Least squares circle fitting.

This commit is contained in:
Vojtech Bubnik 2023-09-22 13:22:05 +02:00
parent 9d13b39736
commit d623ece5da
2 changed files with 86 additions and 0 deletions

View File

@ -146,4 +146,83 @@ Circled circle_ransac(const Vec2ds& input, size_t iterations, double* min_error)
return circle_best;
}
template<typename Solver>
Circled circle_least_squares_by_solver(const Vec2ds &input, Solver solver)
{
Circled out;
if (input.size() < 3) {
out = Circled::make_invalid();
} else {
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic /* 3 */> A(input.size(), 3);
Eigen::VectorXd b(input.size());
for (size_t r = 0; r < input.size(); ++ r) {
const Vec2d &p = input[r];
A.row(r) = Vec3d(2. * p.x(), 2. * p.y(), - 1.);
b(r) = p.squaredNorm();
}
auto result = solver(A, b);
out.center = result.head<2>();
double r2 = out.center.squaredNorm() - result(2);
if (r2 <= EPSILON)
out.make_invalid();
else
out.radius = sqrt(r2);
}
return out;
}
Circled circle_least_squares_svd(const Vec2ds &input)
{
return circle_least_squares_by_solver(input,
[](const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic /* 3 */> &A, const Eigen::VectorXd &b)
{ return A.bdcSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b).eval(); });
}
Circled circle_least_squares_qr(const Vec2ds &input)
{
return circle_least_squares_by_solver(input,
[](const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> &A, const Eigen::VectorXd &b)
{ return A.colPivHouseholderQr().solve(b).eval(); });
}
Circled circle_least_squares_normal(const Vec2ds &input)
{
Circled out;
if (input.size() < 3) {
out = Circled::make_invalid();
} else {
Eigen::Matrix<double, 3, 3> A = Eigen::Matrix<double, 3, 3>::Zero();
Eigen::Matrix<double, 3, 1> b = Eigen::Matrix<double, 3, 1>::Zero();
for (size_t i = 0; i < input.size(); ++ i) {
const Vec2d &p = input[i];
// Calculate right hand side of a normal equation.
b += p.squaredNorm() * Vec3d(2. * p.x(), 2. * p.y(), -1.);
// Calculate normal matrix (correlation matrix).
// Diagonal:
A(0, 0) += 4. * p.x() * p.x();
A(1, 1) += 4. * p.y() * p.y();
A(2, 2) += 1.;
// Off diagonal elements:
const double a = 4. * p.x() * p.y();
A(0, 1) += a;
A(1, 0) += a;
const double b = -2. * p.x();
A(0, 2) += b;
A(2, 0) += b;
const double c = -2. * p.y();
A(1, 2) += c;
A(2, 1) += c;
}
auto result = A.ldlt().solve(b).eval();
out.center = result.head<2>();
double r2 = out.center.squaredNorm() - result(2);
if (r2 <= EPSILON)
out.make_invalid();
else
out.radius = sqrt(r2);
}
return out;
}
} } // namespace Slic3r::Geometry

View File

@ -141,6 +141,13 @@ Circled circle_taubin_newton(const Vec2ds& input, size_t cycles = 20);
// Find circle using RANSAC randomized algorithm.
Circled circle_ransac(const Vec2ds& input, size_t iterations = 20, double* min_error = nullptr);
// Least squares fitting with SVD. Most accurate, but slowest.
Circled circle_least_squares_svd(const Vec2ds &input);
// Least squares fitting with QR decomposition. Medium accuracy, medium speed.
Circled circle_least_squares_qr(const Vec2ds &input);
// Least squares fitting solving normal equations. Low accuracy, high speed.
Circled circle_least_squares_normal(const Vec2ds &input);
// Randomized algorithm by Emo Welzl, working with squared radii for efficiency. The returned circle radius is inflated by epsilon.
template<typename Vector, typename Points>
CircleSq<Vector> smallest_enclosing_circle2_welzl(const Points &points, const typename Vector::Scalar epsilon)