Merge branch 'tm_arrange_overflows'

This commit is contained in:
tamasmeszaros 2023-08-21 15:20:27 +02:00
commit c159451efe
17 changed files with 308 additions and 122 deletions

View File

@ -83,11 +83,19 @@ void Arranger<ArrItem>::arrange(std::vector<ArrItem> &items,
arrange(items, fixed, bed, DefaultArrangerCtl<ArrItem>{ctl}); arrange(items, fixed, bed, DefaultArrangerCtl<ArrItem>{ctl});
} }
class EmptyItemOutlineError: public std::exception {
static constexpr const char *Msg = "No outline can be derived for object";
public:
const char* what() const noexcept override { return Msg; }
};
template<class ArrItem> class ArrangeableToItemConverter template<class ArrItem> class ArrangeableToItemConverter
{ {
public: public:
virtual ~ArrangeableToItemConverter() = default; virtual ~ArrangeableToItemConverter() = default;
// May throw EmptyItemOutlineError
virtual ArrItem convert(const Arrangeable &arrbl, coord_t offs = 0) const = 0; virtual ArrItem convert(const Arrangeable &arrbl, coord_t offs = 0) const = 0;
// Returns the extent of simplification that the converter utilizes when // Returns the extent of simplification that the converter utilizes when

View File

@ -2,6 +2,7 @@
#define ARRANGEIMPL_HPP #define ARRANGEIMPL_HPP
#include <random> #include <random>
#include <map>
#include "Arrange.hpp" #include "Arrange.hpp"
@ -43,25 +44,23 @@ void arrange(SelectionStrategy &&selstrategy,
std::forward<PackStrategy>(packingstrategy), items, fixed, std::forward<PackStrategy>(packingstrategy), items, fixed,
RectangleBed{bed.bb}, SelStrategyTag<SelectionStrategy>{}); RectangleBed{bed.bb}, SelStrategyTag<SelectionStrategy>{});
size_t beds = get_bed_count(crange(items)); std::vector<int> bed_indices = get_bed_indices(items, fixed);
size_t fixed_beds = std::max(beds, get_bed_count(fixed)); std::map<int, BoundingBox> pilebb;
std::vector<bool> fixed_is_empty(fixed_beds, true); std::map<int, bool> bed_occupied;
std::vector<BoundingBox> pilebb(beds);
for (auto &itm : items) { for (auto &itm : items) {
auto bedidx = get_bed_index(itm); auto bedidx = get_bed_index(itm);
if (bedidx >= 0) { if (bedidx >= 0) {
pilebb[bedidx].merge(fixed_bounding_box(itm)); pilebb[bedidx].merge(fixed_bounding_box(itm));
if (is_wipe_tower(itm)) if (is_wipe_tower(itm))
fixed_is_empty[bedidx] = false; bed_occupied[bedidx] = true;
} }
} }
for (auto &fxitm : fixed) { for (auto &fxitm : fixed) {
auto bedidx = get_bed_index(fxitm); auto bedidx = get_bed_index(fxitm);
if (bedidx >= 0 || is_wipe_tower(fxitm)) if (bedidx >= 0)
fixed_is_empty[bedidx] = false; bed_occupied[bedidx] = true;
} }
auto bedbb = bounding_box(bed); auto bedbb = bounding_box(bed);
@ -73,8 +72,9 @@ void arrange(SelectionStrategy &&selstrategy,
Pivots pivot = bed.alignment(); Pivots pivot = bed.alignment();
for (size_t bedidx = 0; bedidx < beds; ++bedidx) { for (int bedidx : bed_indices) {
if (! fixed_is_empty[bedidx]) if (auto occup_it = bed_occupied.find(bedidx);
occup_it != bed_occupied.end() && occup_it->second)
continue; continue;
BoundingBox bb; BoundingBox bb;
@ -272,7 +272,7 @@ class DefaultArranger: public Arranger<ArrItem> {
int pa = get_priority(itm1); int pa = get_priority(itm1);
int pb = get_priority(itm2); int pb = get_priority(itm2);
return pa == pb ? envelope_area(itm1) > envelope_area(itm2) : return pa == pb ? area(envelope_convex_hull(itm1)) > area(envelope_convex_hull(itm2)) :
pa > pb; pa > pb;
}; };
@ -295,7 +295,11 @@ class DefaultArranger: public Arranger<ArrItem> {
default: default:
[[fallthrough]]; [[fallthrough]];
case ArrangeSettingsView::asAuto: case ArrangeSettingsView::asAuto:
basekernel = TMArrangeKernel{items.size(), area(bed)}; if constexpr (std::is_convertible_v<Bed, CircleBed>){
basekernel = GravityKernel{};
} else {
basekernel = TMArrangeKernel{items.size(), area(bed)};
}
break; break;
case ArrangeSettingsView::asPullToCenter: case ArrangeSettingsView::asPullToCenter:
basekernel = GravityKernel{}; basekernel = GravityKernel{};
@ -370,6 +374,10 @@ ArrItem ConvexItemConverter<ArrItem>::convert(const Arrangeable &arrbl,
{ {
auto bed_index = arrbl.get_bed_index(); auto bed_index = arrbl.get_bed_index();
Polygon outline = arrbl.convex_outline(); Polygon outline = arrbl.convex_outline();
if (outline.empty())
throw EmptyItemOutlineError{};
Polygon envelope = arrbl.convex_envelope(); Polygon envelope = arrbl.convex_envelope();
coord_t infl = offs + coord_t(std::ceil(this->safety_dist() / 2.)); coord_t infl = offs + coord_t(std::ceil(this->safety_dist() / 2.));
@ -418,6 +426,10 @@ ArrItem AdvancedItemConverter<ArrItem>::get_arritem(const Arrangeable &arrbl,
coord_t infl = offs + coord_t(std::ceil(this->safety_dist() / 2.)); coord_t infl = offs + coord_t(std::ceil(this->safety_dist() / 2.));
auto outline = arrbl.full_outline(); auto outline = arrbl.full_outline();
if (outline.empty())
throw EmptyItemOutlineError{};
auto envelope = arrbl.full_envelope(); auto envelope = arrbl.full_envelope();
if (infl != 0) { if (infl != 0) {

View File

@ -233,8 +233,44 @@ void arrange(SelectionStrategy &&selstrategy,
"Arrange unimplemented for this selection strategy"); "Arrange unimplemented for this selection strategy");
} }
template<class It>
std::vector<int> get_bed_indices(const Range<It> &items)
{
auto bed_indices = reserve_vector<int>(items.size());
for (auto &itm : items)
bed_indices.emplace_back(get_bed_index(itm));
std::sort(bed_indices.begin(), bed_indices.end());
auto endit = std::unique(bed_indices.begin(), bed_indices.end());
bed_indices.erase(endit, bed_indices.end());
return bed_indices;
}
template<class It, class CIt>
std::vector<int> get_bed_indices(const Range<It> &items, const Range<CIt> &fixed)
{
std::vector<int> ret;
auto iitems = get_bed_indices(items);
auto ifixed = get_bed_indices(fixed);
ret.reserve(std::max(iitems.size(), ifixed.size()));
std::set_union(iitems.begin(), iitems.end(),
ifixed.begin(), ifixed.end(),
std::back_inserter(ret));
return ret;
}
template<class It> template<class It>
size_t get_bed_count(const Range<It> &items) size_t get_bed_count(const Range<It> &items)
{
return get_bed_indices(items).size();
}
template<class It> int get_max_bed_index(const Range<It> &items)
{ {
auto it = std::max_element(items.begin(), auto it = std::max_element(items.begin(),
items.end(), items.end(),
@ -242,11 +278,11 @@ size_t get_bed_count(const Range<It> &items)
return get_bed_index(i1) < get_bed_index(i2); return get_bed_index(i1) < get_bed_index(i2);
}); });
size_t beds = 0; int ret = Unarranged;
if (it != items.end()) if (it != items.end())
beds = get_bed_index(*it) + 1; ret = get_bed_index(*it);
return beds; return ret;
} }
struct DefaultStopCondition { struct DefaultStopCondition {

View File

@ -2,6 +2,7 @@
#define ARRANGEFIRSTFIT_HPP #define ARRANGEFIRSTFIT_HPP
#include <iterator> #include <iterator>
#include <map>
#include <libslic3r/Arrange/Core/ArrangeBase.hpp> #include <libslic3r/Arrange/Core/ArrangeBase.hpp>
@ -88,21 +89,28 @@ void arrange(
sorted_items.emplace_back(itm); sorted_items.emplace_back(itm);
} }
int max_bed_idx = get_bed_count(fixed);
using Context = PackStrategyContext<PackStrategy, ArrItem>; using Context = PackStrategyContext<PackStrategy, ArrItem>;
auto bed_contexts = reserve_vector<Context>(max_bed_idx + 1); std::map<int, Context> bed_contexts;
auto get_or_init_context = [&ps, &bed, &bed_contexts](int bedidx) -> Context& {
auto ctx_it = bed_contexts.find(bedidx);
if (ctx_it == bed_contexts.end()) {
auto res = bed_contexts.emplace(
bedidx, create_context<ArrItem>(ps, bed, bedidx));
assert(res.second);
ctx_it = res.first;
}
return ctx_it->second;
};
for (auto &itm : fixed) { for (auto &itm : fixed) {
if (get_bed_index(itm) >= 0) { auto bedidx = get_bed_index(itm);
auto bedidx = static_cast<size_t>(get_bed_index(itm)); if (bedidx >= 0) {
Context &ctx = get_or_init_context(bedidx);
while (bed_contexts.size() <= bedidx) add_fixed_item(ctx, itm);
bed_contexts.emplace_back(
create_context<ArrItem>(ps, bed, bedidx));
add_fixed_item(bed_contexts[bedidx], itm);
} }
} }
@ -124,18 +132,20 @@ void arrange(
while (it != sorted_items.end() && !is_cancelled()) { while (it != sorted_items.end() && !is_cancelled()) {
bool was_packed = false; bool was_packed = false;
size_t j = 0; int bedidx = 0;
while (!was_packed && !is_cancelled()) { while (!was_packed && !is_cancelled()) {
for (; j < bed_contexts.size() && !was_packed && !is_cancelled(); j++) { for (; !was_packed && !is_cancelled(); bedidx++) {
set_bed_index(*it, int(j)); set_bed_index(*it, bedidx);
auto remaining = Range{std::next(static_cast<SConstIt>(it)), auto remaining = Range{std::next(static_cast<SConstIt>(it)),
sorted_items.cend()}; sorted_items.cend()};
was_packed = pack(ps, bed, *it, bed_contexts[j], remaining); Context &ctx = get_or_init_context(bedidx);
was_packed = pack(ps, bed, *it, ctx, remaining);
if(was_packed) { if(was_packed) {
add_packed_item(bed_contexts[j], *it); add_packed_item(ctx, *it);
auto packed_range = Range{sorted_items.cbegin(), auto packed_range = Range{sorted_items.cbegin(),
static_cast<SConstIt>(it)}; static_cast<SConstIt>(it)};
@ -145,12 +155,6 @@ void arrange(
set_bed_index(*it, Unarranged); set_bed_index(*it, Unarranged);
} }
} }
if (!was_packed) {
bed_contexts.emplace_back(
create_context<ArrItem>(ps, bed, bed_contexts.size()));
j = bed_contexts.size() - 1;
}
} }
++it; ++it;
} }

View File

@ -110,7 +110,7 @@ template<class Fn> auto call_with_bed(const Points &bed, Fn &&fn)
if ((1.0 - parea / area(bb)) < 1e-3) { if ((1.0 - parea / area(bb)) < 1e-3) {
return fn(RectangleBed{bb}); return fn(RectangleBed{bb});
} else if (!std::isnan(circ.radius())) } else if (!std::isnan(circ.radius()) && (1.0 - parea / area(circ)) < 1e-2)
return fn(circ); return fn(circ);
else else
return fn(IrregularBed{{ExPolygon(bed)}}); return fn(IrregularBed{{ExPolygon(bed)}});

View File

@ -54,11 +54,11 @@ std::set<ObjectID> selected_geometry_ids(const Scene &sc)
return result; return result;
} }
void arrange(Scene &scene, ArrangeTaskCtl &ctl) bool arrange(Scene &scene, ArrangeTaskCtl &ctl)
{ {
auto task = ArrangeTaskBase::create(Tasks::Arrange, scene); auto task = ArrangeTaskBase::create(Tasks::Arrange, scene);
auto result = task->process(ctl); auto result = task->process(ctl);
result->apply_on(scene.model()); return result->apply_on(scene.model());
} }
}} // namespace Slic3r::arr2 }} // namespace Slic3r::arr2

View File

@ -161,6 +161,14 @@ template<class BedFn> void visit_bed(BedFn &&fn, ExtendedBed &bed)
boost::apply_visitor(fn, bed); boost::apply_visitor(fn, bed);
} }
inline BoundingBox bounding_box(const ExtendedBed &bed)
{
BoundingBox bedbb;
visit_bed([&bedbb](auto &rawbed) { bedbb = bounding_box(rawbed); }, bed);
return bedbb;
}
class Scene; class Scene;
// SceneBuilderBase is intended for Scene construction. A simple constructor // SceneBuilderBase is intended for Scene construction. A simple constructor
@ -365,10 +373,26 @@ public:
} }
}; };
void arrange(Scene &scene, ArrangeTaskCtl &ctl); bool arrange(Scene &scene, ArrangeTaskCtl &ctl);
inline void arrange(Scene &scene, ArrangeTaskCtl &&ctl = DummyCtl{}) inline bool arrange(Scene &scene, ArrangeTaskCtl &&ctl = DummyCtl{})
{ {
arrange(scene, ctl); return arrange(scene, ctl);
}
inline bool arrange(Scene &&scene, ArrangeTaskCtl &ctl)
{
return arrange(scene, ctl);
}
inline bool arrange(Scene &&scene, ArrangeTaskCtl &&ctl = DummyCtl{})
{
return arrange(scene, ctl);
}
template<class Builder, class Ctl = DummyCtl>
bool arrange(SceneBuilderBase<Builder> &&builder, Ctl &&ctl = {})
{
return arrange(Scene{std::move(builder)}, ctl);
} }
} // namespace arr2 } // namespace arr2

View File

@ -64,16 +64,18 @@ void transform_instance(ModelInstance &mi,
mi.invalidate_object_bounding_box(); mi.invalidate_object_bounding_box();
} }
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi, bool dont_translate) BoundingBoxf3 instance_bounding_box(const ModelInstance &mi,
const Transform3d &tr,
bool dont_translate)
{ {
BoundingBoxf3 bb; BoundingBoxf3 bb;
const Transform3d inst_matrix const Transform3d inst_matrix
= dont_translate ? mi.get_transformation().get_matrix_no_offset() = dont_translate ? mi.get_transformation().get_matrix_no_offset()
: mi.get_transformation().get_matrix(); : mi.get_transformation().get_matrix();
for (ModelVolume *v : mi.get_object()->volumes) { for (ModelVolume *v : mi.get_object()->volumes) {
if (v->is_model_part()) { if (v->is_model_part()) {
bb.merge(v->mesh().transformed_bounding_box(inst_matrix bb.merge(v->mesh().transformed_bounding_box(tr * inst_matrix
* v->get_matrix())); * v->get_matrix()));
} }
} }
@ -81,22 +83,39 @@ BoundingBoxf3 instance_bounding_box(const ModelInstance &mi, bool dont_translate
return bb; return bb;
} }
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi, bool dont_translate)
{
return instance_bounding_box(mi, Transform3d::Identity(), dont_translate);
}
bool check_coord_bounds(const BoundingBoxf &bb)
{
return std::abs(bb.min.x()) < UnscaledCoordLimit &&
std::abs(bb.min.y()) < UnscaledCoordLimit &&
std::abs(bb.max.x()) < UnscaledCoordLimit &&
std::abs(bb.max.y()) < UnscaledCoordLimit;
}
ExPolygons extract_full_outline(const ModelInstance &inst, const Transform3d &tr) ExPolygons extract_full_outline(const ModelInstance &inst, const Transform3d &tr)
{ {
ExPolygons outline; ExPolygons outline;
for (const ModelVolume *v : inst.get_object()->volumes) {
Polygons vol_outline; if (check_coord_bounds(to_2d(instance_bounding_box(inst, tr)))) {
vol_outline = project_mesh(v->mesh().its, for (const ModelVolume *v : inst.get_object()->volumes) {
tr * inst.get_matrix() * v->get_matrix(), Polygons vol_outline;
[] {});
switch (v->type()) { vol_outline = project_mesh(v->mesh().its,
case ModelVolumeType::MODEL_PART: tr * inst.get_matrix() * v->get_matrix(),
outline = union_ex(outline, vol_outline); [] {});
break; switch (v->type()) {
case ModelVolumeType::NEGATIVE_VOLUME: case ModelVolumeType::MODEL_PART:
outline = diff_ex(outline, vol_outline); outline = union_ex(outline, vol_outline);
break; break;
default:; case ModelVolumeType::NEGATIVE_VOLUME:
outline = diff_ex(outline, vol_outline);
break;
default:;
}
} }
} }
@ -105,7 +124,14 @@ ExPolygons extract_full_outline(const ModelInstance &inst, const Transform3d &tr
Polygon extract_convex_outline(const ModelInstance &inst, const Transform3d &tr) Polygon extract_convex_outline(const ModelInstance &inst, const Transform3d &tr)
{ {
return inst.get_object()->convex_hull_2d(tr * inst.get_matrix()); auto bb = to_2d(instance_bounding_box(inst, tr));
Polygon ret;
if (check_coord_bounds(bb)) {
ret = inst.get_object()->convex_hull_2d(tr * inst.get_matrix());
}
return ret;
} }
inline static bool is_infinite_bed(const ExtendedBed &ebed) noexcept inline static bool is_infinite_bed(const ExtendedBed &ebed) noexcept
@ -171,6 +197,17 @@ void SceneBuilder::build_arrangeable_slicer_model(ArrangeableSlicerModel &amodel
m_wipetower_handler = std::make_unique<MissingWipeTowerHandler>(); m_wipetower_handler = std::make_unique<MissingWipeTowerHandler>();
} }
if (m_fff_print && !m_xl_printer)
m_xl_printer = is_XL_printer(m_fff_print->config());
bool has_wipe_tower = false;
m_wipetower_handler->visit(
[&has_wipe_tower](const Arrangeable &arrbl) { has_wipe_tower = true; });
if (m_xl_printer && !has_wipe_tower) {
m_bed = XLBed{bounding_box(m_bed)};
}
amodel.m_vbed_handler = std::move(m_vbed_handler); amodel.m_vbed_handler = std::move(m_vbed_handler);
amodel.m_model = std::move(m_model); amodel.m_model = std::move(m_model);
amodel.m_selmask = std::move(m_selection); amodel.m_selmask = std::move(m_selection);
@ -190,7 +227,14 @@ int XStriderVBedHandler::get_bed_index(const VBedPlaceable &obj) const
auto reference_pos_x = (instance_bb.min.x() - bedx); auto reference_pos_x = (instance_bb.min.x() - bedx);
auto stride = unscaled(stride_s); auto stride = unscaled(stride_s);
bedidx = static_cast<int>(std::floor(reference_pos_x / stride)); auto bedidx_d = std::floor(reference_pos_x / stride);
if (bedidx_d < std::numeric_limits<int>::min())
bedidx = std::numeric_limits<int>::min();
else if (bedidx_d > std::numeric_limits<int>::max())
bedidx = std::numeric_limits<int>::max();
else
bedidx = static_cast<int>(bedidx_d);
} }
return bedidx; return bedidx;
@ -231,7 +275,14 @@ int YStriderVBedHandler::get_bed_index(const VBedPlaceable &obj) const
auto reference_pos_y = (instance_bb.min.y() - ystart); auto reference_pos_y = (instance_bb.min.y() - ystart);
auto stride = unscaled(stride_s); auto stride = unscaled(stride_s);
bedidx = static_cast<int>(std::floor(reference_pos_y / stride)); auto bedidx_d = std::floor(reference_pos_y / stride);
if (bedidx_d < std::numeric_limits<int>::min())
bedidx = std::numeric_limits<int>::min();
else if (bedidx_d > std::numeric_limits<int>::max())
bedidx = std::numeric_limits<int>::max();
else
bedidx = static_cast<int>(bedidx_d);
} }
return bedidx; return bedidx;
@ -262,21 +313,28 @@ Transform3d YStriderVBedHandler::get_physical_bed_trafo(int bed_index) const
return tr; return tr;
} }
const int GridStriderVBedHandler::ColsOutside = const int GridStriderVBedHandler::Cols =
static_cast<int>(std::sqrt(std::numeric_limits<int>::max())); 2 * static_cast<int>(std::sqrt(std::numeric_limits<int>::max()) / 2);
const int GridStriderVBedHandler::HalfCols = Cols / 2;
const int GridStriderVBedHandler::Offset = HalfCols + Cols * HalfCols;
Vec2i GridStriderVBedHandler::raw2grid(int bed_idx) const Vec2i GridStriderVBedHandler::raw2grid(int bed_idx) const
{ {
Vec2i ret{bed_idx % ColsOutside, bed_idx / ColsOutside}; bed_idx += Offset;
Vec2i ret{bed_idx % Cols - HalfCols, bed_idx / Cols - HalfCols};
return ret; return ret;
} }
int GridStriderVBedHandler::grid2raw(const Vec2i &crd) const int GridStriderVBedHandler::grid2raw(const Vec2i &crd) const
{ {
assert(crd.x() < ColsOutside - 1 && crd.y() < ColsOutside - 1); // Overlapping virtual beds will happen if the crd values exceed limits
assert((crd.x() < HalfCols - 1 && crd.x() >= -HalfCols) &&
(crd.y() < HalfCols - 1 && crd.y() >= -HalfCols));
return crd.y() * ColsOutside + crd.x(); return (crd.x() + HalfCols) + Cols * (crd.y() + HalfCols) - Offset;
} }
int GridStriderVBedHandler::get_bed_index(const VBedPlaceable &obj) const int GridStriderVBedHandler::get_bed_index(const VBedPlaceable &obj) const
@ -394,11 +452,11 @@ SceneBuilder &&SceneBuilder::set_bed(const DynamicPrintConfig &cfg)
Points bedpts = get_bed_shape(cfg); Points bedpts = get_bed_shape(cfg);
if (is_XL_printer(cfg)) { if (is_XL_printer(cfg)) {
m_bed = XLBed{get_extents(bedpts)}; m_xl_printer = true;
} else {
m_bed = arr2::to_arrange_bed(bedpts);
} }
m_bed = arr2::to_arrange_bed(bedpts);
return std::move(*this); return std::move(*this);
} }

View File

@ -205,6 +205,7 @@ protected:
AnyPtr<const SLAPrint> m_sla_print; AnyPtr<const SLAPrint> m_sla_print;
AnyPtr<const Print> m_fff_print; AnyPtr<const Print> m_fff_print;
bool m_xl_printer = false;
void set_brim_and_skirt(); void set_brim_and_skirt();
@ -338,7 +339,9 @@ class GridStriderVBedHandler: public VirtualBedHandler
// not representable with scaled coordinates. Combining XStrider with // not representable with scaled coordinates. Combining XStrider with
// YStrider takes care of the X and Y axis to be mapped into the physical // YStrider takes care of the X and Y axis to be mapped into the physical
// bed's coordinate region (which is representable in scaled coords) // bed's coordinate region (which is representable in scaled coords)
static const int ColsOutside; static const int Cols;
static const int HalfCols;
static const int Offset;
XStriderVBedHandler m_xstrider; XStriderVBedHandler m_xstrider;
YStriderVBedHandler m_ystrider; YStriderVBedHandler m_ystrider;
@ -377,6 +380,11 @@ void transform_instance(ModelInstance &mi,
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi, BoundingBoxf3 instance_bounding_box(const ModelInstance &mi,
bool dont_translate = false); bool dont_translate = false);
BoundingBoxf3 instance_bounding_box(const ModelInstance &mi,
const Transform3d &tr,
bool dont_translate = false);
constexpr double UnscaledCoordLimit = 1000.;
ExPolygons extract_full_outline(const ModelInstance &inst, ExPolygons extract_full_outline(const ModelInstance &inst,
const Transform3d &tr = Transform3d::Identity()); const Transform3d &tr = Transform3d::Identity());
@ -491,9 +499,9 @@ class ArrangeableSLAPrint : public ArrangeableSlicerModel {
static void visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn); static void visit_arrangeable_(Self &&self, const ObjectID &id, Fn &&fn);
public: public:
explicit ArrangeableSLAPrint(const SLAPrint *slaprint, explicit ArrangeableSLAPrint(const SLAPrint *slaprint, SceneBuilder &builder)
SceneBuilder &builder) : m_slaprint{slaprint}
: m_slaprint{slaprint}, ArrangeableSlicerModel{builder} , ArrangeableSlicerModel{builder}
{ {
assert(slaprint != nullptr); assert(slaprint != nullptr);
} }

View File

@ -3,6 +3,8 @@
#include <random> #include <random>
#include <boost/log/trivial.hpp>
#include "ArrangeTask.hpp" #include "ArrangeTask.hpp"
namespace Slic3r { namespace arr2 { namespace Slic3r { namespace arr2 {
@ -20,16 +22,21 @@ void extract_selected(ArrangeTask<ArrItem> &task,
bool selected = arrbl.is_selected(); bool selected = arrbl.is_selected();
bool printable = arrbl.is_printable(); bool printable = arrbl.is_printable();
auto itm = itm_conv.convert(arrbl, selected ? 0 : -SCALED_EPSILON); try {
auto itm = itm_conv.convert(arrbl, selected ? 0 : -SCALED_EPSILON);
auto &container_parent = printable ? task.printable : auto &container_parent = printable ? task.printable :
task.unprintable; task.unprintable;
auto &container = selected ? auto &container = selected ?
container_parent.selected : container_parent.selected :
container_parent.unselected; container_parent.unselected;
container.emplace_back(std::move(itm)); container.emplace_back(std::move(itm));
} catch (const EmptyItemOutlineError &ex) {
BOOST_LOG_TRIVIAL(error)
<< "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
}
}); });
// If the selection was empty arrange everything // If the selection was empty arrange everything
@ -68,6 +75,21 @@ void prepare_fixed_unselected(ItemCont &items, int shift)
items.end()); items.end());
} }
inline int find_first_empty_bed(const std::vector<int>& bed_indices,
int starting_from = 0) {
int ret = starting_from;
for (int idx : bed_indices) {
if (idx == ret) {
ret++;
} else if (idx > ret) {
break;
}
}
return ret;
}
template<class ArrItem> template<class ArrItem>
std::unique_ptr<ArrangeTaskResult> std::unique_ptr<ArrangeTaskResult>
ArrangeTask<ArrItem>::process_native(Ctl &ctl) ArrangeTask<ArrItem>::process_native(Ctl &ctl)
@ -102,15 +124,17 @@ ArrangeTask<ArrItem>::process_native(Ctl &ctl)
arranger->arrange(printable.selected, fixed_items, bed, subctl); arranger->arrange(printable.selected, fixed_items, bed, subctl);
// Unprintable items should go to the first bed not containing any printable std::vector<int> printable_bed_indices =
// items get_bed_indices(crange(printable.selected), crange(printable.unselected));
auto beds = std::max(get_bed_count(crange(printable.selected)),
get_bed_count(crange(printable.unselected)));
// If there are no printables, leave the physical bed empty // If there are no printables, leave the physical bed empty
beds = std::max(beds, size_t{1}); constexpr int SearchFrom = 1;
prepare_fixed_unselected(unprintable.unselected, beds); // Unprintable items should go to the first logical (!) bed not containing
// any printable items
int first_empty_bed = find_first_empty_bed(printable_bed_indices, SearchFrom);
prepare_fixed_unselected(unprintable.unselected, first_empty_bed);
arranger->arrange(unprintable.selected, unprintable.unselected, bed, ctl); arranger->arrange(unprintable.selected, unprintable.unselected, bed, ctl);
@ -118,7 +142,7 @@ ArrangeTask<ArrItem>::process_native(Ctl &ctl)
for (auto &itm : unprintable.selected) { for (auto &itm : unprintable.selected) {
if (is_arranged(itm)) { if (is_arranged(itm)) {
int bedidx = get_bed_index(itm) + beds; int bedidx = get_bed_index(itm) + first_empty_bed;
arr2::set_bed_index(itm, bedidx); arr2::set_bed_index(itm, bedidx);
} }

View File

@ -5,6 +5,8 @@
#include "Arrange/Core/NFP/NFPArrangeItemTraits.hpp" #include "Arrange/Core/NFP/NFPArrangeItemTraits.hpp"
#include <boost/log/trivial.hpp>
namespace Slic3r { namespace arr2 { namespace Slic3r { namespace arr2 {
template<class ArrItem> template<class ArrItem>
@ -81,15 +83,20 @@ void extract(FillBedTask<ArrItem> &task,
auto collect_task_items = [&prototype_geometry_id, &task, auto collect_task_items = [&prototype_geometry_id, &task,
&itm_conv](const Arrangeable &arrbl) { &itm_conv](const Arrangeable &arrbl) {
if (arrbl.geometry_id() == prototype_geometry_id) { try {
if (arrbl.is_printable()) { if (arrbl.geometry_id() == prototype_geometry_id) {
auto itm = itm_conv.convert(arrbl); if (arrbl.is_printable()) {
raise_priority(itm); auto itm = itm_conv.convert(arrbl);
task.selected.emplace_back(std::move(itm)); raise_priority(itm);
task.selected.emplace_back(std::move(itm));
}
} else {
auto itm = itm_conv.convert(arrbl, -SCALED_EPSILON);
task.unselected.emplace_back(std::move(itm));
} }
} else { } catch (const EmptyItemOutlineError &ex) {
auto itm = itm_conv.convert(arrbl, -SCALED_EPSILON); BOOST_LOG_TRIVIAL(error)
task.unselected.emplace_back(std::move(itm)); << "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
} }
}; };

View File

@ -3,6 +3,8 @@
#include "MultiplySelectionTask.hpp" #include "MultiplySelectionTask.hpp"
#include <boost/log/trivial.hpp>
namespace Slic3r { namespace arr2 { namespace Slic3r { namespace arr2 {
template<class ArrItem> template<class ArrItem>
@ -45,15 +47,20 @@ std::unique_ptr<MultiplySelectionTask<ArrItem>> MultiplySelectionTask<ArrItem>::
auto collect_task_items = [&prototype_geometry_id, &task, auto collect_task_items = [&prototype_geometry_id, &task,
&itm_conv](const Arrangeable &arrbl) { &itm_conv](const Arrangeable &arrbl) {
if (arrbl.geometry_id() == prototype_geometry_id) { try {
if (arrbl.is_printable()) { if (arrbl.geometry_id() == prototype_geometry_id) {
auto itm = itm_conv.convert(arrbl); if (arrbl.is_printable()) {
raise_priority(itm); auto itm = itm_conv.convert(arrbl);
task.selected.emplace_back(std::move(itm)); raise_priority(itm);
task.selected.emplace_back(std::move(itm));
}
} else {
auto itm = itm_conv.convert(arrbl, -SCALED_EPSILON);
task.unselected.emplace_back(std::move(itm));
} }
} else { } catch (const EmptyItemOutlineError &ex) {
auto itm = itm_conv.convert(arrbl, -SCALED_EPSILON); BOOST_LOG_TRIVIAL(error)
task.unselected.emplace_back(std::move(itm)); << "ObjectID " << std::to_string(arrbl.id().id) << ": " << ex.what();
} }
}; };

View File

@ -1,14 +1,11 @@
#include "ModelArrange.hpp" #include "ModelArrange.hpp"
#include <libslic3r/Arrange/SceneBuilder.hpp> #include <libslic3r/Arrange/SceneBuilder.hpp>
#include <libslic3r/Arrange/Items/ArrangeItem.hpp>
#include <libslic3r/Arrange/Tasks/MultiplySelectionTask.hpp>
#include <libslic3r/Model.hpp> #include <libslic3r/Model.hpp>
#include <libslic3r/Geometry/ConvexHull.hpp> #include <libslic3r/Geometry/ConvexHull.hpp>
#include "Arrange/Core/ArrangeItemTraits.hpp"
#include "Arrange/Items/ArrangeItem.hpp"
#include "MTUtils.hpp"
namespace Slic3r { namespace Slic3r {
@ -27,14 +24,10 @@ bool arrange_objects(Model &model,
const arr2::ArrangeBed &bed, const arr2::ArrangeBed &bed,
const arr2::ArrangeSettingsView &settings) const arr2::ArrangeSettingsView &settings)
{ {
arr2::Scene scene{arr2::SceneBuilder{} return arrange(arr2::SceneBuilder{}
.set_bed(bed) .set_bed(bed)
.set_arrange_settings(settings) .set_arrange_settings(settings)
.set_model(model)}; .set_model(model));
auto task = arr2::ArrangeTaskBase::create(arr2::Tasks::Arrange, scene);
auto result = task->process();
return result->apply_on(scene.model());
} }
void duplicate_objects(Model &model, void duplicate_objects(Model &model,

View File

@ -760,7 +760,7 @@ TEST_CASE("First fit selection strategy", "[arrange2]")
THEN("The item should be left unpacked") THEN("The item should be left unpacked")
{ {
REQUIRE(std::all_of(items.begin(), items.end(), [](auto &itm) { REQUIRE(std::all_of(items.begin(), items.end(), [](const ArrItem &itm) {
return !Slic3r::arr2::is_arranged(itm); return !Slic3r::arr2::is_arranged(itm);
})); }));
} }
@ -878,7 +878,7 @@ TEST_CASE("First fit selection strategy", "[arrange2]")
THEN("all items should fit onto the beds from index 0 to 4") THEN("all items should fit onto the beds from index 0 to 4")
{ {
REQUIRE(std::all_of(items.begin(), items.end(), [](auto &itm) { REQUIRE(std::all_of(items.begin(), items.end(), [](const ArrItem &itm) {
auto bed_idx = Slic3r::arr2::get_bed_index(itm); auto bed_idx = Slic3r::arr2::get_bed_index(itm);
return bed_idx >= 0 && bed_idx < Count / Capacity; return bed_idx >= 0 && bed_idx < Count / Capacity;
})); }));

View File

@ -49,8 +49,8 @@ static Slic3r::Model get_example_model_with_random_cube_objects(size_t N = 0)
for (size_t i = 0; i < cube_count; ++i) { for (size_t i = 0; i < cube_count; ++i) {
ModelInstance *inst = new_object->add_instance(); ModelInstance *inst = new_object->add_instance();
arr2::transform_instance(*inst, arr2::transform_instance(*inst,
Vec2d{random_value(-200., 200.), Vec2d{random_value(-arr2::UnscaledCoordLimit / 10., arr2::UnscaledCoordLimit / 10.),
random_value(-200., 200.)}, random_value(-arr2::UnscaledCoordLimit / 10., arr2::UnscaledCoordLimit / 10.)},
random_value(0., 2 * PI)); random_value(0., 2 * PI));
} }
@ -168,7 +168,8 @@ TEMPLATE_TEST_CASE("Writing arrange transformations into ModelInstance should be
{ {
auto [tx, ty, rot] = GENERATE(map( auto [tx, ty, rot] = GENERATE(map(
[](int i) { [](int i) {
return std::make_tuple(-500. + i * 20., -500. + i * 20., return std::make_tuple(-Slic3r::arr2::UnscaledCoordLimit / 2. + i * Slic3r::arr2::UnscaledCoordLimit / 100.,
-Slic3r::arr2::UnscaledCoordLimit / 2. + i * Slic3r::arr2::UnscaledCoordLimit / 100.,
-PI + i * (2 * PI / 100.)); -PI + i * (2 * PI / 100.));
}, },
range(0, 100))); range(0, 100)));

View File

@ -228,7 +228,7 @@ void init_print(std::vector<TriangleMesh> &&meshes, Slic3r::Print &print, Slic3r
object->add_volume(std::move(t)); object->add_volume(std::move(t));
object->add_instance(); object->add_instance();
} }
arrange_objects(model, arr2::InfiniteBed{}, arr2::ArrangeSettings{}.set_distance_from_objects(min_object_distance(config))); arrange_objects(model, arr2::to_arrange_bed(get_bed_shape(config)), arr2::ArrangeSettings{}.set_distance_from_objects(min_object_distance(config)));
model.center_instances_around_point({100, 100}); model.center_instances_around_point({100, 100});
for (ModelObject *mo : model.objects) { for (ModelObject *mo : model.objects) {
mo->ensure_on_bed(); mo->ensure_on_bed();

View File

@ -42,8 +42,12 @@ SCENARIO("Model construction", "[Model]") {
} }
} }
model_object->add_instance(); model_object->add_instance();
arrange_objects(model, arr2::InfiniteBed{scaled(Vec2d(100, 100))}, arr2::ArrangeSettings{}.set_distance_from_objects(min_object_distance(config))); arrange_objects(model,
model_object->ensure_on_bed(); arr2::to_arrange_bed(get_bed_shape(config)),
arr2::ArrangeSettings{}.set_distance_from_objects(
min_object_distance(config)));
model_object->ensure_on_bed();
print.auto_assign_extruders(model_object); print.auto_assign_extruders(model_object);
THEN("Print works?") { THEN("Print works?") {
print.set_status_silent(); print.set_status_silent();