int(idx_layer_inteface) - 1; i >= 0 && interface_layers[i]->print_z > bottom_z; -- i)
for (int i = int(idx_layer_interface) - 1; i >= 0 && interface_layers[i]->print_z > bottom_z; -- i)
layer_cache_item.overlapping.push_back(interface_layers[i]);
for (int i = int(idx_layer_base_interface) - 1; i >= 0 && base_interface_layers[i]->print_z > bottom_z; -- i)
layer_cache_item.overlapping.push_back(base_interface_layers[i]);
}
std::sort(layer_cache_item.overlapping.begin(), layer_cache_item.overlapping.end(), MyLayersPtrCompare());
}
@ -3302,11 +3409,11 @@ void PrintObjectSupportMaterial::generate_toolpaths(
});
// Now modulate the support layer height in parallel.
tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, support_layers.size()),
[&support_layers, &layer_caches]
tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, object.support_layers().size()),
[this, &object, &layer_caches]
(const tbb::blocked_range<size_t>& range) {
for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id) {
SupportLayer &support_layer = *support_layers[support_layer_id];
SupportLayer &support_layer = *object.support_layers()[support_layer_id];
LayerCache &layer_cache = layer_caches[support_layer_id];
for (LayerCacheItem &layer_cache_item : layer_cache.overlaps) {
modulate_extrusion_by_overlapping_layers(layer_cache_item.layer_extruded->extrusions, *layer_cache_item.layer_extruded->layer, layer_cache_item.overlapping);
@ -3406,7 +3513,7 @@ sub clip_with_shape {
foreach my $i (keys %$support) {
// don't clip bottom layer with shape so that we
// can generate a continuous base flange
// can generate a continuous base flange
// also don't clip raft layers
next if $i == 0;
next if $i < $self->object_config->raft_layers;

View File

@ -201,12 +201,17 @@ private:
const MyLayersPtr &base_layers,
MyLayerStorage &layer_storage) const;
// Turn some of the base layers into interface layers.
// New method allows base interface support, also
// Turn some of the base layers into interface layers for number_base_interface_layers == 0.
// Create base type interface layers under soluble interfaces to extend adhesion.
// Turn some of the base layers into base interface layers for number_base_interface_layers > 0.
MyLayersPtr generate_interface_layers(
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
MyLayersPtr &intermediate_layers,
size_t number_base_interface_layers,
MyLayerStorage &layer_storage) const;
// Trim support layers by an object to leave a defined gap between
// the support volume and the object.
@ -222,14 +227,16 @@ private:
void clip_with_shape();
*/
// New method needed for additional base interface support
// Produce the actual G-code.
void generate_toolpaths(
SupportLayerPtrs &support_layers,
const PrintObject &object,
const MyLayersPtr &raft_layers,
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
const MyLayersPtr &intermediate_layers,
const MyLayersPtr &interface_layers) const;
const MyLayersPtr &interface_layers,
const MyLayersPtr &base_interface_layers) const;
// Following objects are not owned by SupportMaterial class.
const PrintObject *m_object;
@ -246,7 +253,7 @@ private:
bool m_can_merge_support_regions;
coordf_t m_support_layer_height_min;
// coordf_t m_support_layer_height_max;
coordf_t m_support_layer_height_max;
coordf_t m_gap_xy;
};