mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-08-10 07:39:00 +08:00
Fixed toolpaths_cog shaders
This commit is contained in:
parent
c8601fbc4a
commit
ddabc3312d
@ -1,19 +1,16 @@
|
|||||||
#version 110
|
#version 110
|
||||||
|
|
||||||
const vec4 BLACK = vec4(vec3(0.1), 1.0);
|
const vec3 BLACK = vec3(0.1);
|
||||||
const vec4 WHITE = vec4(vec3(1.0), 1.0);
|
const vec3 WHITE = vec3(0.9);
|
||||||
|
|
||||||
const float emission_factor = 0.25;
|
const float emission_factor = 0.25;
|
||||||
|
|
||||||
uniform vec3 world_center;
|
|
||||||
|
|
||||||
// x = tainted, y = specular;
|
// x = tainted, y = specular;
|
||||||
varying vec2 intensity;
|
varying vec2 intensity;
|
||||||
varying vec3 world_position;
|
varying vec3 position;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
vec3 delta = world_position - world_center;
|
vec3 color = position.x * position.y * position.z > 0.0 ? BLACK : WHITE;
|
||||||
vec4 color = delta.x * delta.y * delta.z > 0.0 ? BLACK : WHITE;
|
gl_FragColor = vec4(vec3(intensity.y) + color * (intensity.x + emission_factor), 1.0);
|
||||||
gl_FragColor = vec4(vec3(intensity.y) + color.rgb * (intensity.x + emission_factor), 1.0);
|
|
||||||
}
|
}
|
||||||
|
@ -23,25 +23,25 @@ attribute vec3 v_normal;
|
|||||||
|
|
||||||
// x = tainted, y = specular;
|
// x = tainted, y = specular;
|
||||||
varying vec2 intensity;
|
varying vec2 intensity;
|
||||||
varying vec3 world_position;
|
varying vec3 position;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
// First transform the normal into camera space and normalize the result.
|
// First transform the normal into camera space and normalize the result.
|
||||||
vec3 normal = normalize(view_normal_matrix * v_normal);
|
vec3 eye_normal = normalize(view_normal_matrix * v_normal);
|
||||||
|
|
||||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||||
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||||
|
|
||||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||||
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
vec4 eye_position = view_model_matrix * vec4(v_position, 1.0);
|
||||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||||
|
|
||||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||||
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
|
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||||
|
|
||||||
world_position = v_position;
|
position = v_position;
|
||||||
gl_Position = projection_matrix * position;
|
gl_Position = projection_matrix * eye_position;
|
||||||
}
|
}
|
||||||
|
@ -1,21 +1,18 @@
|
|||||||
#version 140
|
#version 140
|
||||||
|
|
||||||
const vec4 BLACK = vec4(vec3(0.1), 1.0);
|
const vec3 BLACK = vec3(0.1);
|
||||||
const vec4 WHITE = vec4(vec3(1.0), 1.0);
|
const vec3 WHITE = vec3(0.9);
|
||||||
|
|
||||||
const float emission_factor = 0.25;
|
const float emission_factor = 0.25;
|
||||||
|
|
||||||
uniform vec3 world_center;
|
|
||||||
|
|
||||||
// x = tainted, y = specular;
|
// x = tainted, y = specular;
|
||||||
in vec2 intensity;
|
in vec2 intensity;
|
||||||
in vec3 world_position;
|
in vec3 position;
|
||||||
|
|
||||||
out vec4 out_color;
|
out vec4 out_color;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
vec3 delta = world_position - world_center;
|
vec3 color = position.x * position.y * position.z > 0.0 ? BLACK : WHITE;
|
||||||
vec4 color = delta.x * delta.y * delta.z > 0.0 ? BLACK : WHITE;
|
out_color = vec4(vec3(intensity.y) + color * (intensity.x + emission_factor), 1.0);
|
||||||
out_color = vec4(vec3(intensity.y) + color.rgb * (intensity.x + emission_factor), 1.0);
|
|
||||||
}
|
}
|
||||||
|
@ -23,25 +23,25 @@ in vec3 v_normal;
|
|||||||
|
|
||||||
// x = tainted, y = specular;
|
// x = tainted, y = specular;
|
||||||
out vec2 intensity;
|
out vec2 intensity;
|
||||||
out vec3 world_position;
|
out vec3 position;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
// First transform the normal into camera space and normalize the result.
|
// First transform the normal into camera space and normalize the result.
|
||||||
vec3 normal = normalize(view_normal_matrix * v_normal);
|
vec3 eye_normal = normalize(view_normal_matrix * v_normal);
|
||||||
|
|
||||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||||
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||||
|
|
||||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||||
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
vec4 eye_position = view_model_matrix * vec4(v_position, 1.0);
|
||||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||||
|
|
||||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||||
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
|
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||||
|
|
||||||
world_position = v_position;
|
position = v_position;
|
||||||
gl_Position = projection_matrix * position;
|
gl_Position = projection_matrix * eye_position;
|
||||||
}
|
}
|
||||||
|
@ -2,20 +2,17 @@
|
|||||||
|
|
||||||
precision highp float;
|
precision highp float;
|
||||||
|
|
||||||
const vec4 BLACK = vec4(vec3(0.1), 1.0);
|
const vec3 BLACK = vec3(0.1);
|
||||||
const vec4 WHITE = vec4(vec3(1.0), 1.0);
|
const vec3 WHITE = vec3(0.9);
|
||||||
|
|
||||||
const float emission_factor = 0.25;
|
const float emission_factor = 0.25;
|
||||||
|
|
||||||
uniform vec3 world_center;
|
|
||||||
|
|
||||||
// x = tainted, y = specular;
|
// x = tainted, y = specular;
|
||||||
varying vec2 intensity;
|
varying vec2 intensity;
|
||||||
varying vec3 world_position;
|
varying vec3 position;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
vec3 delta = world_position - world_center;
|
vec3 color = position.x * position.y * position.z > 0.0 ? BLACK : WHITE;
|
||||||
vec4 color = delta.x * delta.y * delta.z > 0.0 ? BLACK : WHITE;
|
gl_FragColor = vec4(vec3(intensity.y) + color * (intensity.x + emission_factor), 1.0);
|
||||||
gl_FragColor = vec4(vec3(intensity.y) + color.rgb * (intensity.x + emission_factor), 1.0);
|
|
||||||
}
|
}
|
||||||
|
@ -23,25 +23,25 @@ attribute vec3 v_normal;
|
|||||||
|
|
||||||
// x = tainted, y = specular;
|
// x = tainted, y = specular;
|
||||||
varying vec2 intensity;
|
varying vec2 intensity;
|
||||||
varying vec3 world_position;
|
varying vec3 position;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
// First transform the normal into camera space and normalize the result.
|
// First transform the normal into camera space and normalize the result.
|
||||||
vec3 normal = normalize(view_normal_matrix * v_normal);
|
vec3 eye_normal = normalize(view_normal_matrix * v_normal);
|
||||||
|
|
||||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||||
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||||
|
|
||||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||||
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
vec4 eye_position = view_model_matrix * vec4(v_position, 1.0);
|
||||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||||
|
|
||||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||||
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
|
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||||
|
|
||||||
world_position = v_position;
|
position = v_position;
|
||||||
gl_Position = projection_matrix * position;
|
gl_Position = projection_matrix * eye_position;
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user