This commit is contained in:
enricoturri1966 2022-10-24 12:57:39 +02:00
commit 7ae4472827
34 changed files with 1760 additions and 270 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 29 KiB

View File

@ -39,7 +39,7 @@ static void append_and_translate(Polygons &dst, const Polygons &src, const Print
dst[dst_idx].translate(instance.shift.x(), instance.shift.y());
}
static float max_brim_width(const ConstPrintObjectPtrsAdaptor &objects)
static float max_brim_width(const SpanOfConstPtrs<PrintObject> &objects)
{
assert(!objects.empty());
return float(std::accumulate(objects.begin(), objects.end(), 0.,
@ -564,7 +564,7 @@ ExtrusionEntityCollection make_brim(const Print &print, PrintTryCancel try_cance
}
#endif // BRIM_DEBUG_TO_SVG
const bool could_brim_intersects_skirt = std::any_of(print.objects().begin(), print.objects().end(), [&print](PrintObject *object) {
const bool could_brim_intersects_skirt = std::any_of(print.objects().begin(), print.objects().end(), [&print](const PrintObject *object) {
const BrimType &bt = object->config().brim_type;
return (bt == btOuterOnly || bt == btOuterAndInner) && print.config().skirt_distance.value < object->config().brim_width;
});

View File

@ -1786,6 +1786,17 @@ public:
// Initialized by ConfigOptionEnum<xxx>::get_enum_values()
const t_config_enum_values *enum_keys_map = nullptr;
void set_enum_values(std::initializer_list<std::pair<std::string_view, std::string_view>> il) {
enum_values.clear();
enum_values.reserve(il.size());
enum_labels.clear();
enum_labels.reserve(il.size());
for (const std::pair<std::string_view, std::string_view> p : il) {
enum_values.emplace_back(p.first);
enum_labels.emplace_back(p.second);
}
}
bool has_enum_value(const std::string &value) const {
for (const std::string &v : enum_values)
if (v == value)

View File

@ -32,7 +32,6 @@ class GCode;
namespace { struct Item; }
struct PrintInstance;
class ConstPrintObjectPtrsAdaptor;
class OozePrevention {
public:

View File

@ -658,7 +658,7 @@ float WipingExtrusions::mark_wiping_extrusions(const Print& print, unsigned int
return std::max(0.f, volume_to_wipe); // Soluble filament cannot be wiped in a random infill, neither the filament after it
// we will sort objects so that dedicated for wiping are at the beginning:
ConstPrintObjectPtrs object_list = print.objects().vector();
ConstPrintObjectPtrs object_list(print.objects().begin(), print.objects().end());
std::sort(object_list.begin(), object_list.end(), [](const PrintObject* a, const PrintObject* b) { return a->config().wipe_into_objects; });
// We will now iterate through

View File

@ -1305,7 +1305,7 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
{
const size_t num_extruders = print_object.print()->config().nozzle_diameter.size() + 1;
const size_t num_layers = input_expolygons.size();
const ConstLayerPtrsAdaptor layers = print_object.layers();
const SpanOfConstPtrs<Layer> layers = print_object.layers();
// Maximum number of top / bottom layers accounts for maximum overlap of one thread group into a neighbor thread group.
int max_top_layers = 0;
@ -1685,7 +1685,7 @@ std::vector<std::vector<ExPolygons>> multi_material_segmentation_by_painting(con
std::vector<std::vector<PaintedLine>> painted_lines(num_layers);
std::array<std::mutex, 64> painted_lines_mutex;
std::vector<EdgeGrid::Grid> edge_grids(num_layers);
const ConstLayerPtrsAdaptor layers = print_object.layers();
const SpanOfConstPtrs<Layer> layers = print_object.layers();
std::vector<ExPolygons> input_expolygons(num_layers);
throw_on_cancel_callback();

View File

@ -21,6 +21,7 @@
#include <functional>
#include <set>
#include <tcbspan/span.hpp>
namespace Slic3r {
@ -117,38 +118,12 @@ private:
inline bool operator==(const PrintRegion &lhs, const PrintRegion &rhs) { return lhs.config_hash() == rhs.config_hash() && lhs.config() == rhs.config(); }
inline bool operator!=(const PrintRegion &lhs, const PrintRegion &rhs) { return ! (lhs == rhs); }
template<typename T>
class ConstVectorOfPtrsAdaptor {
public:
// Returning a non-const pointer to const pointers to T.
T * const * begin() const { return m_data->data(); }
T * const * end() const { return m_data->data() + m_data->size(); }
const T* front() const { return m_data->front(); }
const T* back() const { return m_data->back(); }
size_t size() const { return m_data->size(); }
bool empty() const { return m_data->empty(); }
const T* operator[](size_t i) const { return (*m_data)[i]; }
const T* at(size_t i) const { return m_data->at(i); }
std::vector<const T*> vector() const { return std::vector<const T*>(this->begin(), this->end()); }
protected:
ConstVectorOfPtrsAdaptor(const std::vector<T*> *data) : m_data(data) {}
private:
const std::vector<T*> *m_data;
};
// For const correctness: Wrapping a vector of non-const pointers as a span of const pointers.
template<class T>
using SpanOfConstPtrs = tcb::span<const T* const>;
typedef std::vector<Layer*> LayerPtrs;
typedef std::vector<const Layer*> ConstLayerPtrs;
class ConstLayerPtrsAdaptor : public ConstVectorOfPtrsAdaptor<Layer> {
friend PrintObject;
ConstLayerPtrsAdaptor(const LayerPtrs *data) : ConstVectorOfPtrsAdaptor<Layer>(data) {}
};
typedef std::vector<SupportLayer*> SupportLayerPtrs;
typedef std::vector<const SupportLayer*> ConstSupportLayerPtrs;
class ConstSupportLayerPtrsAdaptor : public ConstVectorOfPtrsAdaptor<SupportLayer> {
friend PrintObject;
ConstSupportLayerPtrsAdaptor(const SupportLayerPtrs *data) : ConstVectorOfPtrsAdaptor<SupportLayer>(data) {}
};
using LayerPtrs = std::vector<Layer*>;
using SupportLayerPtrs = std::vector<SupportLayer*>;
class BoundingBoxf3; // TODO: for temporary constructor parameter
@ -256,8 +231,8 @@ public:
// Size of an object: XYZ in scaled coordinates. The size might not be quite snug in XY plane.
const Vec3crd& size() const { return m_size; }
const PrintObjectConfig& config() const { return m_config; }
ConstLayerPtrsAdaptor layers() const { return ConstLayerPtrsAdaptor(&m_layers); }
ConstSupportLayerPtrsAdaptor support_layers() const { return ConstSupportLayerPtrsAdaptor(&m_support_layers); }
auto layers() const { return SpanOfConstPtrs<Layer>(const_cast<const Layer* const* const>(m_layers.data()), m_layers.size()); }
auto support_layers() const { return SpanOfConstPtrs<SupportLayer>(const_cast<const SupportLayer* const* const>(m_support_layers.data()), m_support_layers.size()); }
const Transform3d& trafo() const { return m_trafo; }
// Trafo with the center_offset() applied after the transformation, to center the object in XY before slicing.
Transform3d trafo_centered() const
@ -498,21 +473,10 @@ struct PrintStatistics
}
};
typedef std::vector<PrintObject*> PrintObjectPtrs;
typedef std::vector<const PrintObject*> ConstPrintObjectPtrs;
class ConstPrintObjectPtrsAdaptor : public ConstVectorOfPtrsAdaptor<PrintObject> {
friend Print;
ConstPrintObjectPtrsAdaptor(const PrintObjectPtrs *data) : ConstVectorOfPtrsAdaptor<PrintObject>(data) {}
};
using PrintObjectPtrs = std::vector<PrintObject*>;
using ConstPrintObjectPtrs = std::vector<const PrintObject*>;
typedef std::vector<PrintRegion*> PrintRegionPtrs;
/*
typedef std::vector<const PrintRegion*> ConstPrintRegionPtrs;
class ConstPrintRegionPtrsAdaptor : public ConstVectorOfPtrsAdaptor<PrintRegion> {
friend Print;
ConstPrintRegionPtrsAdaptor(const PrintRegionPtrs *data) : ConstVectorOfPtrsAdaptor<PrintRegion>(data) {}
};
*/
using PrintRegionPtrs = std::vector<PrintRegion*>;
// The complete print tray with possibly multiple objects.
class Print : public PrintBaseWithState<PrintStep, psCount>
@ -575,7 +539,7 @@ public:
const PrintConfig& config() const { return m_config; }
const PrintObjectConfig& default_object_config() const { return m_default_object_config; }
const PrintRegionConfig& default_region_config() const { return m_default_region_config; }
ConstPrintObjectPtrsAdaptor objects() const { return ConstPrintObjectPtrsAdaptor(&m_objects); }
SpanOfConstPtrs<PrintObject> objects() const { return SpanOfConstPtrs<PrintObject>(const_cast<const PrintObject* const* const>(m_objects.data()), m_objects.size()); }
PrintObject* get_object(size_t idx) { return const_cast<PrintObject*>(m_objects[idx]); }
const PrintObject* get_object(size_t idx) const { return m_objects[idx]; }
// PrintObject by its ObjectID, to be used to uniquely bind slicing warnings to their source PrintObjects

View File

@ -138,7 +138,8 @@ CONFIG_OPTION_ENUM_DEFINE_STATIC_MAPS(SupportMaterialPattern)
static const t_config_enum_values s_keys_map_SupportMaterialStyle {
{ "grid", smsGrid },
{ "snug", smsSnug },
{ "tree", smsTree }
{ "tree", smsTree },
{ "organic", smsOrganic }
};
CONFIG_OPTION_ENUM_DEFINE_STATIC_MAPS(SupportMaterialStyle)
@ -2782,12 +2783,12 @@ void PrintConfigDef::init_fff_params()
"will create more stable supports, while snug support towers will save material and reduce "
"object scarring.");
def->enum_keys_map = &ConfigOptionEnum<SupportMaterialStyle>::get_enum_values();
def->enum_values.push_back("grid");
def->enum_values.push_back("snug");
def->enum_values.push_back("tree");
def->enum_labels.push_back(L("Grid"));
def->enum_labels.push_back(L("Snug"));
def->enum_labels.push_back(L("Tree"));
def->set_enum_values({
{ "grid", L("Grid") },
{ "snug", L("Snug") },
{ "tree", L("Tree") },
{ "organic", L("Organic") }
});
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionEnum<SupportMaterialStyle>(smsGrid));

View File

@ -85,7 +85,7 @@ enum SupportMaterialPattern {
};
enum SupportMaterialStyle {
smsGrid, smsSnug, smsTree,
smsGrid, smsSnug, smsTree, smsOrganic,
};
enum SupportMaterialInterfacePattern {

View File

@ -2197,7 +2197,7 @@ void PrintObject::combine_infill()
void PrintObject::_generate_support_material()
{
if (m_config.support_material_style == smsTree) {
if (m_config.support_material_style == smsTree || m_config.support_material_style == smsOrganic) {
fff_tree_support_generate(*this, std::function<void()>([this](){ this->throw_if_canceled(); }));
} else {
PrintObjectSupportMaterial support_material(this, m_slicing_params);
@ -2205,7 +2205,7 @@ void PrintObject::_generate_support_material()
}
}
static void project_triangles_to_slabs(ConstLayerPtrsAdaptor layers, const indexed_triangle_set &custom_facets, const Transform3f &tr, bool seam, std::vector<Polygons> &out)
static void project_triangles_to_slabs(SpanOfConstPtrs<Layer> layers, const indexed_triangle_set &custom_facets, const Transform3f &tr, bool seam, std::vector<Polygons> &out)
{
if (custom_facets.indices.empty())
return;

View File

@ -800,6 +800,7 @@ public:
{
switch (m_style) {
case smsTree:
case smsOrganic:
assert(false);
[[fallthrough]];
case smsGrid:
@ -3237,6 +3238,20 @@ static inline void fill_expolygons_generate_paths(
fill_expolygons_generate_paths(dst, std::move(expolygons), filler, fill_params, density, role, flow);
}
static Polylines draw_perimeters(const ExPolygon &expoly, double clip_length)
{
// Draw the perimeters.
Polylines polylines;
polylines.reserve(expoly.holes.size() + 1);
for (size_t i = 0; i <= expoly.holes.size(); ++ i) {
Polyline pl(i == 0 ? expoly.contour.points : expoly.holes[i - 1].points);
pl.points.emplace_back(pl.points.front());
pl.clip_end(clip_length);
polylines.emplace_back(std::move(pl));
}
return polylines;
}
static inline void tree_supports_generate_paths(
ExtrusionEntitiesPtr &dst,
const Polygons &polygons,
@ -3335,7 +3350,20 @@ static inline void tree_supports_generate_paths(
const double clip_length = spacing * 0.15;
const double anchor_length = spacing * 6.;
ClipperLib_Z::Paths anchor_candidates;
for (ExPolygon &expoly : closing_ex(polygons, float(SCALED_EPSILON), float(SCALED_EPSILON + 0.5*flow.scaled_width()))) {
for (ExPolygon& expoly : closing_ex(polygons, float(SCALED_EPSILON), float(SCALED_EPSILON + 0.5 * flow.scaled_width()))) {
double area = expoly.area();
if (area > sqr(scaled<double>(5.))) {
// Make the tree branch stable by adding another perimeter.
ExPolygons level2 = offset2_ex({ expoly }, -1.5 * flow.scaled_width(), 0.5 * flow.scaled_width());
if (level2.size() == 1) {
Polylines polylines;
extrusion_entities_append_paths(dst, draw_perimeters(expoly, clip_length), erSupportMaterial, flow.mm3_per_mm(), flow.width(), flow.height(),
// Disable reversal of the path, always start with the anchor, always print CCW.
false);
expoly = level2.front();
}
}
// Try to produce one more perimeter to place the seam anchor.
// First genrate a 2nd perimeter loop as a source for anchor candidates.
// The anchor candidate points are annotated with an index of the source contour or with -1 if on intersection.
@ -3465,9 +3493,9 @@ static inline void fill_expolygons_with_sheath_generate_paths(
fill_params.density = density;
fill_params.dont_adjust = true;
double spacing = flow.scaled_spacing();
const double spacing = flow.scaled_spacing();
// Clip the sheath path to avoid the extruder to get exactly on the first point of the loop.
double clip_length = spacing * 0.15;
const double clip_length = spacing * 0.15;
for (ExPolygon &expoly : closing_ex(polygons, float(SCALED_EPSILON), float(SCALED_EPSILON + 0.5*flow.scaled_width()))) {
// Don't reorder the skirt and its infills.
@ -3477,16 +3505,7 @@ static inline void fill_expolygons_with_sheath_generate_paths(
eec->no_sort = true;
}
ExtrusionEntitiesPtr &out = no_sort ? eec->entities : dst;
// Draw the perimeters.
Polylines polylines;
polylines.reserve(expoly.holes.size() + 1);
for (size_t i = 0; i <= expoly.holes.size(); ++ i) {
Polyline pl(i == 0 ? expoly.contour.points : expoly.holes[i - 1].points);
pl.points.emplace_back(pl.points.front());
pl.clip_end(clip_length);
polylines.emplace_back(std::move(pl));
}
extrusion_entities_append_paths(out, polylines, erSupportMaterial, flow.mm3_per_mm(), flow.width(), flow.height());
extrusion_entities_append_paths(out, draw_perimeters(expoly, clip_length), erSupportMaterial, flow.mm3_per_mm(), flow.width(), flow.height());
// Fill in the rest.
fill_expolygons_generate_paths(out, offset_ex(expoly, float(-0.4 * spacing)), filler, fill_params, density, role, flow);
if (no_sort && ! eec->empty())

View File

@ -39,8 +39,6 @@
//====================
#define ENABLE_2_5_0_ALPHA1 1
// Enable removal of wipe tower magic object_id equal to 1000
#define ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL (1 && ENABLE_2_5_0_ALPHA1)
// Enable removal of legacy OpenGL calls
#define ENABLE_LEGACY_OPENGL_REMOVAL (1 && ENABLE_2_5_0_ALPHA1)
// Enable OpenGL ES

View File

@ -39,7 +39,7 @@ TreeSupportMeshGroupSettings::TreeSupportMeshGroupSettings(const PrintObject &pr
// Support must be enabled and set to Tree style.
assert(config.support_material);
assert(config.support_material_style == smsTree);
assert(config.support_material_style == smsTree || config.support_material_style == smsOrganic);
// Calculate maximum external perimeter width over all printing regions, taking into account the default layer height.
coordf_t external_perimeter_width = 0.;

View File

@ -19,6 +19,9 @@
#include "Polyline.hpp"
#include "MutablePolygon.hpp"
#include "SupportMaterial.hpp"
#include "TriangleMeshSlicer.hpp"
#include "OpenVDBUtils.hpp"
#include <openvdb/tools/VolumeToSpheres.h>
#include <cassert>
#include <chrono>
@ -26,6 +29,7 @@
#include <optional>
#include <stdio.h>
#include <string>
#include <string_view>
#ifdef _WIN32
#include <windows.h> //todo Remove! ONLY FOR PUBLIC BETA!!
#endif // _WIN32
@ -97,6 +101,20 @@ static inline void validate_range(const LineInformations &lines)
validate_range(l);
}
static inline void check_self_intersections(const Polygons &polygons, const std::string_view message)
{
#ifdef _WIN32
if (!intersecting_edges(polygons).empty())
::MessageBoxA(nullptr, (std::string("TreeSupport infill self intersections: ") + std::string(message)).c_str(), "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
}
static inline void check_self_intersections(const ExPolygon &expoly, const std::string_view message)
{
#ifdef _WIN32
check_self_intersections(to_polygons(expoly), message);
#endif // _WIN32
}
static inline void clip_for_diff(const Polygon &src, const BoundingBox &bbox, Polygon &out)
{
out.clear();
@ -193,7 +211,7 @@ static std::vector<std::pair<TreeSupportSettings, std::vector<size_t>>> group_me
#endif // NDEBUG
// Support must be enabled and set to Tree style.
assert(object_config.support_material);
assert(object_config.support_material_style == smsTree);
assert(object_config.support_material_style == smsTree || object_config.support_material_style == smsOrganic);
bool found_existing_group = false;
TreeSupportSettings next_settings{ TreeSupportMeshGroupSettings{ print_object } };
@ -312,16 +330,38 @@ void tree_supports_show_error(std::string message, bool critical)
if (! (enforced_layer || blockers_layers.empty() || blockers_layers[layer_id].empty()))
overhangs = diff(overhangs, blockers_layers[layer_id], ApplySafetyOffset::Yes);
}
if (! enforcers_layers.empty() && ! enforcers_layers[layer_id].empty())
//check_self_intersections(overhangs, "generate_overhangs1");
if (! enforcers_layers.empty() && ! enforcers_layers[layer_id].empty()) {
// Has some support enforcers at this layer, apply them to the overhangs, don't apply the support threshold angle.
if (Polygons enforced_overhangs = intersection(raw_overhangs_calculated ? raw_overhangs : diff(current_layer.lslices, lower_layer.lslices), enforcers_layers[layer_id]);
//enforcers_layers[layer_id] = union_(enforcers_layers[layer_id]);
//check_self_intersections(enforcers_layers[layer_id], "generate_overhangs - enforcers");
//check_self_intersections(to_polygons(lower_layer.lslices), "generate_overhangs - lowerlayers");
if (Polygons enforced_overhangs = intersection(raw_overhangs_calculated ? raw_overhangs : diff(current_layer.lslices, lower_layer.lslices), enforcers_layers[layer_id] /*, ApplySafetyOffset::Yes */);
! enforced_overhangs.empty()) {
//FIXME this is a hack to make enforcers work on steep overhangs.
enforced_overhangs = diff(offset(enforced_overhangs,
//check_self_intersections(enforced_overhangs, "generate_overhangs - enforced overhangs1");
//Polygons enforced_overhangs_prev = enforced_overhangs;
//check_self_intersections(to_polygons(union_ex(enforced_overhangs)), "generate_overhangs - enforced overhangs11");
//check_self_intersections(offset(union_ex(enforced_overhangs),
//FIXME this is a fudge constant!
// scaled<float>(0.4)), "generate_overhangs - enforced overhangs12");
enforced_overhangs = diff(offset(union_ex(enforced_overhangs),
//FIXME this is a fudge constant!
scaled<float>(0.4)),
lower_layer.lslices);
#ifdef TREESUPPORT_DEBUG_SVG
if (! intersecting_edges(enforced_overhangs).empty()) {
static int irun = 0;
SVG::export_expolygons(debug_out_path("treesupport-self-intersections-%d.svg", ++irun),
{ { { union_ex(enforced_overhangs_prev) }, { "prev", "yellow", 0.5f } },
{ { lower_layer.lslices }, { "lower_layer.lslices", "gray", 0.5f } },
{ { union_ex(enforced_overhangs) }, { "enforced_overhangs", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
}
#endif // TREESUPPORT_DEBUG_SVG
//check_self_intersections(enforced_overhangs, "generate_overhangs - enforced overhangs2");
overhangs = overhangs.empty() ? std::move(enforced_overhangs) : union_(overhangs, enforced_overhangs);
//check_self_intersections(overhangs, "generate_overhangs - enforcers");
}
}
out[layer_id] = std::move(overhangs);
}
@ -675,7 +715,10 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
return lines;
#else
#ifdef _WIN32
if (! BoundingBox(Point::new_scale(-170., -170.), Point::new_scale(170., 170.)).contains(get_extents(polygon)))
// Max dimensions for MK3
// if (! BoundingBox(Point::new_scale(-170., -170.), Point::new_scale(170., 170.)).contains(get_extents(polygon)))
// Max dimensions for XL
if (! BoundingBox(Point::new_scale(-250., -250.), Point::new_scale(250., 250.)).contains(get_extents(polygon)))
::MessageBoxA(nullptr, "TreeSupport infill kravsky", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
@ -702,10 +745,7 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
::MessageBoxA(nullptr, "TreeSupport infill negative area", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
assert(intersecting_edges(to_polygons(expoly)).empty());
#ifdef _WIN32
if (! intersecting_edges(to_polygons(expoly)).empty())
::MessageBoxA(nullptr, "TreeSupport infill self intersections", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // _WIN32
check_self_intersections(expoly, "generate_support_infill_lines");
Surface surface(stInternal, std::move(expoly));
try {
Polylines pl = filler->fill_surface(&surface, fill_params);
@ -831,6 +871,11 @@ static std::optional<std::pair<Point, size_t>> polyline_sample_next_point_at_dis
return union_(ret);
}
static double layer_z(const SlicingParameters &slicing_params, const size_t layer_idx)
{
return slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
}
static inline SupportGeneratorLayer& layer_initialize(
SupportGeneratorLayer &layer_new,
const SupporLayerType layer_type,
@ -838,7 +883,7 @@ static inline SupportGeneratorLayer& layer_initialize(
const size_t layer_idx)
{
layer_new.layer_type = layer_type;
layer_new.print_z = slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
layer_new.print_z = layer_z(slicing_params, layer_idx);
layer_new.height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height;
layer_new.bottom_z = layer_idx == 0 ? slicing_params.object_print_z_min : layer_new.print_z - layer_new.height;
return layer_new;
@ -1082,6 +1127,8 @@ static void generate_initial_areas(
overhang_regular = mesh_group_settings.support_offset == 0 ?
overhang_raw :
safe_offset_inc(overhang_raw, mesh_group_settings.support_offset, relevant_forbidden, mesh_config.min_radius * 1.75 + mesh_config.xy_min_distance, 0, 1);
//check_self_intersections(overhang_regular, "overhang_regular1");
// offset ensures that areas that could be supported by a part of a support line, are not considered unsupported overhang
Polygons remaining_overhang = intersection(
diff(mesh_group_settings.support_offset == 0 ?
@ -1108,6 +1155,7 @@ static void generate_initial_areas(
remaining_overhang = diff(remaining_overhang, safe_offset_inc(overhang_regular, 1.5 * extra_total_offset_acc, raw_collision, offset_step, 0, 1));
// Extending the overhangs by the inflated remaining overhangs.
overhang_regular = union_(overhang_regular, diff(safe_offset_inc(remaining_overhang, extra_total_offset_acc, raw_collision, offset_step, 0, 1), relevant_forbidden));
//check_self_intersections(overhang_regular, "overhang_regular2");
}
// If the xy distance overrides the z distance, some support needs to be inserted further down.
//=> Analyze which support points do not fit on this layer and check if they will fit a few layers down (while adding them an infinite amount of layers down would technically be closer the the setting description, it would not produce reasonable results. )
@ -1159,6 +1207,7 @@ static void generate_initial_areas(
if (mesh_group_settings.minimum_support_area > 0)
remove_small(overhang_roofs, mesh_group_settings.minimum_roof_area);
overhang_regular = diff(overhang_regular, overhang_roofs, ApplySafetyOffset::Yes);
//check_self_intersections(overhang_regular, "overhang_regular3");
for (ExPolygon &roof_part : union_ex(overhang_roofs))
overhang_processing.emplace_back(std::move(roof_part), true);
}
@ -2369,6 +2418,8 @@ static void set_points_on_areas(const SupportElement &elem, SupportElements *lay
next_elem.state.result_on_layer = move_inside_if_outside(next_elem.influence_area, elem.state.result_on_layer);
// do not call recursive because then amount of layers would be restricted by the stack size
}
// Mark the parent element as accessed from a valid child element.
next_elem.state.marked = true;
}
}
@ -2487,15 +2538,23 @@ static void create_nodes_from_area(
{
// Initialize points on layer 0, with a "random" point in the influence area.
// Point is chosen based on an inaccurate estimate where the branches will split into two, but every point inside the influence area would produce a valid result.
{
SupportElements *layer_above = move_bounds.size() > 1 ? &move_bounds[1] : nullptr;
for (SupportElement &elem : *layer_above)
elem.state.marked = false;
for (SupportElement &init : move_bounds.front()) {
init.state.result_on_layer = move_inside_if_outside(init.influence_area, init.state.next_position);
// Also set the parent nodes, as these will be required for the first iteration of the loop below.
set_points_on_areas(init, move_bounds.size() > 1 ? &move_bounds[1] : nullptr);
// Also set the parent nodes, as these will be required for the first iteration of the loop below and mark the parent nodes.
set_points_on_areas(init, layer_above);
}
}
for (LayerIndex layer_idx = 1; layer_idx < LayerIndex(move_bounds.size()); ++ layer_idx) {
auto &layer = move_bounds[layer_idx];
auto *layer_above = layer_idx + 1 < move_bounds.size() ? &move_bounds[layer_idx + 1] : nullptr;
if (layer_above)
for (SupportElement &elem : *layer_above)
elem.state.marked = false;
for (SupportElement &elem : layer) {
assert(! elem.state.deleted);
assert(elem.state.layer_idx == layer_idx);
@ -2509,11 +2568,6 @@ static void create_nodes_from_area(
}
// we dont need to remove yet the parents as they will have a lower dtt and also no result_on_layer set
elem.state.deleted = true;
for (int32_t parent_idx : elem.parents)
// When the roof was not able to generate downwards enough, the top elements may have not moved, and have result_on_layer already set.
// As this branch needs to be removed => all parents result_on_layer have to be invalidated.
(*layer_above)[parent_idx].state.result_on_layer_reset();
continue;
} else {
// set the point where the branch will be placed on the model
if (elem.state.to_model_gracious)
@ -2522,13 +2576,67 @@ static void create_nodes_from_area(
set_to_model_contact_simple(elem);
}
}
if (! elem.state.deleted)
// element is valid now setting points in the layer above
if (! elem.state.deleted && ! elem.state.marked && elem.state.target_height == layer_idx)
// Just a tip surface with no supporting element.
elem.state.deleted = true;
if (elem.state.deleted) {
for (int32_t parent_idx : elem.parents)
// When the roof was not able to generate downwards enough, the top elements may have not moved, and have result_on_layer already set.
// As this branch needs to be removed => all parents result_on_layer have to be invalidated.
(*layer_above)[parent_idx].state.result_on_layer_reset();
}
if (! elem.state.deleted) {
// Element is valid now setting points in the layer above and mark the parent nodes.
set_points_on_areas(elem, layer_above);
}
}
}
#ifndef NDEBUG
// Verify the tree connectivity including the branch slopes.
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
auto &layer = move_bounds[layer_idx];
auto &above = move_bounds[layer_idx + 1];
for (SupportElement &elem : layer)
if (! elem.state.deleted) {
for (int32_t iparent : elem.parents) {
SupportElement &parent = above[iparent];
assert(! parent.state.deleted);
assert(elem.state.result_on_layer_is_set() == parent.state.result_on_layer_is_set());
if (elem.state.result_on_layer_is_set()) {
double radius_increase = config.getRadius(elem.state) - config.getRadius(parent.state);
assert(radius_increase >= 0);
double shift = (elem.state.result_on_layer - parent.state.result_on_layer).cast<double>().norm();
assert(shift < radius_increase + 2. * config.maximum_move_distance_slow);
}
}
}
}
#endif // NDEBUG
remove_deleted_elements(move_bounds);
#ifndef NDEBUG
// Verify the tree connectivity including the branch slopes.
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
auto &layer = move_bounds[layer_idx];
auto &above = move_bounds[layer_idx + 1];
for (SupportElement &elem : layer) {
assert(! elem.state.deleted);
for (int32_t iparent : elem.parents) {
SupportElement &parent = above[iparent];
assert(! parent.state.deleted);
assert(elem.state.result_on_layer_is_set() == parent.state.result_on_layer_is_set());
if (elem.state.result_on_layer_is_set()) {
double radius_increase = config.getRadius(elem.state) - config.getRadius(parent.state);
assert(radius_increase >= 0);
double shift = (elem.state.result_on_layer - parent.state.result_on_layer).cast<double>().norm();
assert(shift < radius_increase + 2. * config.maximum_move_distance_slow);
}
}
}
}
#endif // NDEBUG
}
// For producing circular / elliptical areas from SupportElements (one DrawArea per one SupportElement)
@ -2649,6 +2757,7 @@ static void generate_branch_areas(const TreeModelVolumes &volumes, const TreeSup
polygons_with_correct_center.emplace_back(std::move(part));
}
// Increase the area again, to ensure the nozzle path when calculated later is very similar to the one assumed above.
assert(contains(polygons, draw_area.element->state.result_on_layer));
polygons = diff_clipped(offset(polygons_with_correct_center, config.support_line_width / 2, jtMiter, 1.2),
//FIXME Vojtech: Clipping may split the region into multiple pieces again, reversing the fixing effort.
collision);
@ -2695,10 +2804,12 @@ static void smooth_branch_areas(
[&](const tbb::blocked_range<size_t> &range) {
for (size_t processing_idx = range.begin(); processing_idx < range.end(); ++ processing_idx) {
DrawArea &draw_area = linear_data[processing_base + processing_idx];
assert(draw_area.element->state.layer_idx == layer_idx);
double max_outer_wall_distance = 0;
bool do_something = false;
for (int32_t parent_idx : draw_area.element->parents) {
const SupportElement &parent = layer_above[parent_idx];
assert(parent.state.layer_idx == layer_idx + 1);
if (config.getRadius(parent.state) != config.getCollisionRadius(parent.state)) {
do_something = true;
max_outer_wall_distance = std::max(max_outer_wall_distance, (draw_area.element->state.result_on_layer - parent.state.result_on_layer).cast<double>().norm() - (config.getRadius(*draw_area.element) - config.getRadius(parent)));
@ -2706,14 +2817,35 @@ static void smooth_branch_areas(
}
max_outer_wall_distance += max_radius_change_per_layer; // As this change is a bit larger than what usually appears, lost radius can be slowly reclaimed over the layers.
if (do_something) {
assert(contains(draw_area.polygons, draw_area.element->state.result_on_layer));
Polygons max_allowed_area = offset(draw_area.polygons, float(max_outer_wall_distance), jtMiter, 1.2);
for (int32_t parent_idx : draw_area.element->parents) {
const SupportElement &parent = layer_above[parent_idx];
#ifndef NDEBUG
assert(parent.state.layer_idx == layer_idx + 1);
assert(contains(linear_data[processing_base_above + parent_idx].polygons, parent.state.result_on_layer));
double radius_increase = config.getRadius(draw_area.element->state) - config.getRadius(parent.state);
assert(radius_increase >= 0);
double shift = (draw_area.element->state.result_on_layer - parent.state.result_on_layer).cast<double>().norm();
assert(shift < radius_increase + 2. * config.maximum_move_distance_slow);
#endif // NDEBUG
if (config.getRadius(parent.state) != config.getCollisionRadius(parent.state)) {
// No other element on this layer than the current one may be connected to &parent,
// thus it is safe to update parent's DrawArea directly.
Polygons &dst = linear_data[processing_base_above + parent_idx].polygons;
// Polygons orig = dst;
if (! dst.empty()) {
dst = intersection(dst, max_allowed_area);
#if 0
if (dst.empty()) {
static int irun = 0;
SVG::export_expolygons(debug_out_path("treesupport-extrude_areas-smooth-error-%d.svg", irun ++),
{ { { union_ex(max_allowed_area) }, { "max_allowed_area", "yellow", 0.5f } },
{ { union_ex(orig) }, { "orig", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
::MessageBoxA(nullptr, "TreeSupport smoothing bug", "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
}
#endif
}
}
}
}
@ -2982,9 +3114,7 @@ static void draw_areas(
// Only one link points to a node above from below.
assert(! (++ it != map_downwards_old.end() && it->first == &elem));
}
if ((! child && elem.state.target_height == layer_idx) || (child && !child->state.result_on_layer_is_set()))
// We either come from nowhere at the final layer or we had invalid parents 2. should never happen but just to be sure
continue;
assert(child ? child->state.result_on_layer_is_set() : elem.state.target_height > layer_idx);
}
for (int32_t parent_idx : elem.parents) {
SupportElement &parent = (*layer_above)[parent_idx];
@ -2998,12 +3128,66 @@ static void draw_areas(
linear_data_layers.emplace_back(linear_data.size());
}
#ifndef NDEBUG
for (size_t i = 0; i < move_bounds.size(); ++ i) {
size_t begin = linear_data_layers[i];
size_t end = linear_data_layers[i + 1];
for (size_t j = begin; j < end; ++ j)
assert(linear_data[j].element == &move_bounds[i][j - begin]);
}
#endif // NDEBUG
auto t_start = std::chrono::high_resolution_clock::now();
// Generate the circles that will be the branches.
generate_branch_areas(volumes, config, move_bounds, linear_data);
#if 0
assert(linear_data_layers.size() == move_bounds.size() + 1);
for (const auto &draw_area : linear_data)
assert(contains(draw_area.polygons, draw_area.element->state.result_on_layer));
for (size_t i = 0; i < move_bounds.size(); ++ i) {
size_t begin = linear_data_layers[i];
size_t end = linear_data_layers[i + 1];
for (size_t j = begin; j < end; ++ j) {
const auto &draw_area = linear_data[j];
assert(draw_area.element == &move_bounds[i][j - begin]);
assert(contains(draw_area.polygons, draw_area.element->state.result_on_layer));
}
}
#endif
#if 0
for (size_t area_layer_idx = 0; area_layer_idx + 1 < linear_data_layers.size(); ++ area_layer_idx) {
size_t begin = linear_data_layers[area_layer_idx];
size_t end = linear_data_layers[area_layer_idx + 1];
Polygons polygons;
for (size_t area_idx = begin; area_idx < end; ++ area_idx) {
DrawArea &area = linear_data[area_idx];
append(polygons, area.polygons);
}
SVG::export_expolygons(debug_out_path("treesupport-extrude_areas-raw-%d.svg", area_layer_idx),
{ { { union_ex(polygons) }, { "parent", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
}
#endif
auto t_generate = std::chrono::high_resolution_clock::now();
// In some edgecases a branch may go though a hole, where the regular radius does not fit. This can result in an apparent jump in branch radius. As such this cases need to be caught and smoothed out.
smooth_branch_areas(config, move_bounds, linear_data, linear_data_layers);
#if 0
for (size_t area_layer_idx = 0; area_layer_idx + 1 < linear_data_layers.size(); ++area_layer_idx) {
size_t begin = linear_data_layers[area_layer_idx];
size_t end = linear_data_layers[area_layer_idx + 1];
Polygons polygons;
for (size_t area_idx = begin; area_idx < end; ++area_idx) {
DrawArea& area = linear_data[area_idx];
append(polygons, area.polygons);
}
SVG::export_expolygons(debug_out_path("treesupport-extrude_areas-smooth-%d.svg", area_layer_idx),
{ { { union_ex(polygons) }, { "parent", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
}
#endif
auto t_smooth = std::chrono::high_resolution_clock::now();
// drop down all trees that connect non gracefully with the model
drop_non_gracious_areas(volumes, linear_data, support_layer_storage);
@ -3044,6 +3228,491 @@ static void draw_areas(
"finalize_interface_and_support_areas " << dur_finalize << " ms";
}
#if 1
// Test whether two circles, each on its own plane in 3D intersect.
// Circles are considered intersecting, if the lowest point on one circle is below the other circle's plane.
// Assumption: The two planes are oriented the same way.
static bool circles_intersect(
const Vec3d &p1, const Vec3d &n1, const double r1,
const Vec3d &p2, const Vec3d &n2, const double r2)
{
assert(n1.dot(n2) >= 0);
const Vec3d z = n1.cross(n2);
const Vec3d dir1 = z.cross(n1);
const Vec3d lowest_point1 = p1 + dir1 * (r1 / dir1.norm());
assert(n2.dot(p1) >= n2.dot(lowest_point1));
if (n2.dot(lowest_point1) <= 0)
return true;
const Vec3d dir2 = z.cross(n2);
const Vec3d lowest_point2 = p2 + dir2 * (r2 / dir2.norm());
assert(n1.dot(p2) >= n1.dot(lowest_point2));
return n1.dot(lowest_point2) <= 0;
}
template<bool flip_normals>
void triangulate_fan(indexed_triangle_set &its, int ifan, int ibegin, int iend)
{
// at least 3 vertices, increasing order.
assert(ibegin + 3 <= iend);
assert(ibegin >= 0 && iend <= its.vertices.size());
assert(ifan >= 0 && ifan < its.vertices.size());
int num_faces = iend - ibegin;
its.indices.reserve(its.indices.size() + num_faces * 3);
for (int v = ibegin, u = iend - 1; v < iend; u = v ++) {
if (flip_normals)
its.indices.push_back({ ifan, u, v });
else
its.indices.push_back({ ifan, v, u });
}
}
static void triangulate_strip(indexed_triangle_set &its, int ibegin1, int iend1, int ibegin2, int iend2)
{
// at least 3 vertices, increasing order.
assert(ibegin1 + 3 <= iend1);
assert(ibegin1 >= 0 && iend1 <= its.vertices.size());
assert(ibegin2 + 3 <= iend2);
assert(ibegin2 >= 0 && iend2 <= its.vertices.size());
int n1 = iend1 - ibegin1;
int n2 = iend2 - ibegin2;
its.indices.reserve(its.indices.size() + (n1 + n2) * 3);
// For the first vertex of 1st strip, find the closest vertex on the 2nd strip.
int istart2 = ibegin2;
{
const Vec3f &p1 = its.vertices[ibegin1];
auto d2min = std::numeric_limits<float>::max();
for (int i = ibegin2; i < iend2; ++ i) {
const Vec3f &p2 = its.vertices[i];
const float d2 = (p2 - p1).squaredNorm();
if (d2 < d2min) {
d2min = d2;
istart2 = i;
}
}
}
// Now triangulate the strip zig-zag fashion taking always the shortest connection if possible.
for (int u = ibegin1, v = istart2; n1 > 0 || n2 > 0;) {
bool take_first;
int u2, v2;
auto update_u2 = [&u2, u, ibegin1, iend1]() {
u2 = u;
if (++ u2 == iend1)
u2 = ibegin1;
};
auto update_v2 = [&v2, v, ibegin2, iend2]() {
v2 = v;
if (++ v2 == iend2)
v2 = ibegin2;
};
if (n1 == 0) {
take_first = false;
update_v2();
} else if (n2 == 0) {
take_first = true;
update_u2();
} else {
update_u2();
update_v2();
float l1 = (its.vertices[u2] - its.vertices[v]).squaredNorm();
float l2 = (its.vertices[v2] - its.vertices[u]).squaredNorm();
take_first = l1 < l2;
}
if (take_first) {
its.indices.push_back({ u, u2, v });
-- n1;
u = u2;
} else {
its.indices.push_back({ u, v2, v });
-- n2;
v = v2;
}
}
}
// Discretize 3D circle, append to output vector, return ranges of indices of the points added.
static std::pair<int, int> discretize_circle(const Vec3f &center, const Vec3f &normal, const float radius, const float eps, std::vector<Vec3f> &pts)
{
// Calculate discretization step and number of steps.
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(2 * M_PI / angle_step));
angle_step = 2 * M_PI / nsteps;
// Prepare coordinate system for the circle plane.
Vec3f x = normal.cross(Vec3f(0.f, -1.f, 0.f)).normalized();
Vec3f y = normal.cross(x).normalized();
assert(std::abs(x.cross(y).dot(normal) - 1.f) < EPSILON);
// Discretize the circle.
int begin = int(pts.size());
pts.reserve(pts.size() + nsteps);
float angle = 0;
x *= radius;
y *= radius;
for (int i = 0; i < nsteps; ++ i) {
pts.emplace_back(center + x * cos(angle) + y * sin(angle));
angle += angle_step;
}
return { begin, int(pts.size()) };
}
static void extrude_branch(
const std::vector<SupportElement*> &path,
const TreeSupportSettings &config,
const SlicingParameters &slicing_params,
const std::vector<SupportElements> &move_bounds,
indexed_triangle_set &result)
{
Vec3d p1, p2, p3;
Vec3d v1, v2;
Vec3d nprev;
Vec3d ncurrent;
assert(path.size() >= 2);
static constexpr const float eps = 0.015f;
std::pair<int, int> prev_strip;
// char fname[2048];
// static int irun = 0;
for (size_t ipath = 1; ipath < path.size(); ++ ipath) {
const SupportElement &prev = *path[ipath - 1];
const SupportElement &current = *path[ipath];
assert(prev.state.layer_idx + 1 == current.state.layer_idx);
p1 = to_3d(unscaled<double>(prev .state.result_on_layer), layer_z(slicing_params, prev .state.layer_idx));
p2 = to_3d(unscaled<double>(current.state.result_on_layer), layer_z(slicing_params, current.state.layer_idx));
v1 = (p2 - p1).normalized();
if (ipath == 1) {
nprev = v1;
// Extrude the bottom half sphere.
float radius = unscaled<float>(config.getRadius(prev.state));
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
angle_step = M_PI / (2. * nsteps);
int ifan = int(result.vertices.size());
result.vertices.emplace_back((p1 - nprev * radius).cast<float>());
float angle = angle_step;
for (int i = 1; i < nsteps; ++ i, angle += angle_step) {
std::pair<int, int> strip = discretize_circle((p1 - nprev * radius * cos(angle)).cast<float>(), nprev.cast<float>(), radius * sin(angle), eps, result.vertices);
if (i == 1)
triangulate_fan<false>(result, ifan, strip.first, strip.second);
else
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
prev_strip = strip;
}
}
if (ipath + 1 == path.size()) {
// End of the tube.
ncurrent = v1;
// Extrude the top half sphere.
float radius = unscaled<float>(config.getRadius(current.state));
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
angle_step = M_PI / (2. * nsteps);
auto angle = float(M_PI / 2.);
for (int i = 0; i < nsteps; ++ i, angle -= angle_step) {
std::pair<int, int> strip = discretize_circle((p2 + ncurrent * radius * cos(angle)).cast<float>(), ncurrent.cast<float>(), radius * sin(angle), eps, result.vertices);
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
prev_strip = strip;
}
int ifan = int(result.vertices.size());
result.vertices.emplace_back((p2 + ncurrent * radius).cast<float>());
triangulate_fan<true>(result, ifan, prev_strip.first, prev_strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
} else {
const SupportElement &next = *path[ipath + 1];
assert(current.state.layer_idx + 1 == next.state.layer_idx);
p3 = to_3d(unscaled<double>(next.state.result_on_layer), layer_z(slicing_params, next.state.layer_idx));
v2 = (p3 - p2).normalized();
ncurrent = (v1 + v2).normalized();
float radius = unscaled<float>(config.getRadius(current.state));
std::pair<int, int> strip = discretize_circle(p2.cast<float>(), ncurrent.cast<float>(), radius, eps, result.vertices);
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
prev_strip = strip;
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++irun);
// its_write_obj(result, fname);
}
#if 0
if (circles_intersect(p1, nprev, settings.getRadius(prev), p2, ncurrent, settings.getRadius(current))) {
// Cannot connect previous and current slice using a simple zig-zag triangulation,
// because the two circles intersect.
} else {
// Continue with chaining.
}
#endif
}
}
#endif
static void draw_branches(
PrintObject &print_object,
const TreeModelVolumes &volumes,
const TreeSupportSettings &config,
const std::vector<Polygons> &overhangs,
std::vector<SupportElements> &move_bounds,
SupportGeneratorLayersPtr &bottom_contacts,
SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage)
{
static int irun = 0;
const SlicingParameters& slicing_params = print_object.slicing_parameters();
// All SupportElements are put into a layer independent storage to improve parallelization.
std::vector<std::pair<SupportElement*, int>> elements_with_link_down;
std::vector<size_t> linear_data_layers;
{
std::vector<std::pair<SupportElement*, int>> map_downwards_old;
std::vector<std::pair<SupportElement*, int>> map_downwards_new;
linear_data_layers.emplace_back(0);
for (LayerIndex layer_idx = 0; layer_idx < LayerIndex(move_bounds.size()); ++ layer_idx) {
SupportElements *layer_above = layer_idx + 1 < move_bounds.size() ? &move_bounds[layer_idx + 1] : nullptr;
map_downwards_new.clear();
std::sort(map_downwards_old.begin(), map_downwards_old.end(), [](auto& l, auto& r) { return l.first < r.first; });
SupportElements &layer = move_bounds[layer_idx];
for (size_t elem_idx = 0; elem_idx < layer.size(); ++ elem_idx) {
SupportElement &elem = layer[elem_idx];
int child = -1;
if (layer_idx > 0) {
auto it = std::lower_bound(map_downwards_old.begin(), map_downwards_old.end(), &elem, [](auto& l, const SupportElement* r) { return l.first < r; });
if (it != map_downwards_old.end() && it->first == &elem) {
child = it->second;
// Only one link points to a node above from below.
assert(!(++it != map_downwards_old.end() && it->first == &elem));
}
const SupportElement *pchild = child == -1 ? nullptr : &move_bounds[layer_idx - 1][child];
assert(pchild ? pchild->state.result_on_layer_is_set() : elem.state.target_height > layer_idx);
}
for (int32_t parent_idx : elem.parents) {
SupportElement &parent = (*layer_above)[parent_idx];
if (parent.state.result_on_layer_is_set())
map_downwards_new.emplace_back(&parent, elem_idx);
}
elements_with_link_down.push_back({ &elem, int(child) });
}
std::swap(map_downwards_old, map_downwards_new);
linear_data_layers.emplace_back(elements_with_link_down.size());
}
}
std::unique_ptr<openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>> closest_surface_point;
{
TriangleMesh mesh = print_object.model_object()->raw_mesh();
mesh.transform(print_object.trafo_centered());
double scale = 10.;
openvdb::FloatGrid::Ptr grid = mesh_to_grid(mesh.its, {}, scale, 0., 0.);
closest_surface_point = openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>::create(*grid);
std::vector<openvdb::Vec3R> pts, prev, projections;
std::vector<float> distances;
for (const std::pair<SupportElement*, int> &element : elements_with_link_down) {
Vec3d pt = to_3d(unscaled<double>(element.first->state.result_on_layer), layer_z(slicing_params, element.first->state.layer_idx)) * scale;
pts.push_back({ pt.x(), pt.y(), pt.z() });
}
const double collision_extra_gap = 1. * scale;
const double max_nudge_collision_avoidance = 2. * scale;
const double max_nudge_smoothing = 1. * scale;
static constexpr const size_t num_iter = 100; // 1000;
for (size_t iter = 0; iter < num_iter; ++ iter) {
prev = pts;
projections = pts;
distances.assign(pts.size(), std::numeric_limits<float>::max());
closest_surface_point->searchAndReplace(projections, distances);
size_t num_moved = 0;
for (size_t i = 0; i < projections.size(); ++ i) {
const SupportElement &element = *elements_with_link_down[i].first;
const int below = elements_with_link_down[i].second;
const bool locked = below == -1 && element.state.layer_idx > 0;
if (! locked && pts[i] != projections[i]) {
// Nudge the circle center away from the collision.
Vec3d v{ projections[i].x() - pts[i].x(), projections[i].y() - pts[i].y(), projections[i].z() - pts[i].z() };
double depth = v.norm();
assert(std::abs(distances[i] - depth) < EPSILON);
double radius = unscaled<double>(config.getRadius(element.state)) * scale;
if (depth < radius) {
// Collision detected to be removed.
++ num_moved;
double dxy = sqrt(sqr(radius) - sqr(v.z()));
double nudge_dist_max = dxy - std::hypot(v.x(), v.y())
//FIXME 1mm gap
+ collision_extra_gap;
// Shift by maximum 2mm.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_collision_avoidance);
Vec2d nudge_v = to_2d(v).normalized() * (- nudge_dist);
pts[i].x() += nudge_v.x();
pts[i].y() += nudge_v.y();
}
}
// Laplacian smoothing
if (! locked && ! element.parents.empty()) {
Vec2d avg{ 0, 0 };
const SupportElements &above = move_bounds[element.state.layer_idx + 1];
const size_t offset_above = linear_data_layers[element.state.layer_idx + 1];
double weight = 0.;
for (auto iparent : element.parents) {
double w = config.getRadius(above[iparent].state);
avg.x() += w * prev[offset_above + iparent].x();
avg.y() += w * prev[offset_above + iparent].y();
weight += w;
}
size_t cnt = element.parents.size();
if (below != -1) {
const size_t offset_below = linear_data_layers[element.state.layer_idx - 1];
const double w = weight; // config.getRadius(move_bounds[element.state.layer_idx - 1][below].state);
avg.x() += w * prev[offset_below + below].x();
avg.y() += w * prev[offset_below + below].y();
++ cnt;
weight += w;
}
//avg /= double(cnt);
avg /= weight;
static constexpr const double smoothing_factor = 0.5;
Vec2d old_pos{ pts[i].x(), pts[i].y() };
Vec2d new_pos = (1. - smoothing_factor) * old_pos + smoothing_factor * avg;
Vec2d shift = new_pos - old_pos;
double nudge_dist_max = shift.norm();
// Shift by maximum 1mm, less than the collision avoidance factor.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_smoothing);
Vec2d nudge_v = shift.normalized() * nudge_dist;
pts[i].x() += nudge_v.x();
pts[i].y() += nudge_v.y();
}
}
printf("iteration: %d, moved: %d\n", int(iter), int(num_moved));
if (num_moved == 0)
break;
}
#if 1
for (size_t i = 0; i < projections.size(); ++ i) {
elements_with_link_down[i].first->state.result_on_layer.x() = scaled<coord_t>(pts[i].x()) / scale;
elements_with_link_down[i].first->state.result_on_layer.y() = scaled<coord_t>(pts[i].y()) / scale;
}
#endif
}
std::vector<Polygons> support_layer_storage(move_bounds.size());
std::vector<Polygons> support_roof_storage(move_bounds.size());
// Unmark all nodes.
for (SupportElements &elements : move_bounds)
for (SupportElement &element : elements)
element.state.marked = false;
// Traverse all nodes, generate tubes.
// Traversal stack with nodes and thier current parent
std::vector<SupportElement*> path;
indexed_triangle_set cummulative_mesh;
indexed_triangle_set partial_mesh;
indexed_triangle_set temp_mesh;
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
SupportElements &layer = move_bounds[layer_idx];
SupportElements &layer_above = move_bounds[layer_idx + 1];
for (SupportElement &start_element : layer)
if (! start_element.state.marked && ! start_element.parents.empty()) {
// Collect elements up to a bifurcation above.
start_element.state.marked = true;
for (size_t parent_idx = 0; parent_idx < start_element.parents.size(); ++ parent_idx) {
path.clear();
path.emplace_back(&start_element);
// Traverse each branch until it branches again.
SupportElement &first_parent = layer_above[start_element.parents[parent_idx]];
assert(path.back()->state.layer_idx + 1 == first_parent.state.layer_idx);
path.emplace_back(&first_parent);
if (first_parent.parents.size() < 2)
first_parent.state.marked = true;
if (first_parent.parents.size() == 1) {
for (SupportElement *parent = &first_parent;;) {
SupportElement &next_parent = move_bounds[parent->state.layer_idx + 1][parent->parents.front()];
assert(path.back()->state.layer_idx + 1 == next_parent.state.layer_idx);
path.emplace_back(&next_parent);
if (next_parent.parents.size() > 1)
break;
next_parent.state.marked = true;
if (next_parent.parents.size() == 0)
break;
parent = &next_parent;
}
}
// Triangulate the tube.
partial_mesh.clear();
extrude_branch(path, config, slicing_params, move_bounds, partial_mesh);
#if 0
char fname[2048];
sprintf(fname, "d:\\temp\\meshes\\tree-raw-%d.obj", ++ irun);
its_write_obj(partial_mesh, fname);
#if 0
temp_mesh.clear();
cut_mesh(partial_mesh, layer_z(slicing_params, path.back()->state.layer_idx) + EPSILON, nullptr, &temp_mesh, false);
sprintf(fname, "d:\\temp\\meshes\\tree-trimmed1-%d.obj", irun);
its_write_obj(temp_mesh, fname);
partial_mesh.clear();
cut_mesh(temp_mesh, layer_z(slicing_params, path.front()->state.layer_idx) - EPSILON, &partial_mesh, nullptr, false);
sprintf(fname, "d:\\temp\\meshes\\tree-trimmed2-%d.obj", irun);
#endif
its_write_obj(partial_mesh, fname);
#endif
its_merge(cummulative_mesh, partial_mesh);
}
}
}
std::vector<float> slice_z;
for (size_t layer_idx = 0; layer_idx < move_bounds.size(); ++ layer_idx) {
double print_z = slicing_params.object_print_z_min + slicing_params.first_object_layer_height + layer_idx * slicing_params.layer_height;
double layer_height = layer_idx == 0 ? slicing_params.first_object_layer_height : slicing_params.layer_height;
slice_z.emplace_back(float(print_z - layer_height * 0.5));
}
// Remove the trailing slices.
while (! slice_z.empty())
if (move_bounds[slice_z.size() - 1].empty())
slice_z.pop_back();
else
break;
#if 0
its_write_obj(cummulative_mesh, "d:\\temp\\meshes\\tree.obj");
#endif
MeshSlicingParamsEx params;
params.closing_radius = float(print_object.config().slice_closing_radius.value);
params.mode = MeshSlicingParams::SlicingMode::Positive;
std::vector<ExPolygons> slices = slice_mesh_ex(cummulative_mesh, slice_z, params);
for (size_t layer_idx = 0; layer_idx < slice_z.size(); ++ layer_idx)
if (! slices[layer_idx].empty()) {
SupportGeneratorLayer *&l = intermediate_layers[layer_idx];
if (l == nullptr)
l = &layer_allocate(layer_storage, SupporLayerType::Base, slicing_params, layer_idx);
append(l->polygons, to_polygons(std::move(slices[layer_idx])));
}
// Trim the slices.
tbb::parallel_for(tbb::blocked_range<size_t>(0, intermediate_layers.size()),
[&](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
if (SupportGeneratorLayer *layer = intermediate_layers[layer_idx]; layer) {
Polygons &poly = intermediate_layers[layer_idx]->polygons;
poly = diff_clipped(poly, volumes.getCollision(0, layer_idx, true));
}
});
finalize_interface_and_support_areas(print_object, volumes, config, overhangs, support_layer_storage, support_roof_storage,
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
}
/*!
* \brief Create the areas that need support.
*
@ -3147,8 +3816,15 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
auto t_place = std::chrono::high_resolution_clock::now();
// ### draw these points as circles
if (print_object.config().support_material_style == smsTree)
draw_areas(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
else {
assert(print_object.config().support_material_style == smsOrganic);
draw_branches(*print.get_object(processing.second.front()), volumes, config, overhangs, move_bounds,
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
}
auto t_draw = std::chrono::high_resolution_clock::now();
auto dur_pre_gen = 0.001 * std::chrono::duration_cast<std::chrono::microseconds>(t_precalc - t_start).count();
@ -3232,7 +3908,7 @@ static void generate_support_areas(Print &print, const BuildVolume &build_volume
void fff_tree_support_generate(PrintObject &print_object, std::function<void()> throw_on_cancel)
{
size_t idx = 0;
for (PrintObject* po : print_object.print()->objects()) {
for (const PrintObject *po : print_object.print()->objects()) {
if (po == &print_object)
break;
++idx;

View File

@ -912,7 +912,6 @@ void GLVolumeCollection::load_object_auxiliary(
}
#if ENABLE_LEGACY_OPENGL_REMOVAL
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#if ENABLE_OPENGL_ES
int GLVolumeCollection::load_wipe_tower_preview(
float pos_x, float pos_y, float width, float depth, float height,
@ -923,26 +922,9 @@ int GLVolumeCollection::load_wipe_tower_preview(
float rotation_angle, bool size_unknown, float brim_width)
#endif // ENABLE_OPENGL_ES
#else
#if ENABLE_OPENGL_ES
int GLVolumeCollection::load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height,
float rotation_angle, bool size_unknown, float brim_width, TriangleMesh* out_mesh)
#else
int GLVolumeCollection::load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height,
float rotation_angle, bool size_unknown, float brim_width)
#endif // ENABLE_OPENGL_ES
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#else
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
int GLVolumeCollection::load_wipe_tower_preview(
float pos_x, float pos_y, float width, float depth, float height,
float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized)
#else
int GLVolumeCollection::load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height,
float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized)
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#endif // ENABLE_LEGACY_OPENGL_REMOVAL
{
if (depth < 0.01f)
@ -1210,11 +1192,7 @@ int GLVolumeCollection::load_wipe_tower_preview(
#endif // !ENABLE_LEGACY_OPENGL_REMOVAL
v.set_volume_offset(Vec3d(pos_x, pos_y, 0.0));
v.set_volume_rotation(Vec3d(0., 0., (M_PI / 180.) * rotation_angle));
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
v.composite_id = GLVolume::CompositeID(INT_MAX, 0, 0);
#else
v.composite_id = GLVolume::CompositeID(obj_idx, 0, 0);
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
v.geometry_id.first = 0;
v.geometry_id.second = wipe_tower_instance_id().id;
v.is_wipe_tower = true;

View File

@ -668,7 +668,6 @@ public:
// Timestamp of the last change of the milestone
size_t timestamp);
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#if ENABLE_OPENGL_ES
int load_wipe_tower_preview(
float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width, TriangleMesh* out_mesh = nullptr);
@ -676,15 +675,6 @@ public:
int load_wipe_tower_preview(
float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width);
#endif // ENABLE_OPENGL_ES
#else
#if ENABLE_OPENGL_ES
int load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width, TriangleMesh* out_mesh = nullptr);
#else
int load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width);
#endif // ENABLE_OPENGL_ES
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#else
std::vector<int> load_object(
const ModelObject *model_object,
@ -710,13 +700,8 @@ public:
size_t timestamp,
bool opengl_initialized);
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
int load_wipe_tower_preview(
float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized);
#else
int load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized);
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#endif // ENABLE_LEGACY_OPENGL_REMOVAL
#if ENABLE_LEGACY_OPENGL_REMOVAL

View File

@ -2123,13 +2123,13 @@ void Control::show_cog_icon_context_menu()
GUI::wxGetApp().plater()->PopupMenu(&menu);
}
bool check_color_change(PrintObject* object, size_t frst_layer_id, size_t layers_cnt, bool check_overhangs, std::function<bool(Layer*)> break_condition)
bool check_color_change(const PrintObject* object, size_t frst_layer_id, size_t layers_cnt, bool check_overhangs, std::function<bool(const Layer*)> break_condition)
{
double prev_area = area(object->get_layer(frst_layer_id)->lslices);
bool detected = false;
for (size_t i = frst_layer_id+1; i < layers_cnt; i++) {
Layer* layer = object->get_layer(i);
const Layer* layer = object->get_layer(i);
double cur_area = area(layer->lslices);
// check for overhangs
@ -2169,7 +2169,7 @@ void Control::auto_color_change()
if (object->layer_count() < 2)
continue;
check_color_change(object, 1, object->layers().size(), false, [this, extruders_cnt](Layer* layer)
check_color_change(object, 1, object->layers().size(), false, [this, extruders_cnt](const Layer* layer)
{
int tick = get_tick_from_value(layer->print_z);
if (tick >= 0 && !m_ticks.has_tick(tick)) {

View File

@ -31,10 +31,10 @@ constexpr double epsilon() { return 0.0011; }
bool equivalent_areas(const double& bottom_area, const double& top_area);
// return true if color change was detected
bool check_color_change(PrintObject* object, size_t frst_layer_id, size_t layers_cnt, bool check_overhangs,
bool check_color_change(const PrintObject* object, size_t frst_layer_id, size_t layers_cnt, bool check_overhangs,
// what to do with detected color change
// and return true when detection have to be desturbed
std::function<bool(Layer*)> break_condition);
std::function<bool(const Layer*)> break_condition);
// custom message the slider sends to its parent to notify a tick-change:
wxDECLARE_EVENT(wxCUSTOMEVT_TICKSCHANGED, wxEvent);

View File

@ -2349,21 +2349,11 @@ void GCodeViewer::load_shells(const Print& print, bool initialized)
const float brim_width = print.wipe_tower_data(extruders_count).brim_width;
#if ENABLE_LEGACY_OPENGL_REMOVAL
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
m_shells.volumes.load_wipe_tower_preview(config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
!print.is_step_done(psWipeTower), brim_width);
#else
m_shells.volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
!print.is_step_done(psWipeTower), brim_width);
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#else
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
m_shells.volumes.load_wipe_tower_preview(config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
!print.is_step_done(psWipeTower), brim_width, initialized);
#else
m_shells.volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
!print.is_step_done(psWipeTower), brim_width, initialized);
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#endif // ENABLE_LEGACY_OPENGL_REMOVAL
}
}

View File

@ -1341,18 +1341,12 @@ ModelInstanceEPrintVolumeState GLCanvas3D::check_volumes_outside_state() const
void GLCanvas3D::toggle_sla_auxiliaries_visibility(bool visible, const ModelObject* mo, int instance_idx)
{
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if (current_printer_technology() != ptSLA)
return;
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
m_render_sla_auxiliaries = visible;
for (GLVolume* vol : m_volumes.volumes) {
#if !ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if (vol->composite_id.object_id == 1000)
continue; // the wipe tower
#endif // !ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if ((mo == nullptr || m_model->objects[vol->composite_id.object_id] == mo)
&& (instance_idx == -1 || vol->composite_id.instance_id == instance_idx)
&& vol->composite_id.volume_id < 0)
@ -1362,15 +1356,12 @@ void GLCanvas3D::toggle_sla_auxiliaries_visibility(bool visible, const ModelObje
void GLCanvas3D::toggle_model_objects_visibility(bool visible, const ModelObject* mo, int instance_idx, const ModelVolume* mv)
{
#if ENABLE_RAYCAST_PICKING
std::vector<std::shared_ptr<SceneRaycasterItem>>* raycasters = get_raycasters_for_picking(SceneRaycaster::EType::Volume);
#endif // ENABLE_RAYCAST_PICKING
for (GLVolume* vol : m_volumes.volumes) {
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if (vol->is_wipe_tower)
vol->is_active = (visible && mo == nullptr);
#else
if (vol->composite_id.object_id == 1000) { // wipe tower
vol->is_active = (visible && mo == nullptr);
}
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
else {
if ((mo == nullptr || m_model->objects[vol->composite_id.object_id] == mo)
&& (instance_idx == -1 || vol->composite_id.instance_id == instance_idx)
@ -1394,6 +1385,11 @@ void GLCanvas3D::toggle_model_objects_visibility(bool visible, const ModelObject
}
}
}
#if ENABLE_RAYCAST_PICKING
auto it = std::find_if(raycasters->begin(), raycasters->end(), [vol](std::shared_ptr<SceneRaycasterItem> item) { return item->get_raycaster() == vol->mesh_raycaster.get(); });
if (it != raycasters->end())
(*it)->set_active(vol->is_active);
#endif // ENABLE_RAYCAST_PICKING
}
if (visible && !mo)
@ -2348,7 +2344,6 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
float brim_width = print->wipe_tower_data(extruders_count).brim_width;
#if ENABLE_LEGACY_OPENGL_REMOVAL
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#if ENABLE_OPENGL_ES
int volume_idx_wipe_tower_new = m_volumes.load_wipe_tower_preview(
x, y, w, depth, (float)height, a, !print->is_step_done(psWipeTower),
@ -2359,26 +2354,9 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
brim_width);
#endif // ENABLE_OPENGL_ES
#else
#if ENABLE_OPENGL_ES
int volume_idx_wipe_tower_new = m_volumes.load_wipe_tower_preview(
1000, x, y, w, depth, (float)height, a, !print->is_step_done(psWipeTower),
brim_width, &m_wipe_tower_mesh);
#else
int volume_idx_wipe_tower_new = m_volumes.load_wipe_tower_preview(
1000, x, y, w, depth, (float)height, a, !print->is_step_done(psWipeTower),
brim_width);
#endif // ENABLE_OPENGL_ES
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#else
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
int volume_idx_wipe_tower_new = m_volumes.load_wipe_tower_preview(
x, y, w, depth, (float)height, a, !print->is_step_done(psWipeTower),
brim_width, m_initialized);
#else
int volume_idx_wipe_tower_new = m_volumes.load_wipe_tower_preview(
1000, x, y, w, depth, (float)height, a, !print->is_step_done(psWipeTower),
brim_width, m_initialized);
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
#endif // ENABLE_LEGACY_OPENGL_REMOVAL
if (volume_idx_wipe_tower_old != -1)
map_glvolume_old_to_new[volume_idx_wipe_tower_old] = volume_idx_wipe_tower_new;
@ -3855,15 +3833,9 @@ void GLCanvas3D::do_move(const std::string& snapshot_type)
model_object->invalidate_bounding_box();
}
}
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
else if (v->is_wipe_tower)
// Move a wipe tower proxy.
wipe_tower_origin = v->get_volume_offset();
#else
else if (object_idx == 1000)
// Move a wipe tower proxy.
wipe_tower_origin = v->get_volume_offset();
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
}
// Fixes flying instances
@ -3924,18 +3896,11 @@ void GLCanvas3D::do_rotate(const std::string& snapshot_type)
Selection::EMode selection_mode = m_selection.get_mode();
for (const GLVolume* v : m_volumes.volumes) {
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if (v->is_wipe_tower) {
#else
int object_idx = v->object_idx();
if (object_idx == 1000) { // the wipe tower
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
const Vec3d offset = v->get_volume_offset();
post_event(Vec3dEvent(EVT_GLCANVAS_WIPETOWER_ROTATED, Vec3d(offset.x(), offset.y(), v->get_volume_rotation().z())));
}
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
int object_idx = v->object_idx();
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
const int object_idx = v->object_idx();
if (object_idx < 0 || (int)m_model->objects.size() <= object_idx)
continue;

View File

@ -1960,15 +1960,9 @@ void ObjectList::del_layers_from_object(const int obj_idx)
bool ObjectList::del_subobject_from_object(const int obj_idx, const int idx, const int type)
{
assert(idx >= 0);
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if (m_objects->empty() || int(m_objects->size()) <= obj_idx)
// Cannot delete a wipe tower
return false;
#else
if (obj_idx == 1000 || idx<0)
// Cannot delete a wipe tower or volume with negative id
return false;
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
ModelObject* object = (*m_objects)[obj_idx];

View File

@ -574,7 +574,7 @@ void Preview::update_layers_slider(const std::vector<double>& layers_z, bool kee
if (i < min_solid_height)
continue;
if (DoubleSlider::check_color_change(object, i, num_layers, true, [this, object](Layer*) {
if (DoubleSlider::check_color_change(object, i, num_layers, true, [this, object](const Layer*) {
NotificationManager* notif_mngr = wxGetApp().plater()->get_notification_manager();
notif_mngr->push_notification(
NotificationType::SignDetected, NotificationManager::NotificationLevel::PrintInfoNotificationLevel,

View File

@ -182,7 +182,7 @@ void MeshClipper::recalculate_triangles()
// it so it lies on our line. This will be the figure to subtract
// from the cut. The coordinates must not overflow after the transform,
// make the rectangle a bit smaller.
const coord_t size = (std::numeric_limits<coord_t>::max() - scale_(std::max(std::abs(e*a), std::abs(e*b)))) / 4;
const coord_t size = (std::numeric_limits<coord_t>::max()/2 - scale_(std::max(std::abs(e * a), std::abs(e * b)))) / 4;
Polygons ep {Polygon({Point(-size, 0), Point(size, 0), Point(size, 2*size), Point(-size, 2*size)})};
ep.front().rotate(angle);
ep.front().translate(scale_(-e * a), scale_(-e * b));

View File

@ -1253,11 +1253,7 @@ void Sidebar::show_info_sizer()
ModelObjectPtrs objects = p->plater->model().objects;
int obj_idx = selection.get_object_idx();
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if (m_mode < comExpert || objects.empty() || obj_idx < 0 || int(objects.size()) <= obj_idx ||
#else
if (m_mode < comExpert || objects.empty() || obj_idx < 0 || obj_idx == 1000 ||
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
objects[obj_idx]->volumes.empty() || // hack to avoid crash when deleting the last object on the bed
(selection.is_single_full_object() && objects[obj_idx]->instances.size()> 1) ||
!(selection.is_single_full_instance() || selection.is_single_volume())) {
@ -2192,6 +2188,7 @@ Plater::priv::priv(Plater *q, MainFrame *main_frame)
format(_L("Successfully unmounted. The device %s(%s) can now be safely removed from the computer."), evt.data.first.name, evt.data.first.path)
);
} else {
notification_manager->close_notification_of_type(NotificationType::ExportFinished);
notification_manager->push_notification(NotificationType::CustomNotification,
NotificationManager::NotificationLevel::ErrorNotificationLevel,
format(_L("Ejecting of device %s(%s) has failed."), evt.data.first.name, evt.data.first.path)
@ -2931,23 +2928,15 @@ Selection& Plater::priv::get_selection()
int Plater::priv::get_selected_object_idx() const
{
int idx = get_selection().get_object_idx();
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
const int idx = get_selection().get_object_idx();
return (0 <= idx && idx < int(model.objects.size())) ? idx : -1;
#else
return ((0 <= idx) && (idx < 1000)) ? idx : -1;
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
}
int Plater::priv::get_selected_volume_idx() const
{
auto& selection = get_selection();
int idx = selection.get_object_idx();
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
const int idx = selection.get_object_idx();
if (idx < 0 || int(model.objects.size()) <= idx)
#else
if ((0 > idx) || (idx > 1000))
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
return-1;
const GLVolume* v = selection.get_first_volume();
if (model.objects[idx]->volumes.size() > 1)

View File

@ -10,9 +10,9 @@
#include <tchar.h>
#include <winioctl.h>
#include <shlwapi.h>
#include <Dbt.h>
#include <Setupapi.h>
#include <cfgmgr32.h>
#else
// unix, linux & OSX includes
#include <errno.h>
@ -72,6 +72,192 @@ std::vector<DriveData> RemovableDriveManager::search_for_removable_drives() cons
return current_drives;
}
namespace {
// returns the device instance handle of a storage volume or 0 on error
// called from eject_inner, based on https://stackoverflow.com/a/58848961
DEVINST get_dev_inst_by_device_number(long device_number, UINT drive_type, WCHAR* dos_device_name)
{
bool is_floppy = (wcsstr(dos_device_name, L"\\Floppy") != NULL); // TODO: could be tested better?
GUID* guid;
switch (drive_type) {
case DRIVE_REMOVABLE:
if (is_floppy) {
// we are interested only in SD cards or USB sticks
BOOST_LOG_TRIVIAL(debug) << "get_dev_inst_by_device_number failed: Drive is floppy disk.";
return 0;
//guid = (GUID*)&GUID_DEVINTERFACE_FLOPPY;
} else {
guid = (GUID*)&GUID_DEVINTERFACE_DISK;
}
break;
case DRIVE_FIXED:
// we are interested only in SD cards or USB sticks
BOOST_LOG_TRIVIAL(debug) << "get_dev_inst_by_device_number failed: Drive is harddisk.";
return 0;
//guid = (GUID*)&GUID_DEVINTERFACE_DISK;
//break;
case DRIVE_CDROM:
BOOST_LOG_TRIVIAL(debug) << "get_dev_inst_by_device_number failed: Drive is cd-rom.";
// we are interested only in SD cards or USB sticks
return 0;
//guid = (GUID*)&GUID_DEVINTERFACE_CDROM;
//break;
default:
return 0;
}
// Get device interface info set handle for all devices attached to system
HDEVINFO h_dev_info = SetupDiGetClassDevs(guid, NULL, NULL, DIGCF_PRESENT | DIGCF_DEVICEINTERFACE);
if (h_dev_info == INVALID_HANDLE_VALUE) {
BOOST_LOG_TRIVIAL(debug) << "get_dev_inst_by_device_number failed: Invalid dev info handle.";
return 0;
}
// Retrieve a context structure for a device interface of a device information set
BYTE buf[1024];
PSP_DEVICE_INTERFACE_DETAIL_DATA pspdidd = (PSP_DEVICE_INTERFACE_DETAIL_DATA)buf;
SP_DEVICE_INTERFACE_DATA spdid;
SP_DEVINFO_DATA spdd;
DWORD size;
spdid.cbSize = sizeof(spdid);
// Loop through devices and compare device numbers
for (DWORD index = 0; SetupDiEnumDeviceInterfaces(h_dev_info, NULL, guid, index, &spdid); ++index) {
SetupDiGetDeviceInterfaceDetail(h_dev_info, &spdid, NULL, 0, &size, NULL);
// check the buffer size
if (size == 0 || size > sizeof(buf)) {
continue;
}
// prepare structures
pspdidd->cbSize = sizeof(*pspdidd);
ZeroMemory(&spdd, sizeof(spdd));
spdd.cbSize = sizeof(spdd);
// fill structures
long res = SetupDiGetDeviceInterfaceDetail(h_dev_info, &spdid, pspdidd, size, &size, &spdd);
if (!res) {
continue;
}
// open the drive with pspdidd->DevicePath to compare device numbers
HANDLE drive_handle = CreateFile(pspdidd->DevicePath, 0, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
if (drive_handle == INVALID_HANDLE_VALUE) {
continue;
}
// get its device number
STORAGE_DEVICE_NUMBER sdn;
DWORD bytes_returned = 0;
res = DeviceIoControl(drive_handle, IOCTL_STORAGE_GET_DEVICE_NUMBER, NULL, 0, &sdn, sizeof(sdn), &bytes_returned, NULL);
CloseHandle(drive_handle);
if (!res) {
continue;
}
//compare
if (device_number != (long)sdn.DeviceNumber) {
continue;
}
// this is the drive, return the device instance
SetupDiDestroyDeviceInfoList(h_dev_info);
return spdd.DevInst;
}
SetupDiDestroyDeviceInfoList(h_dev_info);
BOOST_LOG_TRIVIAL(debug) << "get_dev_inst_by_device_number failed: Enmurating couldn't find the drive.";
return 0;
}
// Perform eject using CM_Request_Device_EjectW.
// Returns 0 if success.
int eject_inner(const std::string& path)
{
// Following implementation is based on https://stackoverflow.com/a/58848961
assert(path.size() > 0);
std::wstring wpath = std::wstring();
wpath += boost::nowide::widen(path)[0]; // drive letter wide
wpath[0] &= ~0x20; // make sure drive letter is uppercase
assert(wpath[0] >= 'A' && wpath[0] <= 'Z');
std::wstring root_path = wpath + L":\\"; // for GetDriveType
std::wstring device_path = wpath + L":"; //for QueryDosDevice
std::wstring volume_access_path = L"\\\\.\\" + wpath + L":"; // for CreateFile
long device_number = -1;
// open the storage volume
HANDLE volume_handle = CreateFileW(volume_access_path.c_str(), 0, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, NULL, NULL);
if (volume_handle == INVALID_HANDLE_VALUE) {
BOOST_LOG_TRIVIAL(error) << GUI::format("Ejecting of %1% has failed: Invalid value of file handle.", path);
return 1;
}
// get the volume's device number
STORAGE_DEVICE_NUMBER sdn;
DWORD bytes_returned = 0;
long res = DeviceIoControl(volume_handle, IOCTL_STORAGE_GET_DEVICE_NUMBER, NULL, 0, &sdn, sizeof(sdn), &bytes_returned, NULL);
if (res) {
device_number = sdn.DeviceNumber;
}
CloseHandle(volume_handle);
if (device_number == -1) {
BOOST_LOG_TRIVIAL(error) << GUI::format("Ejecting of %1% has failed: Invalid device number.", path);
return 1;
}
// get the drive type which is required to match the device numbers correctely
UINT drive_type = GetDriveTypeW(root_path.c_str());
// get the dos device name (like \device\floppy0) to decide if it's a floppy or not
WCHAR dos_device_name[MAX_PATH];
res = QueryDosDeviceW(device_path.c_str(), dos_device_name, MAX_PATH);
if (!res) {
BOOST_LOG_TRIVIAL(error) << GUI::format("Ejecting of %1% has failed: Invalid dos device name.", path);
return 1;
}
// get the device instance handle of the storage volume by means of a SetupDi enum and matching the device number
DEVINST dev_inst = get_dev_inst_by_device_number(device_number, drive_type, dos_device_name);
if (dev_inst == 0) {
BOOST_LOG_TRIVIAL(error) << GUI::format("Ejecting of %1% has failed: Invalid device instance handle.", path);
return 1;
}
PNP_VETO_TYPE veto_type = PNP_VetoTypeUnknown;
WCHAR veto_name[MAX_PATH];
veto_name[0] = 0;
// get drives's parent, e.g. the USB bridge, the SATA port, an IDE channel with two drives!
DEVINST dev_inst_parent = 0;
res = CM_Get_Parent(&dev_inst_parent, dev_inst, 0);
#if 0
// loop with several tries and sleep (this is running on main UI thread)
for (int i = 0; i < 3; ++i) {
veto_name[0] = 0;
// CM_Query_And_Remove_SubTree doesn't work for restricted users
//res = CM_Query_And_Remove_SubTreeW(DevInstParent, &VetoType, VetoNameW, MAX_PATH, CM_REMOVE_NO_RESTART); // CM_Query_And_Remove_SubTreeA is not implemented under W2K!
//res = CM_Query_And_Remove_SubTreeW(DevInstParent, NULL, NULL, 0, CM_REMOVE_NO_RESTART); // with messagebox (W2K, Vista) or balloon (XP)
res = CM_Request_Device_EjectW(dev_inst_parent, &veto_type, veto_name, MAX_PATH, 0);
//res = CM_Request_Device_EjectW(DevInstParent, NULL, NULL, 0, 0); // with messagebox (W2K, Vista) or balloon (XP)
if (res == CR_SUCCESS && veto_type == PNP_VetoTypeUnknown) {
return 0;
}
// Wait for next try.
// This is main thread!
Sleep(500);
}
#endif // 0
// perform eject
res = CM_Request_Device_EjectW(dev_inst_parent, &veto_type, veto_name, MAX_PATH, 0);
if (res == CR_SUCCESS && veto_type == PNP_VetoTypeUnknown) {
return 0;
}
BOOST_LOG_TRIVIAL(error) << GUI::format("Ejecting of %1% has failed: Request to eject device has failed.", path);
return 1;
}
}
// Called from UI therefore it blocks the UI thread.
// It also blocks updates at the worker thread.
// Win32 implementation.
@ -86,6 +272,28 @@ void RemovableDriveManager::eject_drive()
BOOST_LOG_TRIVIAL(info) << "Ejecting started";
std::scoped_lock<std::mutex> lock(m_drives_mutex);
auto it_drive_data = this->find_last_save_path_drive_data();
if (it_drive_data != m_current_drives.end()) {
if (!eject_inner(m_last_save_path)) {
// success
assert(m_callback_evt_handler);
if (m_callback_evt_handler)
wxPostEvent(m_callback_evt_handler, RemovableDriveEjectEvent(EVT_REMOVABLE_DRIVE_EJECTED, std::pair< DriveData, bool >(std::move(*it_drive_data), true)));
} else {
// failed to eject
// this should not happen, throwing exception might be the way here
assert(m_callback_evt_handler);
if (m_callback_evt_handler)
wxPostEvent(m_callback_evt_handler, RemovableDriveEjectEvent(EVT_REMOVABLE_DRIVE_EJECTED, std::pair<DriveData, bool>(*it_drive_data, false)));
}
} else {
// drive not found in m_current_drives
assert(m_callback_evt_handler);
if (m_callback_evt_handler)
wxPostEvent(m_callback_evt_handler, RemovableDriveEjectEvent(EVT_REMOVABLE_DRIVE_EJECTED, std::pair<DriveData, bool>({"",""}, false)));
}
#if 0
// Implementation used until 2.5.x version
// Some usb drives does not eject properly (still visible in file explorer). Some even does not write all content and eject.
if (it_drive_data != m_current_drives.end()) {
// get handle to device
std::string mpath = "\\\\.\\" + m_last_save_path;
@ -102,10 +310,10 @@ void RemovableDriveManager::eject_drive()
//these 3 commands should eject device safely but they dont, the device does disappear from file explorer but the "device was safely remove" notification doesnt trigger.
//sd cards does trigger WM_DEVICECHANGE messege, usb drives dont
BOOL e1 = DeviceIoControl(handle, FSCTL_LOCK_VOLUME, nullptr, 0, nullptr, 0, &deviceControlRetVal, nullptr);
BOOST_LOG_TRIVIAL(debug) << "FSCTL_LOCK_VOLUME " << e1 << " ; " << deviceControlRetVal << " ; " << GetLastError();
BOOST_LOG_TRIVIAL(error) << "FSCTL_LOCK_VOLUME " << e1 << " ; " << deviceControlRetVal << " ; " << GetLastError();
BOOL e2 = DeviceIoControl(handle, FSCTL_DISMOUNT_VOLUME, nullptr, 0, nullptr, 0, &deviceControlRetVal, nullptr);
BOOST_LOG_TRIVIAL(debug) << "FSCTL_DISMOUNT_VOLUME " << e2 << " ; " << deviceControlRetVal << " ; " << GetLastError();
// some implemenatations also calls IOCTL_STORAGE_MEDIA_REMOVAL here but it returns error to me
BOOST_LOG_TRIVIAL(error) << "FSCTL_DISMOUNT_VOLUME " << e2 << " ; " << deviceControlRetVal << " ; " << GetLastError();
// some implemenatations also calls IOCTL_STORAGE_MEDIA_REMOVAL here with FALSE as third parameter, which should set PreventMediaRemoval
BOOL error = DeviceIoControl(handle, IOCTL_STORAGE_EJECT_MEDIA, nullptr, 0, nullptr, 0, &deviceControlRetVal, nullptr);
if (error == 0) {
CloseHandle(handle);
@ -122,6 +330,7 @@ void RemovableDriveManager::eject_drive()
wxPostEvent(m_callback_evt_handler, RemovableDriveEjectEvent(EVT_REMOVABLE_DRIVE_EJECTED, std::pair< DriveData, bool >(std::move(*it_drive_data), true)));
m_current_drives.erase(it_drive_data);
}
#endif // 0
}
std::string RemovableDriveManager::get_removable_drive_path(const std::string &path)

View File

@ -544,11 +544,7 @@ bool Selection::is_single_full_instance() const
bool Selection::is_from_single_object() const
{
const int idx = get_object_idx();
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
return 0 <= idx && idx < int(m_model->objects.size());
#else
return 0 <= idx && idx < 1000;
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
}
bool Selection::is_sla_compliant() const
@ -1404,16 +1400,10 @@ void Selection::translate(unsigned int object_idx, const Vec3d& displacement)
if (done.size() == m_volumes->size())
break;
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if ((*m_volumes)[i]->is_wipe_tower)
continue;
int object_idx = (*m_volumes)[i]->object_idx();
#else
int object_idx = (*m_volumes)[i]->object_idx();
if (object_idx >= 1000)
continue;
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
// Process unselected volumes of the object.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
@ -1458,16 +1448,10 @@ void Selection::translate(unsigned int object_idx, unsigned int instance_idx, co
if (done.size() == m_volumes->size())
break;
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if ((*m_volumes)[i]->is_wipe_tower)
continue;
int object_idx = (*m_volumes)[i]->object_idx();
#else
int object_idx = (*m_volumes)[i]->object_idx();
if (object_idx >= 1000)
continue;
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
const int object_idx = (*m_volumes)[i]->object_idx();
// Process unselected volumes of the object.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
@ -2965,17 +2949,10 @@ void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_
break;
const GLVolume* volume_i = (*m_volumes)[i];
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if (volume_i->is_wipe_tower)
continue;
const int object_idx = volume_i->object_idx();
#else
const int object_idx = volume_i->object_idx();
if (object_idx >= 1000)
continue;
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
const int instance_idx = volume_i->instance_idx();
#if ENABLE_WORLD_COORDINATE
const Geometry::Transformation& curr_inst_trafo_i = volume_i->get_instance_transformation();
@ -3073,17 +3050,10 @@ void Selection::synchronize_unselected_volumes()
{
for (unsigned int i : m_list) {
const GLVolume* volume = (*m_volumes)[i];
#if ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
if (volume->is_wipe_tower)
continue;
const int object_idx = volume->object_idx();
#else
const int object_idx = volume->object_idx();
if (object_idx >= 1000)
continue;
#endif // ENABLE_WIPETOWER_OBJECTID_1000_REMOVAL
const int volume_idx = volume->volume_idx();
#if ENABLE_WORLD_COORDINATE
const Geometry::Transformation& trafo = volume->get_volume_transformation();

124
src/tcbspan/README.md Normal file
View File

@ -0,0 +1,124 @@
Bundled with PrusaSlicer:
https://github.com/tcbrindle/span
commit 836dc6a0efd9849cb194e88e4aa2387436bb079b
This is not the full distribution, it only contains README and span.hpp
Original README follows:
[![Standard](https://img.shields.io/badge/c%2B%2B-11/14/17/20-blue.svg)](https://en.wikipedia.org/wiki/C%2B%2B#Standardization)
[![License](https://img.shields.io/badge/license-BSL-blue.svg)](http://www.boost.org/LICENSE_1_0.txt)
[![Build Status](https://travis-ci.org/tcbrindle/span.svg?branch=master)](https://travis-ci.org/tcbrindle/span)
[![Build status](https://ci.appveyor.com/api/projects/status/ow7cj56s108fs439/branch/master?svg=true)](https://ci.appveyor.com/project/tcbrindle/span/branch/master)
[![Try it on godbolt online](https://img.shields.io/badge/on-godbolt-blue.svg)](https://godbolt.org/z/-vlZZR)
`std::span` implementation for C++11 and later
==============================================
This repository contains a single-header implementation of C++20's `std::span`,
conforming to the C++20 committee draft.
It is compatible with C++11, but will use newer language features if they
are available.
It differs from the implementation in the [Microsoft GSL](https://github.com/Microsoft/GSL/)
in that it is single-header and does not depend on any other GSL facilities. It
also works with C++11, while the GSL version requires C++14.
Usage
-----
The recommended way to use the implementation simply copy the file `span.hpp`
from `include/tcb/` into your own sources and `#include` it like
any other header. By default, it lives in namespace `tcb`, but this can be
customised by setting the macro `TCB_SPAN_NAMESPACE_NAME` to an appropriate string
before `#include`-ing the header -- or simply edit the source code.
The rest of the repository contains testing machinery, and is not required for
use.
Compatibility
-------------
This implementation requires a conforming C++11 (or later) compiler, and is tested as far
back as GCC 5, Clang 3.5 and MSVC 2015 Update 3. Older compilers may work, but this is not guaranteed.
Documentation
-------------
Documentation for `std::span` is available [on cppreference](https://en.cppreference.com/w/cpp/container/span).
Implementation Notes
--------------------
### Bounds Checking ###
This implementation of `span` includes optional bounds checking, which is handled
either by throwing an exception or by calling `std::terminate()`.
The default behaviour with C++14 and later is to check the macro `NDEBUG`:
if this is set, bounds checking is disabled. Otherwise, `std::terminate()` will
be called if there is a precondition violation (i.e. the same behaviour as
`assert()`). If you wish to terminate on errors even if `NDEBUG` is set, define
the symbol `TCB_SPAN_TERMINATE_ON_CONTRACT_VIOLATION` before `#include`-ing the
header.
Alternatively, if you want to throw on a contract violation, define
`TCB_SPAN_THROW_ON_CONTRACT_VIOLATION`. This will throw an exception of an
implementation-defined type (deriving from `std::logic_error`), allowing
cleanup to happen. Note that defining this symbol will cause the checks to be
run even if `NDEBUG` is set.
Lastly, if you wish to disable contract checking even in debug builds,
`#define TCB_SPAN_NO_CONTRACT_CHECKING`.
Under C++11, due to the restrictions on `constexpr` functions, contract checking
is disabled by default even if `NDEBUG` is not set. You can change this by
defining either of the above symbols, but this will result in most of `span`'s
interface becoming non-`constexpr`.
### `constexpr` ###
This implementation is fully `constexpr` under C++17 and later. Under earlier
versions, it is "as `constexpr` as possible".
Note that even in C++17, it is generally not possible to declare a `span`
as non-default constructed `constexpr` variable, for the same reason that you
cannot form a `constexpr` pointer to a value: it involves taking the address of
a compile-time variable in a way that would be visible at run-time.
You can however use a `span` freely in a `constexpr` function. For example:
```cpp
// Okay, even in C++11
constexpr std::ptrdiff_t get_span_size(span<const int> span)
{
return span.size();
}
constexpr int arr[] = {1, 2, 3};
constexpr auto size = get_span_size(arr); // Okay
constexpr span<const int> span{arr}; // ERROR -- not a constant expression
constexpr const int* p = arr; // ERROR -- same
```
Constructor deduction guides are provided if the compiler supports them. For
older compilers, a set of `make_span()` functions are provided as an extension
which use the same logic, for example:
```cpp
constexpr int c_array[] = {1, 2, 3};
std::array<int, 3> std_array{1, 2, 3};
const std::vector<int> vec{1, 2, 3};
auto s1 = make_span(c_array); // returns span<const int, 3>
auto s2 = make_span(std_array); // returns span<int, 3>
auto s3 = make_span(vec); // returns span<const int, dynamic_extent>
```
Alternatives
------------
* [Microsoft/GSL](https://github.com/Microsoft/GSL): The original `span` reference
implementation from which `std::span` was born.
* [martinmoene/span_lite](https://github.com/martinmoene/span-lite): An
alternative implementation which offers C++98 compatibility.

618
src/tcbspan/span.hpp Normal file
View File

@ -0,0 +1,618 @@
/*
This is an implementation of C++20's std::span
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4820.pdf
*/
// Copyright Tristan Brindle 2018.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file ../../LICENSE_1_0.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
#ifndef TCB_SPAN_HPP_INCLUDED
#define TCB_SPAN_HPP_INCLUDED
#include <array>
#include <cstddef>
#include <cstdint>
#include <type_traits>
#ifndef TCB_SPAN_NO_EXCEPTIONS
// Attempt to discover whether we're being compiled with exception support
#if !(defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND))
#define TCB_SPAN_NO_EXCEPTIONS
#endif
#endif
#ifndef TCB_SPAN_NO_EXCEPTIONS
#include <cstdio>
#include <stdexcept>
#endif
// Various feature test macros
#ifndef TCB_SPAN_NAMESPACE_NAME
#define TCB_SPAN_NAMESPACE_NAME tcb
#endif
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define TCB_SPAN_HAVE_CPP17
#endif
#if __cplusplus >= 201402L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201402L)
#define TCB_SPAN_HAVE_CPP14
#endif
namespace TCB_SPAN_NAMESPACE_NAME {
// Establish default contract checking behavior
#if !defined(TCB_SPAN_THROW_ON_CONTRACT_VIOLATION) && \
!defined(TCB_SPAN_TERMINATE_ON_CONTRACT_VIOLATION) && \
!defined(TCB_SPAN_NO_CONTRACT_CHECKING)
#if defined(NDEBUG) || !defined(TCB_SPAN_HAVE_CPP14)
#define TCB_SPAN_NO_CONTRACT_CHECKING
#else
#define TCB_SPAN_TERMINATE_ON_CONTRACT_VIOLATION
#endif
#endif
#if defined(TCB_SPAN_THROW_ON_CONTRACT_VIOLATION)
struct contract_violation_error : std::logic_error {
explicit contract_violation_error(const char* msg) : std::logic_error(msg)
{}
};
inline void contract_violation(const char* msg)
{
throw contract_violation_error(msg);
}
#elif defined(TCB_SPAN_TERMINATE_ON_CONTRACT_VIOLATION)
[[noreturn]] inline void contract_violation(const char* /*unused*/)
{
std::terminate();
}
#endif
#if !defined(TCB_SPAN_NO_CONTRACT_CHECKING)
#define TCB_SPAN_STRINGIFY(cond) #cond
#define TCB_SPAN_EXPECT(cond) \
cond ? (void) 0 : contract_violation("Expected " TCB_SPAN_STRINGIFY(cond))
#else
#define TCB_SPAN_EXPECT(cond)
#endif
#if defined(TCB_SPAN_HAVE_CPP17) || defined(__cpp_inline_variables)
#define TCB_SPAN_INLINE_VAR inline
#else
#define TCB_SPAN_INLINE_VAR
#endif
#if defined(TCB_SPAN_HAVE_CPP14) || \
(defined(__cpp_constexpr) && __cpp_constexpr >= 201304)
#define TCB_SPAN_HAVE_CPP14_CONSTEXPR
#endif
#if defined(TCB_SPAN_HAVE_CPP14_CONSTEXPR)
#define TCB_SPAN_CONSTEXPR14 constexpr
#else
#define TCB_SPAN_CONSTEXPR14
#endif
#if defined(TCB_SPAN_HAVE_CPP14_CONSTEXPR) && \
(!defined(_MSC_VER) || _MSC_VER > 1900)
#define TCB_SPAN_CONSTEXPR_ASSIGN constexpr
#else
#define TCB_SPAN_CONSTEXPR_ASSIGN
#endif
#if defined(TCB_SPAN_NO_CONTRACT_CHECKING)
#define TCB_SPAN_CONSTEXPR11 constexpr
#else
#define TCB_SPAN_CONSTEXPR11 TCB_SPAN_CONSTEXPR14
#endif
#if defined(TCB_SPAN_HAVE_CPP17) || defined(__cpp_deduction_guides)
#define TCB_SPAN_HAVE_DEDUCTION_GUIDES
#endif
#if defined(TCB_SPAN_HAVE_CPP17) || defined(__cpp_lib_byte)
#define TCB_SPAN_HAVE_STD_BYTE
#endif
#if defined(TCB_SPAN_HAVE_CPP17) || defined(__cpp_lib_array_constexpr)
#define TCB_SPAN_HAVE_CONSTEXPR_STD_ARRAY_ETC
#endif
#if defined(TCB_SPAN_HAVE_CONSTEXPR_STD_ARRAY_ETC)
#define TCB_SPAN_ARRAY_CONSTEXPR constexpr
#else
#define TCB_SPAN_ARRAY_CONSTEXPR
#endif
#ifdef TCB_SPAN_HAVE_STD_BYTE
using byte = std::byte;
#else
using byte = unsigned char;
#endif
#if defined(TCB_SPAN_HAVE_CPP17)
#define TCB_SPAN_NODISCARD [[nodiscard]]
#else
#define TCB_SPAN_NODISCARD
#endif
TCB_SPAN_INLINE_VAR constexpr std::size_t dynamic_extent = SIZE_MAX;
template <typename ElementType, std::size_t Extent = dynamic_extent>
class span;
namespace detail {
template <typename E, std::size_t S>
struct span_storage {
constexpr span_storage() noexcept = default;
constexpr span_storage(E* p_ptr, std::size_t /*unused*/) noexcept
: ptr(p_ptr)
{}
E* ptr = nullptr;
static constexpr std::size_t size = S;
};
template <typename E>
struct span_storage<E, dynamic_extent> {
constexpr span_storage() noexcept = default;
constexpr span_storage(E* p_ptr, std::size_t p_size) noexcept
: ptr(p_ptr), size(p_size)
{}
E* ptr = nullptr;
std::size_t size = 0;
};
// Reimplementation of C++17 std::size() and std::data()
#if defined(TCB_SPAN_HAVE_CPP17) || \
defined(__cpp_lib_nonmember_container_access)
using std::data;
using std::size;
#else
template <class C>
constexpr auto size(const C& c) -> decltype(c.size())
{
return c.size();
}
template <class T, std::size_t N>
constexpr std::size_t size(const T (&)[N]) noexcept
{
return N;
}
template <class C>
constexpr auto data(C& c) -> decltype(c.data())
{
return c.data();
}
template <class C>
constexpr auto data(const C& c) -> decltype(c.data())
{
return c.data();
}
template <class T, std::size_t N>
constexpr T* data(T (&array)[N]) noexcept
{
return array;
}
template <class E>
constexpr const E* data(std::initializer_list<E> il) noexcept
{
return il.begin();
}
#endif // TCB_SPAN_HAVE_CPP17
#if defined(TCB_SPAN_HAVE_CPP17) || defined(__cpp_lib_void_t)
using std::void_t;
#else
template <typename...>
using void_t = void;
#endif
template <typename T>
using uncvref_t =
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
template <typename>
struct is_span : std::false_type {};
template <typename T, std::size_t S>
struct is_span<span<T, S>> : std::true_type {};
template <typename>
struct is_std_array : std::false_type {};
template <typename T, std::size_t N>
struct is_std_array<std::array<T, N>> : std::true_type {};
template <typename, typename = void>
struct has_size_and_data : std::false_type {};
template <typename T>
struct has_size_and_data<T, void_t<decltype(detail::size(std::declval<T>())),
decltype(detail::data(std::declval<T>()))>>
: std::true_type {};
template <typename C, typename U = uncvref_t<C>>
struct is_container {
static constexpr bool value =
!is_span<U>::value && !is_std_array<U>::value &&
!std::is_array<U>::value && has_size_and_data<C>::value;
};
template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;
template <typename, typename, typename = void>
struct is_container_element_type_compatible : std::false_type {};
template <typename T, typename E>
struct is_container_element_type_compatible<
T, E,
typename std::enable_if<
!std::is_same<
typename std::remove_cv<decltype(detail::data(std::declval<T>()))>::type,
void>::value &&
std::is_convertible<
remove_pointer_t<decltype(detail::data(std::declval<T>()))> (*)[],
E (*)[]>::value
>::type>
: std::true_type {};
template <typename, typename = size_t>
struct is_complete : std::false_type {};
template <typename T>
struct is_complete<T, decltype(sizeof(T))> : std::true_type {};
} // namespace detail
template <typename ElementType, std::size_t Extent>
class span {
static_assert(std::is_object<ElementType>::value,
"A span's ElementType must be an object type (not a "
"reference type or void)");
static_assert(detail::is_complete<ElementType>::value,
"A span's ElementType must be a complete type (not a forward "
"declaration)");
static_assert(!std::is_abstract<ElementType>::value,
"A span's ElementType cannot be an abstract class type");
using storage_type = detail::span_storage<ElementType, Extent>;
public:
// constants and types
using element_type = ElementType;
using value_type = typename std::remove_cv<ElementType>::type;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
static constexpr size_type extent = Extent;
// [span.cons], span constructors, copy, assignment, and destructor
template <
std::size_t E = Extent,
typename std::enable_if<(E == dynamic_extent || E <= 0), int>::type = 0>
constexpr span() noexcept
{}
TCB_SPAN_CONSTEXPR11 span(pointer ptr, size_type count)
: storage_(ptr, count)
{
TCB_SPAN_EXPECT(extent == dynamic_extent || count == extent);
}
TCB_SPAN_CONSTEXPR11 span(pointer first_elem, pointer last_elem)
: storage_(first_elem, last_elem - first_elem)
{
TCB_SPAN_EXPECT(extent == dynamic_extent ||
last_elem - first_elem ==
static_cast<std::ptrdiff_t>(extent));
}
template <std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
element_type (&)[N], ElementType>::value,
int>::type = 0>
constexpr span(element_type (&arr)[N]) noexcept : storage_(arr, N)
{}
template <typename T, std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
std::array<T, N>&, ElementType>::value,
int>::type = 0>
TCB_SPAN_ARRAY_CONSTEXPR span(std::array<T, N>& arr) noexcept
: storage_(arr.data(), N)
{}
template <typename T, std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
const std::array<T, N>&, ElementType>::value,
int>::type = 0>
TCB_SPAN_ARRAY_CONSTEXPR span(const std::array<T, N>& arr) noexcept
: storage_(arr.data(), N)
{}
template <
typename Container, std::size_t E = Extent,
typename std::enable_if<
E == dynamic_extent && detail::is_container<Container>::value &&
detail::is_container_element_type_compatible<
Container&, ElementType>::value,
int>::type = 0>
constexpr span(Container& cont)
: storage_(detail::data(cont), detail::size(cont))
{}
template <
typename Container, std::size_t E = Extent,
typename std::enable_if<
E == dynamic_extent && detail::is_container<Container>::value &&
detail::is_container_element_type_compatible<
const Container&, ElementType>::value,
int>::type = 0>
constexpr span(const Container& cont)
: storage_(detail::data(cont), detail::size(cont))
{}
constexpr span(const span& other) noexcept = default;
template <typename OtherElementType, std::size_t OtherExtent,
typename std::enable_if<
(Extent == dynamic_extent || OtherExtent == dynamic_extent ||
Extent == OtherExtent) &&
std::is_convertible<OtherElementType (*)[],
ElementType (*)[]>::value,
int>::type = 0>
constexpr span(const span<OtherElementType, OtherExtent>& other) noexcept
: storage_(other.data(), other.size())
{}
~span() noexcept = default;
TCB_SPAN_CONSTEXPR_ASSIGN span&
operator=(const span& other) noexcept = default;
// [span.sub], span subviews
template <std::size_t Count>
TCB_SPAN_CONSTEXPR11 span<element_type, Count> first() const
{
TCB_SPAN_EXPECT(Count <= size());
return {data(), Count};
}
template <std::size_t Count>
TCB_SPAN_CONSTEXPR11 span<element_type, Count> last() const
{
TCB_SPAN_EXPECT(Count <= size());
return {data() + (size() - Count), Count};
}
template <std::size_t Offset, std::size_t Count = dynamic_extent>
using subspan_return_t =
span<ElementType, Count != dynamic_extent
? Count
: (Extent != dynamic_extent ? Extent - Offset
: dynamic_extent)>;
template <std::size_t Offset, std::size_t Count = dynamic_extent>
TCB_SPAN_CONSTEXPR11 subspan_return_t<Offset, Count> subspan() const
{
TCB_SPAN_EXPECT(Offset <= size() &&
(Count == dynamic_extent || Offset + Count <= size()));
return {data() + Offset,
Count != dynamic_extent ? Count : size() - Offset};
}
TCB_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
first(size_type count) const
{
TCB_SPAN_EXPECT(count <= size());
return {data(), count};
}
TCB_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
last(size_type count) const
{
TCB_SPAN_EXPECT(count <= size());
return {data() + (size() - count), count};
}
TCB_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
subspan(size_type offset, size_type count = dynamic_extent) const
{
TCB_SPAN_EXPECT(offset <= size() &&
(count == dynamic_extent || offset + count <= size()));
return {data() + offset,
count == dynamic_extent ? size() - offset : count};
}
// [span.obs], span observers
constexpr size_type size() const noexcept { return storage_.size; }
constexpr size_type size_bytes() const noexcept
{
return size() * sizeof(element_type);
}
TCB_SPAN_NODISCARD constexpr bool empty() const noexcept
{
return size() == 0;
}
// [span.elem], span element access
TCB_SPAN_CONSTEXPR11 reference operator[](size_type idx) const
{
TCB_SPAN_EXPECT(idx < size());
return *(data() + idx);
}
TCB_SPAN_CONSTEXPR11 reference front() const
{
TCB_SPAN_EXPECT(!empty());
return *data();
}
TCB_SPAN_CONSTEXPR11 reference back() const
{
TCB_SPAN_EXPECT(!empty());
return *(data() + (size() - 1));
}
constexpr pointer data() const noexcept { return storage_.ptr; }
// [span.iterators], span iterator support
constexpr iterator begin() const noexcept { return data(); }
constexpr iterator end() const noexcept { return data() + size(); }
TCB_SPAN_ARRAY_CONSTEXPR reverse_iterator rbegin() const noexcept
{
return reverse_iterator(end());
}
TCB_SPAN_ARRAY_CONSTEXPR reverse_iterator rend() const noexcept
{
return reverse_iterator(begin());
}
private:
storage_type storage_{};
};
#ifdef TCB_SPAN_HAVE_DEDUCTION_GUIDES
/* Deduction Guides */
template <class T, size_t N>
span(T (&)[N])->span<T, N>;
template <class T, size_t N>
span(std::array<T, N>&)->span<T, N>;
template <class T, size_t N>
span(const std::array<T, N>&)->span<const T, N>;
template <class Container>
span(Container&)->span<typename std::remove_reference<
decltype(*detail::data(std::declval<Container&>()))>::type>;
template <class Container>
span(const Container&)->span<const typename Container::value_type>;
#endif // TCB_HAVE_DEDUCTION_GUIDES
template <typename ElementType, std::size_t Extent>
constexpr span<ElementType, Extent>
make_span(span<ElementType, Extent> s) noexcept
{
return s;
}
template <typename T, std::size_t N>
constexpr span<T, N> make_span(T (&arr)[N]) noexcept
{
return {arr};
}
template <typename T, std::size_t N>
TCB_SPAN_ARRAY_CONSTEXPR span<T, N> make_span(std::array<T, N>& arr) noexcept
{
return {arr};
}
template <typename T, std::size_t N>
TCB_SPAN_ARRAY_CONSTEXPR span<const T, N>
make_span(const std::array<T, N>& arr) noexcept
{
return {arr};
}
template <typename Container>
constexpr span<typename std::remove_reference<
decltype(*detail::data(std::declval<Container&>()))>::type>
make_span(Container& cont)
{
return {cont};
}
template <typename Container>
constexpr span<const typename Container::value_type>
make_span(const Container& cont)
{
return {cont};
}
template <typename ElementType, std::size_t Extent>
span<const byte, ((Extent == dynamic_extent) ? dynamic_extent
: sizeof(ElementType) * Extent)>
as_bytes(span<ElementType, Extent> s) noexcept
{
return {reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
}
template <
class ElementType, size_t Extent,
typename std::enable_if<!std::is_const<ElementType>::value, int>::type = 0>
span<byte, ((Extent == dynamic_extent) ? dynamic_extent
: sizeof(ElementType) * Extent)>
as_writable_bytes(span<ElementType, Extent> s) noexcept
{
return {reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
template <std::size_t N, typename E, std::size_t S>
constexpr auto get(span<E, S> s) -> decltype(s[N])
{
return s[N];
}
} // namespace TCB_SPAN_NAMESPACE_NAME
namespace std {
template <typename ElementType, size_t Extent>
class tuple_size<TCB_SPAN_NAMESPACE_NAME::span<ElementType, Extent>>
: public integral_constant<size_t, Extent> {};
template <typename ElementType>
class tuple_size<TCB_SPAN_NAMESPACE_NAME::span<
ElementType, TCB_SPAN_NAMESPACE_NAME::dynamic_extent>>; // not defined
template <size_t I, typename ElementType, size_t Extent>
class tuple_element<I, TCB_SPAN_NAMESPACE_NAME::span<ElementType, Extent>> {
public:
static_assert(Extent != TCB_SPAN_NAMESPACE_NAME::dynamic_extent &&
I < Extent,
"");
using type = ElementType;
};
} // end namespace std
#endif // TCB_SPAN_HPP_INCLUDED

View File

@ -62,7 +62,7 @@ SCENARIO("Print: Changing number of solid surfaces does not cause all surfaces t
// Precondition: Ensure that the model has 2 solid top layers (39, 38)
// and one solid bottom layer (0).
auto test_is_solid_infill = [&print](size_t obj_id, size_t layer_id) {
const Layer &layer = *(print.objects().at(obj_id)->get_layer((int)layer_id));
const Layer &layer = *print.objects()[obj_id]->get_layer((int)layer_id);
// iterate over all of the regions in the layer
for (const LayerRegion *region : layer.regions()) {
// for each region, iterate over the fill surfaces

View File

@ -18,7 +18,7 @@ SCENARIO("PrintObject: object layer heights", "[PrintObject]") {
{ "layer_height", 2 },
{ "nozzle_diameter", 3 }
});
ConstLayerPtrsAdaptor layers = print.objects().front()->layers();
SpanOfConstPtrs<Layer> layers = print.objects().front()->layers();
THEN("The output vector has 10 entries") {
REQUIRE(layers.size() == 10);
}
@ -37,7 +37,7 @@ SCENARIO("PrintObject: object layer heights", "[PrintObject]") {
{ "layer_height", 10 },
{ "nozzle_diameter", 11 }
});
ConstLayerPtrsAdaptor layers = print.objects().front()->layers();
SpanOfConstPtrs<Layer> layers = print.objects().front()->layers();
THEN("The output vector has 3 entries") {
REQUIRE(layers.size() == 3);
}
@ -55,7 +55,7 @@ SCENARIO("PrintObject: object layer heights", "[PrintObject]") {
{ "layer_height", 15 },
{ "nozzle_diameter", 16 }
});
ConstLayerPtrsAdaptor layers = print.objects().front()->layers();
SpanOfConstPtrs<Layer> layers = print.objects().front()->layers();
THEN("The output vector has 2 entries") {
REQUIRE(layers.size() == 2);
}

View File

@ -27,7 +27,7 @@ SCENARIO("SupportMaterial: support_layers_z and contact_distance", "[SupportMate
auto check = [](Slic3r::Print &print, bool &first_support_layer_height_ok, bool &layer_height_minimum_ok, bool &layer_height_maximum_ok, bool &top_spacing_ok)
{
ConstSupportLayerPtrsAdaptor support_layers = print.objects().front()->support_layers();
SpanOfConstPtrs<SupportLayer> support_layers = print.objects().front()->support_layers();
first_support_layer_height_ok = support_layers.front()->print_z == print.config().first_layer_height.value;