separate function for cut_from_model

set face type by edges(not triangles) half processing of is in or out
This commit is contained in:
Filip Sykala - NTB T15p 2022-07-11 19:54:30 +02:00
parent d955a37987
commit 963713fad1

View File

@ -1,5 +1,7 @@
#include "CutSurface.hpp"
/// models_input.obj - Check transormation of model to each others
/// projection_center.obj - circle representing center of projection with correct distance
/// {M} .. model index
/// model/model{M}.off - CGAL model created from index_triangle_set
/// model_neg/model{M}.off - CGAL model created for differenciate (multi volume object)
@ -11,13 +13,12 @@
/// (only along constrained edge)
/// filled.off - flood fill green triangles inside of red area
/// - Same meaning of color as constrained
/// reduction.off - Visualization of reduced and non-reduced Vertices
/// {N} .. Order of cutted Area of Interestmodel from model surface
/// model_AOIs/{M}/cutAOI{N}.obj - Extracted Area of interest from corefined model
/// model_AOIs/{M}/outline{N}.obj - Outline of Cutted Area
/// cuts/cut{N}.obj - Filtered surface cuts + Reduced vertices made by e2 (text_edge_2)
///
/// result_contours/{O}.obj -
/// result.obj - Merged result its
/// result_contours/{O}.obj - visualization of contours for result patches
#define DEBUG_OUTPUT_DIR std::string("C:/data/temp/cutSurface/")
using namespace Slic3r;
@ -105,6 +106,30 @@ using FI = CGAL::SM_Face_index;
using P3 = CGAL::Epick::Point_3;
/// <summary>
/// Convert triangle mesh model to CGAL Surface_mesh
/// Filtrate out opposite triangles
/// Add property map for source face index
/// </summary>
/// <param name="its">Model</param>
/// <param name="skip_indicies">Flags that triangle should be skiped</param>
/// <param name="flip">When true triangle will flip normal</param>
/// <returns>CGAL mesh - half edge mesh</returns>
CutMesh to_cgal(const indexed_triangle_set &its,
const std::vector<bool> &skip_indicies,
bool flip = false);
/// <summary>
/// Covert 2d shape (e.g. Glyph) to CGAL model
/// NOTE: internaly create
/// edge_shape_map .. Property map to store conversion from edge to contour
/// face_shape_map .. Property map to store conversion from face to contour
/// </summary>
/// <param name="shapes">2d shapes to project</param>
/// <param name="projection">Define transformation 2d point into 3d</param>
/// <returns>CGAL model of extruded shape</returns>
CutMesh to_cgal(const ExPolygons &shapes, const Project &projection);
/// <summary>
/// IntersectingElement
///
@ -191,31 +216,6 @@ const std::string face_shape_map_name = "f:IntersectingElement";
// stored in surface source
const std::string vert_shape_map_name = "v:IntersectingElement";
/// <summary>
/// Convert triangle mesh model to CGAL Surface_mesh
/// Filtrate out opposite triangles
/// Add property map for source face index
/// </summary>
/// <param name="its">Model</param>
/// <param name="skip_indicies">Flags that triangle should be skiped</param>
/// <param name="flip">When true triangle will flip normal</param>
/// <returns>CGAL mesh - half edge mesh</returns>
CutMesh to_cgal(const indexed_triangle_set &its,
const std::vector<bool> &skip_indicies,
bool flip = false);
/// <summary>
/// Covert 2d shape (e.g. Glyph) to CGAL model
/// NOTE: internaly create
/// edge_shape_map .. Property map to store conversion from edge to contour
/// face_shape_map .. Property map to store conversion from face to contour
/// </summary>
/// <param name="shapes">2d shapes to project</param>
/// <param name="projection">Define transformation 2d point into 3d</param>
/// <returns>CGAL model of extruded shape</returns>
CutMesh to_cgal(const ExPolygons &shapes,
const Project &projection);
/// <summary>
/// Identify contour (or hole) point from ExPolygons
/// </summary>
@ -229,92 +229,12 @@ struct ShapePointId
uint32_t point_index;
};
/// <summary>
/// Track source of intersection
/// Help for anotate inner and outer faces
/// </summary>
struct Visitor {
const CutMesh &object;
const CutMesh &shape;
// Properties of the shape mesh:
EdgeShapeMap edge_shape_map;
FaceShapeMap face_shape_map;
// Properties of the object mesh.
VertexShapeMap vert_shape_map;
// check for anomalities
bool* is_valid;
// keep source of intersection for each intersection
// used to copy data into vert_shape_map
std::vector<const IntersectingElement*> intersections;
/// <summary>
/// Called when a new intersection point is detected.
/// The intersection is detected using a face of tm_f and an edge of tm_e.
/// Intersecting an edge hh_edge from tm_f with a face h_e of tm_e.
/// https://doc.cgal.org/latest/Polygon_mesh_processing/classPMPCorefinementVisitor.html#a00ee0ca85db535a48726a92414acda7f
/// </summary>
/// <param name="i_id">The id of the intersection point, starting at 0. Ids are consecutive.</param>
/// <param name="sdim">Dimension of a simplex part of face(h_e) that is intersected by edge(h_f):
/// 0 for vertex: target(h_e)
/// 1 for edge: h_e
/// 2 for the interior of face: face(h_e) </param>
/// <param name="h_f">
/// A halfedge from tm_f indicating the simplex intersected:
/// if sdim==0 the target of h_f is the intersection point,
/// if sdim==1 the edge of h_f contains the intersection point in its interior,
/// if sdim==2 the face of h_f contains the intersection point in its interior.
/// @Vojta: Edge of tm_f, see is_target_coplanar & is_source_coplanar whether any vertex of h_f is coplanar with face(h_e).
/// </param>
/// <param name="h_e">A halfedge from tm_e
/// @Vojta: Vertex, halfedge or face of tm_e intersected by h_f, see comment at sdim.
/// </param>
/// <param name="tm_f">Mesh containing h_f</param>
/// <param name="tm_e">Mesh containing h_e</param>
/// <param name="is_target_coplanar">True if the target of h_e is the intersection point
/// @Vojta: source(h_f) is coplanar with face(made by h_e).</param>
/// <param name="is_source_coplanar">True if the source of h_e is the intersection point
/// @Vojta: target(h_f) is coplanar with face(h_e).</param>
void intersection_point_detected(std::size_t i_id,
int sdim,
HI h_f,
HI h_e,
const CutMesh &tm_f,
const CutMesh &tm_e,
bool is_target_coplanar,
bool is_source_coplanar);
/// <summary>
/// Called when a new vertex is added in tm (either an edge split or a vertex inserted in the interior of a face).
/// Fill vertex_shape_map by intersections
/// </summary>
/// <param name="i_id">Order number of intersection point</param>
/// <param name="v">New added vertex</param>
/// <param name="tm">Affected mesh</param>
void new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm);
// Not used visitor functions
void before_subface_creations(FI /* f_old */, CutMesh &/* mesh */){}
void after_subface_created(FI /* f_new */, CutMesh &/* mesh */) {}
void after_subface_creations(CutMesh&) {}
void before_subface_created(CutMesh&) {}
void before_edge_split(HI /* h */, CutMesh& /* tm */) {}
void edge_split(HI /* hnew */, CutMesh& /* tm */) {}
void after_edge_split() {}
void add_retriangulation_edge(HI /* h */, CutMesh& /* tm */) {}
};
/// <summary>
/// Flag for faces in CGAL mesh
/// </summary>
enum class FaceType {
// face inside of the cutted shape
inside,
// face, inside but almost in direction of projection
inside_parallel,
// face outside of the cutted shape
outside,
// face without constrained edge (In or Out)
@ -344,32 +264,6 @@ public:
uint32_t get_count() const;
};
/// <summary>
/// Face with constrained edge are inside/outside by type of intersection
/// Other set to not_constrained(still it could be inside/outside)
/// </summary>
/// <param name="face_type_map">[Output] property map with type of faces</param>
/// <param name="mesh">Mesh to process</param>
/// <param name="vertex_shape_map">Keep information about source of created vertex</param>
/// <param name="ecm">Dynamic Edge Constrained Map of bool</param>
/// <param name="shape_mesh">Vertices of mesh made by shapes</param>
/// <param name="shape2index">Convert index to shape point from ExPolygons</param>
void set_face_type(FaceTypeMap &face_type_map,
const CutMesh &mesh,
const VertexShapeMap &vertex_shape_map,
const EcmType &ecm,
const CutMesh &shape_mesh,
const ShapePoint2index &shape2index);
/// <summary>
/// Change FaceType from not_constrained to inside
/// For neighbor(or neighbor of neighbor of ...) of inside triangles.
/// Process only not_constrained triangles
/// </summary>
/// <param name="mesh">Corefined mesh</param>
/// <param name="face_type_map">In/Out map with faces type</param>
void flood_fill_inner(const CutMesh &mesh, FaceTypeMap &face_type_map);
// Conversion one vertex index to another
using CvtVI2VI = CutMesh::Property_map<VI, VI>;
// Each Patch track outline vertex conversion to tource model
@ -424,19 +318,6 @@ CutAOIs cut_from_model(CutMesh &cgal_model,
float projection_ratio,
const ShapePoint2index &s2i);
/// <summary>
/// Create areas from mesh surface
/// </summary>
/// <param name="mesh">Model</param>
/// <param name="shapes">Cutted shapes</param>
/// <param name="face_type_map">Define Triangles of interest.
/// Edge between inside / outside.
/// NOTE: Not const because it need to flag proccessed faces</param>
/// <returns>Areas of interest from mesh</returns>
CutAOIs create_cut_area_of_interests(const CutMesh &mesh,
const ExPolygons &shapes,
FaceTypeMap &face_type_map);
// To track during diff_models,
// what was cutted off, from CutAOI
struct SurfacePatch
@ -657,9 +538,6 @@ SurfaceCut merge_intersections(SurfaceCuts &cuts, const CutAOIs& cutAOIs, const
bool merge_intersection(SurfaceCut &cut1, const SurfaceCut &cut2);
#ifdef DEBUG_OUTPUT_DIR
indexed_triangle_set create_indexed_triangle_set(const std::vector<FI> &faces,
const CutMesh &mesh);
/// <summary>
/// Debug purpose store of mesh with colored face by face type
/// </summary>
@ -1131,6 +1009,314 @@ priv::CutMesh priv::to_cgal(const ExPolygons &shapes,
return result;
}
// cut_from_model help functions
namespace priv {
/// <summary>
/// Track source of intersection
/// Help for anotate inner and outer faces
/// </summary>
struct Visitor {
const CutMesh &object;
const CutMesh &shape;
// Properties of the shape mesh:
EdgeShapeMap edge_shape_map;
FaceShapeMap face_shape_map;
// Properties of the object mesh.
VertexShapeMap vert_shape_map;
// check for anomalities
bool* is_valid;
// keep source of intersection for each intersection
// used to copy data into vert_shape_map
std::vector<const IntersectingElement*> intersections;
/// <summary>
/// Called when a new intersection point is detected.
/// The intersection is detected using a face of tm_f and an edge of tm_e.
/// Intersecting an edge hh_edge from tm_f with a face h_e of tm_e.
/// https://doc.cgal.org/latest/Polygon_mesh_processing/classPMPCorefinementVisitor.html#a00ee0ca85db535a48726a92414acda7f
/// </summary>
/// <param name="i_id">The id of the intersection point, starting at 0. Ids are consecutive.</param>
/// <param name="sdim">Dimension of a simplex part of face(h_e) that is intersected by edge(h_f):
/// 0 for vertex: target(h_e)
/// 1 for edge: h_e
/// 2 for the interior of face: face(h_e) </param>
/// <param name="h_f">
/// A halfedge from tm_f indicating the simplex intersected:
/// if sdim==0 the target of h_f is the intersection point,
/// if sdim==1 the edge of h_f contains the intersection point in its interior,
/// if sdim==2 the face of h_f contains the intersection point in its interior.
/// @Vojta: Edge of tm_f, see is_target_coplanar & is_source_coplanar whether any vertex of h_f is coplanar with face(h_e).
/// </param>
/// <param name="h_e">A halfedge from tm_e
/// @Vojta: Vertex, halfedge or face of tm_e intersected by h_f, see comment at sdim.
/// </param>
/// <param name="tm_f">Mesh containing h_f</param>
/// <param name="tm_e">Mesh containing h_e</param>
/// <param name="is_target_coplanar">True if the target of h_e is the intersection point
/// @Vojta: source(h_f) is coplanar with face(made by h_e).</param>
/// <param name="is_source_coplanar">True if the source of h_e is the intersection point
/// @Vojta: target(h_f) is coplanar with face(h_e).</param>
void intersection_point_detected(std::size_t i_id,
int sdim,
HI h_f,
HI h_e,
const CutMesh &tm_f,
const CutMesh &tm_e,
bool is_target_coplanar,
bool is_source_coplanar);
/// <summary>
/// Called when a new vertex is added in tm (either an edge split or a vertex inserted in the interior of a face).
/// Fill vertex_shape_map by intersections
/// </summary>
/// <param name="i_id">Order number of intersection point</param>
/// <param name="v">New added vertex</param>
/// <param name="tm">Affected mesh</param>
void new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm);
// Not used visitor functions
void before_subface_creations(FI /* f_old */, CutMesh &/* mesh */){}
void after_subface_created(FI /* f_new */, CutMesh &/* mesh */) {}
void after_subface_creations(CutMesh&) {}
void before_subface_created(CutMesh&) {}
void before_edge_split(HI /* h */, CutMesh& /* tm */) {}
void edge_split(HI /* hnew */, CutMesh& /* tm */) {}
void after_edge_split() {}
void add_retriangulation_edge(HI /* h */, CutMesh& /* tm */) {}
};
/// <summary>
/// Distiquish face type for half edge
/// </summary>
/// <param name="hi">Define face</param>
/// <param name="mesh">Mesh to process</param>
/// <param name="shape_mesh">Vertices of mesh made by shapes</param>
/// <param name="vertex_shape_map">Keep information about source of created vertex</param>
/// <param name="shape2index"></param>
/// <param name="shape2index">Convert index to shape point from ExPolygons</param>
/// <returns>Face type defined by hi</returns>
bool is_face_inside(HI hi,
const CutMesh &mesh,
const CutMesh &shape_mesh,
const VertexShapeMap &vertex_shape_map,
const ShapePoint2index &shape2index);
/// <summary>
/// Face with constrained edge are inside/outside by type of intersection
/// Other set to not_constrained(still it could be inside/outside)
/// </summary>
/// <param name="face_type_map">[Output] property map with type of faces</param>
/// <param name="mesh">Mesh to process</param>
/// <param name="vertex_shape_map">Keep information about source of created vertex</param>
/// <param name="ecm">Dynamic Edge Constrained Map of bool</param>
/// <param name="shape_mesh">Vertices of mesh made by shapes</param>
/// <param name="shape2index">Convert index to shape point from ExPolygons</param>
void set_face_type(FaceTypeMap &face_type_map,
const CutMesh &mesh,
const VertexShapeMap &vertex_shape_map,
const EcmType &ecm,
const CutMesh &shape_mesh,
const ShapePoint2index &shape2index);
/// <summary>
/// Change FaceType from not_constrained to inside
/// For neighbor(or neighbor of neighbor of ...) of inside triangles.
/// Process only not_constrained triangles
/// </summary>
/// <param name="mesh">Corefined mesh</param>
/// <param name="face_type_map">In/Out map with faces type</param>
void flood_fill_inner(const CutMesh &mesh, FaceTypeMap &face_type_map);
/// <summary>
/// Create areas from mesh surface
/// </summary>
/// <param name="mesh">Model</param>
/// <param name="shapes">Cutted shapes</param>
/// <param name="face_type_map">Define Triangles of interest.
/// Edge between inside / outside.
/// NOTE: Not const because it need to flag proccessed faces</param>
/// <returns>Areas of interest from mesh</returns>
CutAOIs create_cut_area_of_interests(const CutMesh &mesh,
const ExPolygons &shapes,
FaceTypeMap &face_type_map);
} // namespace priv
void priv::Visitor::intersection_point_detected(std::size_t i_id,
int sdim,
HI h_f,
HI h_e,
const CutMesh &tm_f,
const CutMesh &tm_e,
bool is_target_coplanar,
bool is_source_coplanar)
{
if (i_id >= intersections.size()) {
size_t capacity = Slic3r::next_highest_power_of_2(i_id + 1);
intersections.reserve(capacity);
intersections.resize(capacity);
}
const IntersectingElement *intersection_ptr = nullptr;
if (&tm_e == &shape) {
assert(&tm_f == &object);
switch (sdim) {
case 1:
// edge x edge intersection
intersection_ptr = &edge_shape_map[shape.edge(h_e)];
break;
case 2:
// edge x face intersection
intersection_ptr = &face_shape_map[shape.face(h_e)];
break;
default: assert(false);
}
if (is_target_coplanar)
vert_shape_map[object.source(h_f)] = intersection_ptr;
if (is_source_coplanar)
vert_shape_map[object.target(h_f)] = intersection_ptr;
} else {
assert(&tm_f == &shape && &tm_e == &object);
assert(!is_target_coplanar);
assert(!is_source_coplanar);
intersection_ptr = &edge_shape_map[shape.edge(h_f)];
if (sdim == 0) vert_shape_map[object.target(h_e)] = intersection_ptr;
}
if (intersection_ptr->shape_point_index == std::numeric_limits<uint32_t>::max()) {
// there is unexpected intersection
// Top (or Bottom) shape contour edge (or vertex) intersection
// Suggest to change projection min/max limits
*is_valid = false;
}
intersections[i_id] = intersection_ptr;
}
void priv::Visitor::new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm)
{
assert(&tm == &object);
assert(i_id < intersections.size());
const IntersectingElement *intersection_ptr = intersections[i_id];
assert(intersection_ptr != nullptr);
// intersection was not filled in function intersection_point_detected
//assert(intersection_ptr->point_index != std::numeric_limits<uint32_t>::max());
vert_shape_map[v] = intersection_ptr;
}
bool priv::is_face_inside(HI hi,
const CutMesh &mesh,
const CutMesh &shape_mesh,
const VertexShapeMap &vertex_shape_map,
const ShapePoint2index &shape2index)
{
VI vi_from = mesh.source(hi);
VI vi_to = mesh.target(hi);
// This face has a constrained edge.
const IntersectingElement &shape_from = *vertex_shape_map[vi_from];
const IntersectingElement &shape_to = *vertex_shape_map[vi_to];
assert(shape_from.shape_point_index != std::numeric_limits<uint32_t>::max());
assert(shape_from.attr != (unsigned char) IntersectingElement::Type::undefined);
assert(shape_to.shape_point_index != std::numeric_limits<uint32_t>::max());
assert(shape_to.attr != (unsigned char) IntersectingElement::Type::undefined);
// index into contour
uint32_t i_from = shape_from.shape_point_index;
uint32_t i_to = shape_to.shape_point_index;
IntersectingElement::Type type_from = shape_from.get_type();
IntersectingElement::Type type_to = shape_to.get_type();
if (i_from == i_to && type_from == type_to) {
// intersecting element must be face
assert(type_from == IntersectingElement::Type::face_1 ||
type_from == IntersectingElement::Type::face_2);
// count of vertices is twice as count of point in the contour
uint32_t i = i_from * 2;
// j is next contour point in vertices
uint32_t j = i + 2;
if (shape_from.is_last()) {
ShapePointId point_id = shape2index.calc_id(i_from);
point_id.point_index = 0;
j = shape2index.calc_index(point_id)*2;
}
// opposit point(in triangle face) to edge
const P3 &p = mesh.point(mesh.target(mesh.next(hi)));
// abc is source triangle face
CGAL::Sign abcp = type_from == IntersectingElement::Type::face_1 ?
CGAL::orientation(shape_mesh.point(VI(i)),
shape_mesh.point(VI(i + 1)),
shape_mesh.point(VI(j)), p) :
// type_from == IntersectingElement::Type::face_2
CGAL::orientation(shape_mesh.point(VI(j)),
shape_mesh.point(VI(i + 1)),
shape_mesh.point(VI(j + 1)), p);
return abcp == CGAL::POSITIVE;
} else if (i_from < i_to || (i_from == i_to && type_from < type_to)) {
bool is_last = shape_to.is_last() && shape_from.is_first();
// check continuity of indicies
assert(i_from == i_to || is_last || (i_from + 1) == i_to);
return !is_last;
} else {
assert(i_from > i_to || (i_from == i_to && type_from > type_to));
bool is_last = shape_to.is_first() && shape_from.is_last();
// check continuity of indicies
assert(i_from == i_to || is_last || (i_to + 1) == i_from);
return is_last;
}
assert(false);
return false;
}
void priv::set_face_type(FaceTypeMap &face_type_map,
const CutMesh &mesh,
const VertexShapeMap &vertex_shape_map,
const EcmType &ecm,
const CutMesh &shape_mesh,
const ShapePoint2index &shape2index)
{
// clean types
for (FI fi : mesh.faces())
face_type_map[fi] = FaceType::not_constrained;
for (EI ei : mesh.edges()) {
if (!get(ecm, ei)) continue;
HI hi = mesh.halfedge(ei);
FI fi = mesh.face(hi);
bool is_inside = is_face_inside(hi, mesh, shape_mesh, vertex_shape_map, shape2index);
face_type_map[fi] = is_inside ? FaceType::inside : FaceType::outside;
HI hi_op = mesh.opposite(hi);
assert(hi_op.is_valid());
if (!hi_op.is_valid()) continue;
FI fi_op = mesh.face(hi_op);
assert(fi_op.is_valid());
if (!fi_op.is_valid()) continue;
face_type_map[fi_op] = (!is_inside) ? FaceType::inside : FaceType::outside;
}
//for (const FI& fi : mesh.faces()) {
// FaceType face_type = FaceType::not_constrained;
// HI hi_end = mesh.halfedge(fi);
// HI hi = hi_end;
// do {
// // is edge new created - constrained?
// if (get(ecm, mesh.edge(hi))) {
// face_type = get_face_type(hi, mesh, shape_mesh, vertex_shape_map, shape2index);
// break;
// }
// // next half edge index inside of face
// hi = mesh.next(hi);
// } while (hi != hi_end);
// face_type_map[fi] = face_type;
//}
}
priv::CutAOIs priv::cut_from_model(CutMesh &cgal_model,
const ExPolygons &shapes,
CutMesh &cgal_shape,
@ -1165,12 +1351,6 @@ priv::CutAOIs priv::cut_from_model(CutMesh &cgal_model,
#ifdef DEBUG_OUTPUT_DIR
store(cgal_model, face_type_map, DEBUG_OUTPUT_DIR + "constrained.off"); // only debug
#endif // DEBUG_OUTPUT_DIR
// It is neccesary when almost parallel face are contained in projection
// set_almost_parallel_type(face_type_map, cgal_model, projection);
//#ifdef DEBUG_OUTPUT_DIR
// store(cgal_model, face_type_map, DEBUG_OUTPUT_DIR + "constrainedWithAlmostParallel.off"); // only debug
//#endif // DEBUG_OUTPUT_DIR
// flood fill the other faces inside the region.
flood_fill_inner(cgal_model, face_type_map);
@ -1183,90 +1363,6 @@ priv::CutAOIs priv::cut_from_model(CutMesh &cgal_model,
return create_cut_area_of_interests(cgal_model, shapes, face_type_map);
}
void priv::set_face_type(FaceTypeMap &face_type_map,
const CutMesh &mesh,
const VertexShapeMap &vertex_shape_map,
const EcmType &ecm,
const CutMesh &shape_mesh,
const ShapePoint2index &shape2index)
{
auto get_face_type = [&mesh, &shape_mesh, &vertex_shape_map, &shape2index](HI hi) -> FaceType {
VI vi_from = mesh.source(hi);
VI vi_to = mesh.target(hi);
// This face has a constrained edge.
const IntersectingElement &shape_from = *vertex_shape_map[vi_from];
const IntersectingElement &shape_to = *vertex_shape_map[vi_to];
assert(shape_from.shape_point_index != std::numeric_limits<uint32_t>::max());
assert(shape_from.attr != (unsigned char) IntersectingElement::Type::undefined);
assert(shape_to.shape_point_index != std::numeric_limits<uint32_t>::max());
assert(shape_to.attr != (unsigned char) IntersectingElement::Type::undefined);
bool is_inside = false;
// index into contour
uint32_t i_from = shape_from.shape_point_index;
uint32_t i_to = shape_to.shape_point_index;
IntersectingElement::Type type_from = shape_from.get_type();
IntersectingElement::Type type_to = shape_to.get_type();
if (i_from == i_to && type_from == type_to) {
// intersecting element must be face
assert(type_from == IntersectingElement::Type::face_1 ||
type_from == IntersectingElement::Type::face_2);
// count of vertices is twice as count of point in the contour
uint32_t i = i_from * 2;
// j is next contour point in vertices
uint32_t j = i + 2;
if (shape_from.is_last()) {
ShapePointId point_id = shape2index.calc_id(i_from);
point_id.point_index = 0;
j = shape2index.calc_index(point_id)*2;
}
// opposit point(in triangle face) to edge
const auto &p = mesh.point(mesh.target(mesh.next(hi)));
// abc is source triangle face
auto abcp = type_from == IntersectingElement::Type::face_1 ?
CGAL::orientation(shape_mesh.point(VI(i)),
shape_mesh.point(VI(i + 1)),
shape_mesh.point(VI(j)), p) :
// type_from == IntersectingElement::Type::face_2
CGAL::orientation(shape_mesh.point(VI(j)),
shape_mesh.point(VI(i + 1)),
shape_mesh.point(VI(j + 1)), p);
is_inside = abcp == CGAL::POSITIVE;
} else if (i_from < i_to || (i_from == i_to && type_from < type_to)) {
bool is_last = shape_to.is_last() && shape_from.is_first();
// check continuity of indicies
assert(i_from == i_to || is_last || (i_from + 1) == i_to);
if (!is_last) is_inside = true;
} else {
assert(i_from > i_to || (i_from == i_to && type_from > type_to));
bool is_last = shape_to.is_first() && shape_from.is_last();
// check continuity of indicies
assert(i_from == i_to || is_last || (i_to + 1) == i_from);
if (is_last) is_inside = true;
}
return (is_inside) ? FaceType::inside : FaceType::outside;
};
for (const FI& fi : mesh.faces()) {
FaceType face_type = FaceType::not_constrained;
HI hi_end = mesh.halfedge(fi);
HI hi = hi_end;
do {
// is edge new created - constrained?
if (get(ecm, mesh.edge(hi))) {
face_type = get_face_type(hi);
break;
}
// next half edge index inside of face
hi = mesh.next(hi);
} while (hi != hi_end);
face_type_map[fi] = face_type;
}
}
priv::ShapePoint2index::ShapePoint2index(const ExPolygons &shapes) {
// prepare offsets
m_offsets.reserve(shapes.size());
@ -1395,8 +1491,7 @@ void priv::flood_fill_inner(const CutMesh &mesh,
for (FI fi : mesh.faces()) {
FaceType type = face_type_map[fi];
if (type != FaceType::not_constrained &&
type != FaceType::inside_parallel) continue;
if (type != FaceType::not_constrained) continue;
if (!has_inside_neighbor(fi)) continue;
assert(process.empty());
process.push_back(fi);
@ -1424,75 +1519,13 @@ void priv::flood_fill_inner(const CutMesh &mesh,
FI fi_opposite = mesh.face(hi_opposite);
if (!fi_opposite.is_valid()) continue;
FaceType type_opposite = face_type_map[fi_opposite];
if (type_opposite == FaceType::not_constrained ||
type_opposite == FaceType::inside_parallel)
if (type_opposite == FaceType::not_constrained)
process.push_back(fi_opposite);
} while (exist_next());
}
}
}
void priv::Visitor::intersection_point_detected(std::size_t i_id,
int sdim,
HI h_f,
HI h_e,
const CutMesh &tm_f,
const CutMesh &tm_e,
bool is_target_coplanar,
bool is_source_coplanar)
{
if (i_id >= intersections.size()) {
size_t capacity = Slic3r::next_highest_power_of_2(i_id + 1);
intersections.reserve(capacity);
intersections.resize(capacity);
}
const IntersectingElement *intersection_ptr = nullptr;
if (&tm_e == &shape) {
assert(&tm_f == &object);
switch (sdim) {
case 1:
// edge x edge intersection
intersection_ptr = &edge_shape_map[shape.edge(h_e)];
break;
case 2:
// edge x face intersection
intersection_ptr = &face_shape_map[shape.face(h_e)];
break;
default: assert(false);
}
if (is_target_coplanar)
vert_shape_map[object.source(h_f)] = intersection_ptr;
if (is_source_coplanar)
vert_shape_map[object.target(h_f)] = intersection_ptr;
} else {
assert(&tm_f == &shape && &tm_e == &object);
assert(!is_target_coplanar);
assert(!is_source_coplanar);
intersection_ptr = &edge_shape_map[shape.edge(h_f)];
if (sdim == 0) vert_shape_map[object.target(h_e)] = intersection_ptr;
}
if (intersection_ptr->shape_point_index == std::numeric_limits<uint32_t>::max()) {
// there is unexpected intersection
// Top (or Bottom) shape contour edge (or vertex) intersection
// Suggest to change projection min/max limits
*is_valid = false;
}
intersections[i_id] = intersection_ptr;
}
void priv::Visitor::new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm)
{
assert(&tm == &object);
assert(i_id < intersections.size());
const IntersectingElement *intersection_ptr = intersections[i_id];
assert(intersection_ptr != nullptr);
// intersection was not filled in function intersection_point_detected
//assert(intersection_ptr->point_index != std::numeric_limits<uint32_t>::max());
vert_shape_map[v] = intersection_ptr;
}
void priv::collect_surface_data(std::queue<FI> &process,
std::vector<FI> &faces,
std::vector<HI> &outlines,
@ -3295,6 +3328,7 @@ SurfaceCuts priv::create_surface_cuts(const CutAOIs &cuts,
}
#ifdef DEBUG_OUTPUT_DIR
// store projection center as circle
void priv::store(const Vec3f &vertex,
const Vec3f &normal,
@ -3334,7 +3368,6 @@ void priv::store(CutMesh &mesh, const FaceTypeMap &face_type_map, const std::str
auto &color = face_colors[fi];
switch (face_type_map[fi]) {
case FaceType::inside: color = CGAL::Color{100, 250, 100}; break; // light green
case FaceType::inside_parallel: color = CGAL::Color{255, 0, 0}; break; // red
case FaceType::inside_processed: color = CGAL::Color{170, 0, 0}; break; // dark red
case FaceType::outside: color = CGAL::Color{100, 0, 100}; break; // purple
case FaceType::not_constrained: color = CGAL::Color{127, 127, 127}; break; // gray
@ -3363,6 +3396,11 @@ void priv::store(CutMesh &mesh, const ReductionMap &reduction_map, const std::st
mesh.remove_property_map(vertex_colors);
}
namespace priv {
indexed_triangle_set create_indexed_triangle_set(const std::vector<FI> &faces,
const CutMesh &mesh);
} // namespace priv
indexed_triangle_set priv::create_indexed_triangle_set(
const std::vector<FI> &faces, const CutMesh &mesh)
{