staggered seams implementation

This commit is contained in:
PavelMikus 2022-08-17 16:35:22 +02:00
parent 9d2e0160c3
commit 9a3364d695
2 changed files with 56 additions and 30 deletions

View File

@ -413,8 +413,7 @@ struct GlobalModelInfo {
;
//Extract perimeter polygons of the given layer
Polygons extract_perimeter_polygons(const Layer *layer, const SeamPosition configured_seam_preference,
std::vector<const LayerRegion*> &corresponding_regions_out) {
Polygons extract_perimeter_polygons(const Layer *layer, std::vector<const LayerRegion*> &corresponding_regions_out) {
Polygons polygons;
for (const LayerRegion *layer_region : layer->regions()) {
for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) {
@ -429,9 +428,7 @@ Polygons extract_perimeter_polygons(const Layer *layer, const SeamPosition confi
}
}
if (role == ExtrusionRole::erExternalPerimeter
|| (is_perimeter(role)
&& configured_seam_preference == spRandom)) { //for random seam alignment, extract all perimeters
if (role == ExtrusionRole::erExternalPerimeter) {
Points p;
perimeter->collect_points(p);
polygons.emplace_back(std::move(p));
@ -1065,14 +1062,13 @@ public:
// Parallel process and extract each perimeter polygon of the given print object.
// Gather SeamCandidates of each layer into vector and build KDtree over them
// Store results in the SeamPlacer variables m_seam_per_object
void SeamPlacer::gather_seam_candidates(const PrintObject *po,
const SeamPlacerImpl::GlobalModelInfo &global_model_info, const SeamPosition configured_seam_preference) {
void SeamPlacer::gather_seam_candidates(const PrintObject *po, const SeamPlacerImpl::GlobalModelInfo &global_model_info) {
using namespace SeamPlacerImpl;
PrintObjectSeamData &seam_data = m_seam_per_object.emplace(po, PrintObjectSeamData { }).first->second;
seam_data.layers.resize(po->layer_count());
tbb::parallel_for(tbb::blocked_range<size_t>(0, po->layers().size()),
[po, configured_seam_preference, &global_model_info, &seam_data]
[po, &global_model_info, &seam_data]
(tbb::blocked_range<size_t> r) {
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
PrintObjectSeamData::LayerSeams &layer_seams = seam_data.layers[layer_idx];
@ -1080,7 +1076,7 @@ void SeamPlacer::gather_seam_candidates(const PrintObject *po,
auto unscaled_z = layer->slice_z;
std::vector<const LayerRegion*> regions;
//NOTE corresponding region ptr may be null, if the layer has zero perimeters
Polygons polygons = extract_perimeter_polygons(layer, configured_seam_preference, regions);
Polygons polygons = extract_perimeter_polygons(layer, regions);
for (size_t poly_index = 0; poly_index < polygons.size(); ++poly_index) {
process_perimeter_polygon(polygons[poly_index], unscaled_z,
regions[poly_index], global_model_info, layer_seams);
@ -1490,7 +1486,7 @@ void SeamPlacer::init(const Print &print, std::function<void(void)> throw_if_can
throw_if_canceled_func();
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: gather_seam_candidates: start";
gather_seam_candidates(po, global_model_info, configured_seam_preference);
gather_seam_candidates(po, global_model_info);
BOOST_LOG_TRIVIAL(debug)
<< "SeamPlacer: gather_seam_candidates: end";
throw_if_canceled_func();
@ -1584,13 +1580,12 @@ void SeamPlacer::place_seam(const Layer *layer, ExtrusionLoop &loop, bool extern
Point seam_point = Point::new_scale(seam_position.x(), seam_position.y());
if (const SeamCandidate &perimeter_point = layer_perimeters.points[seam_index];
(po->config().seam_position == spNearest || po->config().seam_position == spAligned) &&
loop.role() == ExtrusionRole::erPerimeter && //Hopefully internal perimeter
(seam_position - perimeter_point.position).squaredNorm() < 4.0f && // seam is on perimeter point
perimeter_point.local_ccw_angle < -EPSILON // In concave angles
) { // In this case, we are at internal perimeter, where the external perimeter has seam in concave angle. We want to align
// the internal seam into the concave corner, and not on the perpendicular projection on the closest edge (which is what the split_at function does)
if (loop.role() == ExtrusionRole::erPerimeter) { //Hopefully inner perimeter
const SeamCandidate &perimeter_point = layer_perimeters.points[seam_index];
ExtrusionLoop::ClosestPathPoint projected_point = loop.get_closest_path_and_point(seam_point, false);
// determine depth of the seam point.
float depth = (float) unscale(Point(seam_point - projected_point.foot_pt)).norm();
float beta_angle = cos(perimeter_point.local_ccw_angle / 2.0f);
size_t index_of_prev =
seam_index == perimeter_point.perimeter.start_index ?
perimeter_point.perimeter.end_index - 1 :
@ -1600,18 +1595,50 @@ void SeamPlacer::place_seam(const Layer *layer, ExtrusionLoop &loop, bool extern
perimeter_point.perimeter.start_index :
seam_index + 1;
Vec2f dir_to_middle =
((perimeter_point.position - layer_perimeters.points[index_of_prev].position).head<2>().normalized()
+ (perimeter_point.position - layer_perimeters.points[index_of_next].position).head<2>().normalized())
* 0.5;
if ((seam_position - perimeter_point.position).squaredNorm() < depth && // seam is on perimeter point
perimeter_point.local_ccw_angle < -EPSILON // In concave angles
) { // In this case, we are at internal perimeter, where the external perimeter has seam in concave angle. We want to align
// the internal seam into the concave corner, and not on the perpendicular projection on the closest edge (which is what the split_at function does)
Vec2f dir_to_middle =
((perimeter_point.position - layer_perimeters.points[index_of_prev].position).head<2>().normalized()
+ (perimeter_point.position - layer_perimeters.points[index_of_next].position).head<2>().normalized())
* 0.5;
depth = 1.4142 * depth / beta_angle;
// There are some nice geometric identities in determination of the correct depth of new seam point.
//overshoot the target depth, in concave angles it will correctly snap to the corner; TODO: find out why such big overshoot is needed.
Vec2f final_pos = perimeter_point.position.head<2>() + depth * dir_to_middle;
projected_point = loop.get_closest_path_and_point(Point::new_scale(final_pos.x(), final_pos.y()), false);
} else { // not concave angle, in that case the nearest point is the good candidate
// but for staggering, we also need to recompute depth of the inner perimter, because in convex corners, the distance is larger than layer width
// we want the perpendicular depth, not distance to nearest point
depth = depth * beta_angle / 1.4142;
}
ExtrusionLoop::ClosestPathPoint projected_point = loop.get_closest_path_and_point(seam_point, true);
//get closest projected point, determine depth of the seam point.
float depth = (float) unscale(Point(seam_point - projected_point.foot_pt)).norm();
float angle_factor = cos(-perimeter_point.local_ccw_angle / 2.0f); // There are some nice geometric identities in determination of the correct depth of new seam point.
//overshoot the target depth, in concave angles it will correctly snap to the corner; TODO: find out why such big overshoot is needed.
Vec2f final_pos = perimeter_point.position.head<2>() + (1.4142 * depth / angle_factor) * dir_to_middle;
seam_point = Point::new_scale(final_pos.x(), final_pos.y());
seam_point = projected_point.foot_pt;
//lastly, for internal perimeters, do the staggering if needed
if (po->config().seam_position == spRandom || po->config().seam_position == spAligned) {
//Staggering
//fix depth, it is sometimes strongly underestimated
depth = std::max(loop.paths[projected_point.path_idx].width, depth)+ 0.3*loop.paths[projected_point.path_idx].width;
Vec2f current_pos = unscale(seam_point).cast<float>();
Vec2f next_pos = unscale(loop.paths[projected_point.path_idx].polyline.points[projected_point.segment_idx + 1]).cast<float>();
Vec2f dir_to_next = (next_pos - current_pos).normalized();
if (dir_to_next.squaredNorm() < EPSILON) {
projected_point.segment_idx = projected_point.segment_idx + 1;
if (projected_point.segment_idx >= loop.paths[projected_point.path_idx].polyline.points.size() - 1) {
projected_point.path_idx = next_idx_modulo(projected_point.path_idx, loop.paths.size());
projected_point.segment_idx = 0;
}
projected_point.segment_idx = next_idx_modulo(projected_point.segment_idx,
loop.paths[projected_point.path_idx].size());
next_pos = unscale(loop.paths[projected_point.path_idx].polyline.points[projected_point.segment_idx]).cast<float>();
dir_to_next = (next_pos - current_pos).normalized();
}
Vec2f staggered_pos = current_pos + depth * dir_to_next;
seam_point = Point::new_scale(staggered_pos.x(), staggered_pos.y());
}
}
// Because the G-code export has 1um resolution, don't generate segments shorter than 1.5 microns,

View File

@ -156,8 +156,7 @@ public:
void place_seam(const Layer *layer, ExtrusionLoop &loop, bool external_first, const Point &last_pos) const;
private:
void gather_seam_candidates(const PrintObject *po, const SeamPlacerImpl::GlobalModelInfo &global_model_info,
const SeamPosition configured_seam_preference);
void gather_seam_candidates(const PrintObject *po, const SeamPlacerImpl::GlobalModelInfo &global_model_info);
void calculate_candidates_visibility(const PrintObject *po,
const SeamPlacerImpl::GlobalModelInfo &global_model_info);
void calculate_overhangs_and_layer_embedding(const PrintObject *po);