Implementation of object gluing into the sequential solver and more fine grained progress callback.

This commit is contained in:
surynek 2024-10-21 01:46:33 +02:00 committed by Lukas Matena
parent 967a0710d3
commit e627aeb685
7 changed files with 565 additions and 166 deletions

View File

@ -320,6 +320,8 @@ void schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver
std::map<int, int> original_index_map;
std::vector<bool> lepox_to_next;
std::vector<SolvableObject> solvable_objects;
#ifdef DEBUG
{
printf(" Preparing objects ...\n");
@ -333,12 +335,9 @@ void schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver
std::vector<std::vector<Slic3r::Polygon> > extruder_convex_level_polygons;
std::vector<std::vector<Slic3r::Polygon> > extruder_box_level_polygons;
std::vector<Slic3r::Polygon> scale_down_unreachable_polygons;
SolvableObject solvable_object;
original_index_map[i] = objects_to_print[i].id;
Polygon scale_down_object_polygon;
prepare_ExtruderPolygons(solver_configuration,
printer_geometry,
@ -354,13 +353,13 @@ void schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver
box_level_polygons,
extruder_convex_level_polygons,
extruder_box_level_polygons,
scale_down_object_polygon,
scale_down_unreachable_polygons);
unreachable_polygons.push_back(scale_down_unreachable_polygons);
polygons.push_back(scale_down_object_polygon);
solvable_object.polygon,
solvable_object.unreachable_polygons);
lepox_to_next.push_back(objects_to_print[i].glued_to_next);
solvable_object.id = objects_to_print[i].id;
solvable_object.lepox_to_next = objects_to_print[i].glued_to_next;
solvable_objects.push_back(solvable_object);
}
std::vector<int> remaining_polygons;
@ -404,9 +403,7 @@ void schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver
poly_positions_X,
poly_positions_Y,
times_T,
polygons,
unreachable_polygons,
lepox_to_next,
solvable_objects,
polygon_index_map,
decided_polygons,
remaining_polygons,
@ -483,28 +480,15 @@ void schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver
printf("Intermediate CPU time: %.3f\n", (finish - start) / (double)CLOCKS_PER_SEC);
}
#endif
std::vector<Polygon> next_polygons;
std::vector<vector<Polygon> > next_unreachable_polygons;
std::vector<bool> next_lepox_to_next;
std::vector<SolvableObject> next_solvable_objects;
for (unsigned int i = 0; i < remaining_polygons.size(); ++i)
{
next_polygons.push_back(polygons[remaining_polygons[i]]);
next_unreachable_polygons.push_back(unreachable_polygons[remaining_polygons[i]]);
next_lepox_to_next.push_back(lepox_to_next[remaining_polygons[i]]);
}
/* TODO: remove */
polygons.clear();
unreachable_polygons.clear();
lepox_to_next.clear();
next_solvable_objects.push_back(solvable_objects[remaining_polygons[i]]);
}
polygon_index_map.clear();
polygons = next_polygons;
unreachable_polygons = next_unreachable_polygons;
lepox_to_next = next_lepox_to_next;
solvable_objects = next_solvable_objects;
std::vector<int> next_polygon_index_map;
std::map<int, int> next_original_index_map;
@ -565,6 +549,8 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver_
std::vector<std::vector<Slic3r::Polygon> > unreachable_polygons;
std::vector<bool> lepox_to_next;
std::vector<SolvableObject> solvable_objects;
std::map<int, int> original_index_map;
#ifdef DEBUG
@ -718,10 +704,9 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver_
}
}
}
Polygon scale_down_polygon;
scaleDown_PolygonForSequentialSolver(nozzle_polygon, scale_down_polygon);
polygons.push_back(scale_down_polygon);
SolvableObject solvable_object;
scaleDown_PolygonForSequentialSolver(nozzle_polygon, solvable_object.polygon);
std::vector<Slic3r::Polygon> convex_level_polygons;
convex_level_polygons.push_back(nozzle_polygon);
@ -737,31 +722,31 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver_
case SEQ_PRINTER_TYPE_PRUSA_MK3S:
{
prepare_UnreachableZonePolygons(solver_configuration,
convex_level_polygons,
box_level_polygons,
SEQ_UNREACHABLE_POLYGON_CONVEX_LEVELS_MK3S,
SEQ_UNREACHABLE_POLYGON_BOX_LEVELS_MK3S,
scale_down_unreachable_polygons);
convex_level_polygons,
box_level_polygons,
SEQ_UNREACHABLE_POLYGON_CONVEX_LEVELS_MK3S,
SEQ_UNREACHABLE_POLYGON_BOX_LEVELS_MK3S,
solvable_object.unreachable_polygons);
break;
}
case SEQ_PRINTER_TYPE_PRUSA_MK4:
{
prepare_UnreachableZonePolygons(solver_configuration,
convex_level_polygons,
box_level_polygons,
SEQ_UNREACHABLE_POLYGON_CONVEX_LEVELS_MK4,
SEQ_UNREACHABLE_POLYGON_BOX_LEVELS_MK4,
scale_down_unreachable_polygons);
convex_level_polygons,
box_level_polygons,
SEQ_UNREACHABLE_POLYGON_CONVEX_LEVELS_MK4,
SEQ_UNREACHABLE_POLYGON_BOX_LEVELS_MK4,
solvable_object.unreachable_polygons);
break;
}
case SEQ_PRINTER_TYPE_PRUSA_XL:
{
prepare_UnreachableZonePolygons(solver_configuration,
convex_level_polygons,
box_level_polygons,
SEQ_UNREACHABLE_POLYGON_CONVEX_LEVELS_XL,
SEQ_UNREACHABLE_POLYGON_BOX_LEVELS_XL,
scale_down_unreachable_polygons);
convex_level_polygons,
box_level_polygons,
SEQ_UNREACHABLE_POLYGON_CONVEX_LEVELS_XL,
SEQ_UNREACHABLE_POLYGON_BOX_LEVELS_XL,
solvable_object.unreachable_polygons);
break;
}
default:
@ -771,22 +756,24 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver_
}
}
unreachable_polygons.push_back(scale_down_unreachable_polygons);
lepox_to_next.push_back(objects_to_print[i].glued_to_next);
solvable_object.id = objects_to_print[i].id;
solvable_object.lepox_to_next = objects_to_print[i].glued_to_next;
solvable_objects.push_back(solvable_object);
}
vector<int> remaining_polygons;
vector<int> polygon_index_map;
vector<int> decided_polygons;
std::vector<int> remaining_polygons;
std::vector<int> polygon_index_map;
std::vector<int> decided_polygons;
for (unsigned int index = 0; index < polygons.size(); ++index)
{
polygon_index_map.push_back(index);
}
vector<Rational> poly_positions_X;
vector<Rational> poly_positions_Y;
vector<Rational> times_T;
std::vector<Rational> poly_positions_X;
std::vector<Rational> poly_positions_Y;
std::vector<Rational> times_T;
#ifdef DEBUG
{
@ -816,9 +803,7 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver_
poly_positions_X,
poly_positions_Y,
times_T,
polygons,
unreachable_polygons,
lepox_to_next,
solvable_objects,
polygon_index_map,
decided_polygons,
remaining_polygons,
@ -894,28 +879,15 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration &solver_
printf("Intermediate CPU time: %.3f\n", (finish - start) / (double)CLOCKS_PER_SEC);
}
#endif
std::vector<Polygon> next_polygons;
std::vector<vector<Polygon> > next_unreachable_polygons;
std::vector<bool> next_lepox_to_next;
std::vector<SolvableObject> next_solvable_objects;
for (unsigned int i = 0; i < remaining_polygons.size(); ++i)
{
next_polygons.push_back(polygons[remaining_polygons[i]]);
next_unreachable_polygons.push_back(unreachable_polygons[remaining_polygons[i]]);
next_lepox_to_next.push_back(lepox_to_next[remaining_polygons[i]]);
}
/* TODO: remove */
polygons.clear();
unreachable_polygons.clear();
lepox_to_next.clear();
next_solvable_objects.push_back(solvable_objects[i]);
}
polygon_index_map.clear();
polygons = next_polygons;
unreachable_polygons = next_unreachable_polygons;
lepox_to_next = next_lepox_to_next;
solvable_objects = next_solvable_objects;
std::vector<int> next_polygon_index_map;
std::map<int, int> next_original_index_map;
@ -1007,11 +979,8 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration
}
#endif
std::vector<Slic3r::Polygon> polygons;
std::vector<std::vector<Slic3r::Polygon> > unreachable_polygons;
std::vector<SolvableObject> solvable_objects;
std::map<int, int> original_index_map;
std::vector<bool> lepox_to_next;
#ifdef DEBUG
{
@ -1020,7 +989,7 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration
#endif
for (unsigned int i = 0; i < objects_to_print.size(); ++i)
{
{
Polygon nozzle_polygon;
Polygon extruder_polygon;
Polygon hose_polygon;
@ -1090,10 +1059,9 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration
}
++ht;
}
Polygon scale_down_polygon;
scaleDown_PolygonForSequentialSolver(nozzle_polygon, scale_down_polygon);
polygons.push_back(scale_down_polygon);
SolvableObject solvable_object;
scaleDown_PolygonForSequentialSolver(nozzle_polygon, solvable_object.polygon);
std::vector<Slic3r::Polygon> convex_level_polygons;
convex_level_polygons.push_back(nozzle_polygon);
@ -1110,17 +1078,19 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration
box_level_polygons,
convex_unreachable_zones,
box_unreachable_zones,
scale_down_unreachable_polygons);
unreachable_polygons.push_back(scale_down_unreachable_polygons);
lepox_to_next.push_back(objects_to_print[i].glued_to_next);
solvable_object.unreachable_polygons);
solvable_object.id = objects_to_print[i].id;
solvable_object.lepox_to_next = objects_to_print[i].glued_to_next;
solvable_objects.push_back(solvable_object);
}
std::vector<int> remaining_polygons;
std::vector<int> polygon_index_map;
std::vector<int> decided_polygons;
for (unsigned int index = 0; index < polygons.size(); ++index)
for (unsigned int index = 0; index < solvable_objects.size(); ++index)
{
polygon_index_map.push_back(index);
}
@ -1157,9 +1127,7 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration
poly_positions_X,
poly_positions_Y,
times_T,
polygons,
unreachable_polygons,
lepox_to_next,
solvable_objects,
polygon_index_map,
decided_polygons,
remaining_polygons,
@ -1236,33 +1204,20 @@ int schedule_ObjectsForSequentialPrint(const SolverConfiguration
printf("Intermediate CPU time: %.3f\n", (finish - start) / (double)CLOCKS_PER_SEC);
}
#endif
std::vector<Polygon> next_polygons;
std::vector<vector<Polygon> > next_unreachable_polygons;
std::vector<bool> next_lepox_to_next;
std::vector<SolvableObject> next_solvable_objects;
for (unsigned int i = 0; i < remaining_polygons.size(); ++i)
{
next_polygons.push_back(polygons[remaining_polygons[i]]);
next_unreachable_polygons.push_back(unreachable_polygons[remaining_polygons[i]]);
next_lepox_to_next.push_back(lepox_to_next[remaining_polygons[i]]);
}
/* TODO: remove */
polygons.clear();
unreachable_polygons.clear();
lepox_to_next.clear();
next_solvable_objects.push_back(solvable_objects[i]);
}
polygon_index_map.clear();
polygons = next_polygons;
unreachable_polygons = next_unreachable_polygons;
lepox_to_next = next_lepox_to_next;
solvable_objects = next_solvable_objects;
std::vector<int> next_polygon_index_map;
std::map<int, int> next_original_index_map;
for (unsigned int index = 0; index < polygons.size(); ++index)
for (unsigned int index = 0; index < solvable_objects.size(); ++index)
{
next_polygon_index_map.push_back(index);
next_original_index_map[index] = original_index_map[remaining_polygons[index]];

View File

@ -343,15 +343,41 @@ void introduce_ConsequentialTemporalLepoxAgainstFixed(z3::solver
const std::vector<Slic3r::Polygon> &SEQ_UNUSED(polygons),
const std::vector<bool> &lepox_to_next)
{
std::set<int> fixed_(fixed.begin(), fixed.end());
std::set<int> undecided_(undecided.begin(), undecided.end());
for (unsigned int i = 0; i < undecided.size(); ++i)
{
if (i == 0)
{
if ((undecided[0] - 1) >= 0)
{
if (lepox_to_next[undecided[0] - 1])
{
for (unsigned int j = 1; j < undecided.size(); ++j)
{
Solver.add(dec_vars_T[undecided[0]] + temporal_spread < dec_vars_T[undecided[j]]);
}
if (!fixed.empty())
{
int prev_fix_i = fixed[fixed.size() - 1];
Solver.add(Context.real_val(dec_values_T[prev_fix_i].numerator, dec_values_T[prev_fix_i].denominator) + temporal_spread < dec_vars_T[undecided[0]]);
}
}
}
}
if (lepox_to_next[undecided[i]])
{
/* TODO: we know what to do */
//Solver.add(dec_vars_T[previous_polygons[undecided[i]]] + temporal_spread < dec_vars_T[undecided[i]] && dec_vars_T[previous_polygons[undecided[i]]] + temporal_spread + temporal_spread / 2 > dec_vars_T[undecided[i]]);
printf("Lepox constraint present: %d\n", undecided[i]);
if (undecided.size() > i + 1)
{
int next_i = undecided[i + 1];
Solver.add(dec_vars_T[undecided[i]] + temporal_spread < dec_vars_T[next_i] && dec_vars_T[undecided[i]] + temporal_spread + temporal_spread / 2 > dec_vars_T[next_i]);
}
else
{
for (unsigned int j = 0; j < undecided.size() - 1; ++j)
{
Solver.add(dec_vars_T[undecided[j]] + temporal_spread < dec_vars_T[undecided[i]]);
}
}
}
}
@ -8589,7 +8615,9 @@ bool optimize_ConsequentialWeakPolygonNonoverlappingBinaryCentered(z3::solver
const string_map &dec_var_names_map,
const std::vector<Slic3r::Polygon> &polygons,
const std::vector<std::vector<Slic3r::Polygon> > &unreachable_polygons,
const z3::expr_vector &presence_constraints)
const z3::expr_vector &presence_constraints,
const ProgressRange &progress_range,
std::function<void(int)> progress_callback)
{
z3::set_param("timeout", solver_configuration.optimization_timeout.c_str());
//z3::set_param("parallel.enable", "true");
@ -8605,6 +8633,9 @@ bool optimize_ConsequentialWeakPolygonNonoverlappingBinaryCentered(z3::solver
coord_t half_y_min = 0;
coord_t half_y_max = box_half_y_max;
int progress_total_estimation = MAX(1,std::log2(half_x_max - half_x_min));
int progress = 0;
while ((half_x_max - half_x_min) > 1 && (half_y_max - half_y_min) > 1)
{
@ -8940,7 +8971,11 @@ bool optimize_ConsequentialWeakPolygonNonoverlappingBinaryCentered(z3::solver
printf("Halves augmented: X:[%d,%d] Y:[%d,%d]\n", half_x_min, half_x_max, half_y_min, half_y_max);
}
#endif
++progress;
progress_callback(progress_range.progress_min + (progress_range.progress_max - progress_range.progress_min) * progress / progress_total_estimation);
}
progress_callback(progress_range.progress_max);
if (last_solvable_bounding_box_size > 0)
{
@ -9987,8 +10022,8 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
const std::vector<int> &undecided_polygons,
std::vector<int> &decided_polygons,
std::vector<int> &remaining_polygons,
int objects_done,
int total_objects,
int progress_objects_done,
int progress_total_objects,
std::function<void(int)> progress_callback)
{
std::vector<int> undecided;
@ -10067,6 +10102,26 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
decided_polygons,
undecided,
dec_var_names_map);
introduce_ConsequentialTemporalOrderingAgainstFixed(z_solver,
z_context,
local_dec_vars_T,
local_values_T,
decided_polygons,
undecided,
solver_configuration.temporal_spread,
polygons);
introduce_ConsequentialTemporalLepoxAgainstFixed(z_solver,
z_context,
local_dec_vars_T,
local_values_T,
decided_polygons,
undecided,
solver_configuration.temporal_spread,
polygons,
lepox_to_next);
#ifdef PROFILE
{
build_finish = clock();
@ -10074,7 +10129,8 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
}
#endif
vector<int> missing;
std::vector<int> missing;
std::vector<int> remaining_local;
while(object_group_size > 0)
{
@ -10107,25 +10163,6 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
}
#endif
introduce_ConsequentialTemporalOrderingAgainstFixed(z_solver,
z_context,
local_dec_vars_T,
local_values_T,
decided_polygons,
undecided,
solver_configuration.temporal_spread,
polygons);
introduce_ConsequentialTemporalLepoxAgainstFixed(z_solver,
z_context,
local_dec_vars_T,
local_values_T,
decided_polygons,
undecided,
solver_configuration.temporal_spread,
polygons,
lepox_to_next);
#ifdef DEBUG
{
printf("%ld,%ld\n", local_values_X.size(), local_values_Y.size());
@ -10141,7 +10178,7 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
}
#endif
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + objects_done)) / total_objects);
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + progress_objects_done)) / progress_total_objects);
optimized = optimize_ConsequentialWeakPolygonNonoverlappingBinaryCentered(z_solver,
z_context,
@ -10159,7 +10196,10 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
dec_var_names_map,
polygons,
unreachable_polygons,
presence_assumptions);
presence_assumptions,
ProgressRange((SEQ_PROGRESS_RANGE * (decided_polygons.size() + progress_objects_done)) / progress_total_objects,
(SEQ_PROGRESS_RANGE * (decided_polygons.size() + (progress_objects_done + 1))) / progress_total_objects),
progress_callback);
if (optimized)
{
@ -10175,23 +10215,22 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
{
dec_values_X[undecided[i]] = local_values_X[undecided[i]];
dec_values_Y[undecided[i]] = local_values_Y[undecided[i]];
dec_values_T[undecided[i]] = local_values_T[undecided[i]];
dec_values_T[undecided[i]] = local_values_T[undecided[i]];
decided_polygons.push_back(undecided[i]);
}
augment_TemporalSpread(solver_configuration, dec_values_T, decided_polygons);
if (polygons.size() - curr_polygon > (unsigned int)solver_configuration.object_group_size)
if (polygons.size() - curr_polygon > (unsigned int)object_group_size)
{
curr_polygon += solver_configuration.object_group_size;
curr_polygon += object_group_size;
}
else
{
curr_polygon += polygons.size() - curr_polygon;
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + objects_done)) / total_objects);
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + progress_objects_done)) / progress_total_objects);
return true;
}
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + objects_done)) / total_objects);
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + progress_objects_done)) / progress_total_objects);
break;
}
else
@ -10201,16 +10240,18 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
printf("Remaining polygon: %d\n", curr_polygon + object_group_size - 1);
}
#endif
remaining_polygons.push_back(undecided_polygons[curr_polygon + object_group_size - 1]);
remaining_local.push_back(undecided_polygons[curr_polygon + object_group_size - 1]);
}
missing.push_back(undecided.back());
undecided.pop_back();
--object_group_size;
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + objects_done)) / total_objects);
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + progress_objects_done)) / progress_total_objects);
}
std::reverse(remaining_local.begin(), remaining_local.end());
remaining_polygons.insert(remaining_polygons.end(), remaining_local.begin(), remaining_local.end());
#ifdef PROFILE
{
printf("Build: %.3f\n", build_cumul);
@ -10233,15 +10274,298 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
{
remaining_polygons.push_back(undecided_polygons[curr_polygon]);
}
return true;
}
return true;
}
}
assert(remaining_polygons.empty());
}
assert(remaining_polygons.empty());
return true;
}
bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const SolverConfiguration &solver_configuration,
std::vector<Rational> &dec_values_X,
std::vector<Rational> &dec_values_Y,
std::vector<Rational> &dec_values_T,
const std::vector<SolvableObject> &solvable_objects,
const std::vector<int> &undecided_polygons,
std::vector<int> &decided_polygons,
std::vector<int> &remaining_polygons,
int progress_objects_done,
int progress_total_objects,
std::function<void(int)> progress_callback)
{
std::vector<int> undecided;
decided_polygons.clear();
remaining_polygons.clear();
dec_values_X.resize(solvable_objects.size());
dec_values_Y.resize(solvable_objects.size());
dec_values_T.resize(solvable_objects.size());
int box_half_x_max = solver_configuration.x_plate_bounding_box_size / 2;
int box_half_y_max = solver_configuration.y_plate_bounding_box_size / 2;
std::vector<Slic3r::Polygon> polygons;
std::vector<std::vector<Slic3r::Polygon> > unreachable_polygons;
std::vector<bool> lepox_to_next;
for (const auto& solvable_object: solvable_objects)
{
polygons.push_back(solvable_object.polygon);
unreachable_polygons.push_back(solvable_object.unreachable_polygons);
lepox_to_next.push_back(solvable_object.lepox_to_next);
}
for (unsigned int curr_polygon = 0; curr_polygon < solvable_objects.size(); /* nothing */)
{
bool optimized = false;
z3::set_param("timeout", solver_configuration.optimization_timeout.c_str());
z3::context z_context;
z3::solver z_solver(z_context);
z3::expr_vector local_dec_vars_X(z_context);
z3::expr_vector local_dec_vars_Y(z_context);
z3::expr_vector local_dec_vars_T(z_context);
vector<Rational> local_values_X;
vector<Rational> local_values_Y;
vector<Rational> local_values_T;
local_values_X.resize(solvable_objects.size());
local_values_Y.resize(solvable_objects.size());
local_values_T.resize(solvable_objects.size());
for (unsigned int i = 0; i < decided_polygons.size(); ++i)
{
#ifdef DEBUG
{
printf("Decided: %d %.3f, %.3f, %.3f\n",
decided_polygons[i],
dec_values_X[decided_polygons[i]].as_double(),
dec_values_Y[decided_polygons[i]].as_double(),
dec_values_T[decided_polygons[i]].as_double());
}
#endif
local_values_X[decided_polygons[i]] = dec_values_X[decided_polygons[i]];
local_values_Y[decided_polygons[i]] = dec_values_Y[decided_polygons[i]];
local_values_T[decided_polygons[i]] = dec_values_T[decided_polygons[i]];
}
string_map dec_var_names_map;
int object_group_size = MIN((unsigned int)solver_configuration.object_group_size, solvable_objects.size() - curr_polygon);
undecided.clear();
for (int i = 0; i < object_group_size; ++i)
{
undecided.push_back(curr_polygon + i);
}
#ifdef PROFILE
{
build_start = clock();
}
#endif
build_ConsequentialWeakPolygonNonoverlapping(z_solver,
z_context,
polygons,
unreachable_polygons,
local_dec_vars_X,
local_dec_vars_Y,
local_dec_vars_T,
local_values_X,
local_values_Y,
local_values_T,
decided_polygons,
undecided,
dec_var_names_map);
introduce_ConsequentialTemporalOrderingAgainstFixed(z_solver,
z_context,
local_dec_vars_T,
local_values_T,
decided_polygons,
undecided,
solver_configuration.temporal_spread,
polygons);
introduce_ConsequentialTemporalLepoxAgainstFixed(z_solver,
z_context,
local_dec_vars_T,
local_values_T,
decided_polygons,
undecided,
solver_configuration.temporal_spread,
polygons,
lepox_to_next);
#ifdef PROFILE
{
build_finish = clock();
build_cumul += (build_finish - build_start) / (double)CLOCKS_PER_SEC;
}
#endif
std::vector<int> missing;
std::vector<int> remaining_local;
while(object_group_size > 0)
{
z3::expr_vector presence_assumptions(z_context);
assume_ConsequentialObjectPresence(z_context, local_dec_vars_T, undecided, missing, presence_assumptions);
#ifdef DEBUG
{
printf("Undecided\n");
for (unsigned int j = 0; j < undecided.size(); ++j)
{
printf(" %d\n", undecided[j]);
}
printf("Decided\n");
for (unsigned int j = 0; j < decided_solvable_objects.size(); ++j)
{
printf(" %d\n", decided_polygons[j]);
}
printf("Locals\n");
for (unsigned int j = 0; j < solvable_objects.size(); ++j)
{
printf("X: %ld,%ld Y: %ld,%ld T: %ld,%ld\n",
local_values_X[j].numerator,
local_values_X[j].denominator,
local_values_Y[j].numerator,
local_values_Y[j].denominator,
local_values_T[j].numerator,
local_values_T[j].denominator);
}
}
#endif
#ifdef DEBUG
{
printf("%ld,%ld\n", local_values_X.size(), local_values_Y.size());
for (unsigned int i = 0; i < solvable_objects.size(); ++i)
{
printf("poly: %ld\n", polygons[i].points.size());
for (unsigned int j = 0; j < polygons[i].points.size(); ++j)
{
printf(" %d,%d\n", polygons[i].points[j].x(), polygons[i].points[j].y());
}
}
}
#endif
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + progress_objects_done)) / progress_total_objects);
optimized = optimize_ConsequentialWeakPolygonNonoverlappingBinaryCentered(z_solver,
z_context,
solver_configuration,
box_half_x_max,
box_half_y_max,
local_dec_vars_X,
local_dec_vars_Y,
local_dec_vars_T,
local_values_X,
local_values_Y,
local_values_T,
decided_polygons,
undecided,
dec_var_names_map,
polygons,
unreachable_polygons,
presence_assumptions,
ProgressRange((SEQ_PROGRESS_RANGE * (decided_polygons.size() + progress_objects_done)) / progress_total_objects,
(SEQ_PROGRESS_RANGE * (decided_polygons.size() + (progress_objects_done + 1))) / progress_total_objects),
progress_callback);
if (optimized)
{
/*
printf("Printing solver status:\n");
cout << z_solver << "\n";
printf("Printing smt status:\n");
cout << z_solver.to_smt2() << "\n";
*/
for (unsigned int i = 0; i < undecided.size(); ++i)
{
dec_values_X[undecided[i]] = local_values_X[undecided[i]];
dec_values_Y[undecided[i]] = local_values_Y[undecided[i]];
dec_values_T[undecided[i]] = local_values_T[undecided[i]];
decided_polygons.push_back(undecided[i]);
}
augment_TemporalSpread(solver_configuration, dec_values_T, decided_polygons);
if (solvable_objects.size() - curr_polygon > (unsigned int)object_group_size)
{
curr_polygon += object_group_size;
}
else
{
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + progress_objects_done)) / progress_total_objects);
return true;
}
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + progress_objects_done)) / progress_total_objects);
break;
}
else
{
#ifdef DEBUG
{
printf("Remaining polygon: %d\n", curr_polygon + object_group_size - 1);
}
#endif
remaining_local.push_back(undecided_polygons[curr_polygon + object_group_size - 1]);
}
missing.push_back(undecided.back());
undecided.pop_back();
--object_group_size;
progress_callback((SEQ_PROGRESS_RANGE * (decided_polygons.size() + progress_objects_done)) / progress_total_objects);
}
std::reverse(remaining_local.begin(), remaining_local.end());
remaining_polygons.insert(remaining_polygons.end(), remaining_local.begin(), remaining_local.end());
#ifdef PROFILE
{
printf("Build: %.3f\n", build_cumul);
}
#endif
if (!optimized)
{
if (curr_polygon <= 0)
{
return false;
}
else
{
if (solvable_objects.size() - curr_polygon > (unsigned int)solver_configuration.object_group_size)
{
curr_polygon += solver_configuration.object_group_size;
for (; curr_polygon < solvable_objects.size(); ++curr_polygon)
{
remaining_polygons.push_back(undecided_polygons[curr_polygon]);
}
}
return true;
}
}
assert(remaining_polygons.empty());
}
assert(remaining_polygons.empty());
return true;
}

View File

@ -73,6 +73,18 @@ typedef std::basic_string<char> string;
typedef std::unordered_map<string, int> string_map;
/*----------------------------------------------------------------*/
struct SolvableObject
{
int id = 0;
Slic3r::Polygon polygon;
std::vector<Slic3r::Polygon> unreachable_polygons;
bool lepox_to_next;
};
/*----------------------------------------------------------------*/
struct Rational
@ -179,6 +191,20 @@ struct Rational
};
/*----------------------------------------------------------------*/
struct ProgressRange
{
ProgressRange(int min, int max)
: progress_min(min)
, progress_max(max)
{ /* nothing */ }
int progress_min;
int progress_max;
};
/*----------------------------------------------------------------*/
bool lines_intersect_(coord_t ax, coord_t ay, coord_t ux, coord_t uy, coord_t bx, coord_t by, coord_t vx, coord_t vy);
@ -1447,6 +1473,7 @@ bool optimize_SequentialWeakPolygonNonoverlappingBinaryCentered(z3::solver
const std::vector<Slic3r::Polygon> &polygons,
const std::vector<std::vector<Slic3r::Polygon> > &unreachable_polygons);
bool optimize_ConsequentialWeakPolygonNonoverlappingBinaryCentered(z3::solver &Solver,
z3::context &Context,
const SolverConfiguration &solver_configuration,
@ -1462,7 +1489,9 @@ bool optimize_ConsequentialWeakPolygonNonoverlappingBinaryCentered(z3::solver
const std::vector<int> &undecided,
const string_map &dec_var_names_map,
const std::vector<Slic3r::Polygon> &polygons,
const std::vector<std::vector<Slic3r::Polygon> > &unreachable_polygons);
const std::vector<std::vector<Slic3r::Polygon> > &unreachable_polygons,
const ProgressRange &progress_range,
std::function<void(int)> progress_callback);
/*----------------------------------------------------------------*/
@ -1565,10 +1594,22 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
const std::vector<int> &undecided_polygons,
std::vector<int> &decided_polygons,
std::vector<int> &remaining_polygons,
int objects_done,
int total_objects,
int progress_objects_done,
int progress_total_objects,
std::function<void(int)> progress_callback = [](int progress){});
bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const SolverConfiguration &solver_configuration,
std::vector<Rational> &dec_values_X,
std::vector<Rational> &dec_values_Y,
std::vector<Rational> &dec_values_T,
const std::vector<SolvableObject> &solvable_objects,
const std::vector<int> &undecided_polygons,
std::vector<int> &decided_polygons,
std::vector<int> &remaining_polygons,
int progress_objects_done,
int progress_total_objects,
std::function<void(int)> progress_callback = [](int progress){});
/*----------------------------------------------------------------*/
} // namespace Sequential

View File

@ -751,11 +751,6 @@ int solve_SequentialPrint(const CommandParameters &command_parameters)
next_unreachable_polygons.push_back(unreachable_polygons[remaining_polygons[i]]);
next_lepox_to_next.push_back(lepox_to_next[remaining_polygons[i]]);
}
/* TODO: remove */
polygons.clear();
unreachable_polygons.clear();
lepox_to_next.clear();
polygon_index_map.clear();

View File

@ -401,6 +401,87 @@ int test_interface_5(void)
}
int test_interface_6(void)
{
clock_t start, finish;
printf("Testing interface 6 ...\n");
start = clock();
SolverConfiguration solver_configuration;
solver_configuration.decimation_precision = SEQ_DECIMATION_PRECISION_LOW;
solver_configuration.object_group_size = 4;
printf("Loading objects ...\n");
std::vector<ObjectToPrint> objects_to_print = load_exported_data("arrange_data_export.txt");
printf("Loading objects ... finished\n");
for (auto& object_to_print: objects_to_print)
{
object_to_print.glued_to_next = true;
}
PrinterGeometry printer_geometry;
printf("Loading printer geometry ...\n");
int result = load_printer_geometry("../printers/printer_geometry.mk4.compatibility.txt", printer_geometry);
if (result != 0)
{
printf("Cannot load printer geometry (code: %d).\n", result);
return result;
}
solver_configuration.setup(printer_geometry);
printf("Loading printer geometry ... finished\n");
std::vector<ScheduledPlate> scheduled_plates;
printf("Scheduling objects for sequential print ...\n");
scheduled_plates = schedule_ObjectsForSequentialPrint(solver_configuration,
printer_geometry,
objects_to_print,
[](int progress) { printf("Progress: %d\n", progress); });
printf("Object scheduling for sequential print SUCCESSFUL !\n");
printf("Number of plates: %ld\n", scheduled_plates.size());
for (unsigned int plate = 0; plate < scheduled_plates.size(); ++plate)
{
printf(" Number of objects on plate: %ld\n", scheduled_plates[plate].scheduled_objects.size());
for (const auto& scheduled_object: scheduled_plates[plate].scheduled_objects)
{
cout << " ID: " << scheduled_object.id << " X: " << scheduled_object.x << " Y: " << scheduled_object.y << endl;
}
}
finish = clock();
printf("Solving time: %.3f\n", (finish - start) / (double)CLOCKS_PER_SEC);
start = clock();
printf("Checking sequential printability ...\n");
bool printable = check_ScheduledObjectsForSequentialPrintability(solver_configuration,
printer_geometry,
objects_to_print,
scheduled_plates);
printf(" Scheduled/arranged objects are sequentially printable: %s\n", (printable ? "YES" : "NO"));
printf("Checking sequential printability ... finished\n");
finish = clock();
printf("Checking time: %.3f\n", (finish - start) / (double)CLOCKS_PER_SEC);
printf("Testing interface 6 ... finished\n");
return 0;
}
/*----------------------------------------------------------------*/
int main(int SEQ_UNUSED(argc), char **SEQ_UNUSED(argv))
@ -409,7 +490,8 @@ int main(int SEQ_UNUSED(argc), char **SEQ_UNUSED(argv))
// test_interface_2();
// test_interface_3();
// test_interface_4();
test_interface_5();
test_interface_5();
// test_interface_6();
return 0;
}

View File

@ -29,6 +29,8 @@ int test_interface_4(void);
/* Interface test 5 */
int test_interface_5(void);
/* Interface test 6 */
int test_interface_6(void);
/*----------------------------------------------------------------*/

View File

@ -59,7 +59,7 @@ static std::vector<Sequential::ObjectToPrint> get_objects_to_print(const Model&
std::vector<Sequential::ObjectToPrint> objects;
for (const ModelObject* mo : model.objects) {
const ModelInstance* mi = mo->instances.front();
objects.emplace_back(Sequential::ObjectToPrint{int(mo->id().id), scaled(mo->instance_bounding_box(0).size().z()), {}});
objects.emplace_back(Sequential::ObjectToPrint{int(mo->id().id), false, scaled(mo->instance_bounding_box(0).size().z()), {}});
for (double height : heights) {
auto tr = Transform3d::Identity();
Vec3d offset = mi->get_offset();