Merge branch 'lm_seq_arrange_crash'

This commit is contained in:
Lukas Matena 2025-03-25 08:56:34 +01:00
commit ed7b612753
2 changed files with 241 additions and 46 deletions

View File

@ -522,7 +522,7 @@ void introduce_ConsequentialTemporalLepoxAgainstFixed(z3::solver
} }
#endif #endif
//Solver.add(dec_vars_T[undecided[i]] + temporal_spread < dec_vars_T[next_i] && dec_vars_T[undecided[i]] + temporal_spread + temporal_spread / 2 > dec_vars_T[next_i]); //Solver.add(dec_vars_T[undecided[i]] + temporal_spread < dec_vars_T[next_i] && dec_vars_T[undecided[i]] + temporal_spread + temporal_spread / 2 > dec_vars_T[next_i]);
Solver.add((dec_vars_T[undecided[i]] < 0 || dec_vars_T[next_i] < 0) || dec_vars_T[undecided[i]] + temporal_spread < dec_vars_T[next_i] && dec_vars_T[undecided[i]] + temporal_spread + temporal_spread / 2 > dec_vars_T[next_i]); Solver.add((dec_vars_T[undecided[i]] < 0 || dec_vars_T[next_i] < 0) || (dec_vars_T[undecided[i]] + temporal_spread < dec_vars_T[next_i] && dec_vars_T[undecided[i]] + temporal_spread + temporal_spread / 2 > dec_vars_T[next_i]));
} }
/* Undecided --> missing */ /* Undecided --> missing */
else else
@ -602,6 +602,168 @@ void introduce_ConsequentialTemporalLepoxAgainstFixed(z3::solver
} }
void assume_ConsequentialTemporalLepoxAgainstFixed(z3::solver &Solver,
z3::context &Context,
const z3::expr_vector &dec_vars_T,
std::vector<Rational> &dec_values_T,
const std::vector<int> &fixed,
const std::vector<int> &undecided,
int temporal_spread,
const std::vector<Slic3r::Polygon> &SEQ_UNUSED(polygons),
const std::vector<bool> &lepox_to_next,
bool trans_bed_lepox,
z3::expr_vector &lepox_assumptions)
{
#ifdef DEBUG
{
if (trans_bed_lepox)
{
printf("Trans bed lepox.\n");
}
printf("Undecided:\n");
for (unsigned int i = 0; i < undecided.size(); ++i)
{
printf("%d", undecided[i]);
if (lepox_to_next[undecided[i]])
{
printf("-> ");
}
printf(" ");
}
printf("\n");
printf("Fixed:\n");
for (unsigned int i = 0; i < fixed.size(); ++i)
{
printf("%d", fixed[i]);
if (lepox_to_next[fixed[i]])
{
printf("-> ");
}
printf(" ");
}
printf("\n");
}
#endif
/* Bed --> Bed */
if (trans_bed_lepox)
{
if (is_undecided(0, undecided))
{
#ifdef DEBUG
{
printf("Bed --> Bed: undecided 0 first\n");
}
#endif
for (unsigned int j = 1; j < undecided.size(); ++j)
{
lepox_assumptions.push_back(dec_vars_T[undecided[j]] < 0 || dec_vars_T[0] + temporal_spread < dec_vars_T[undecided[j]]);
}
}
else if (is_fixed(0, fixed))
{
#ifdef DEBUG
{
printf("Bed --> Bed: fixed 0 still first\n");
}
#endif
for (unsigned int j = 0; j < undecided.size(); ++j)
{
lepox_assumptions.push_back(dec_vars_T[undecided[j]] < 0 || Context.real_val(dec_values_T[0].numerator, dec_values_T[0].denominator) + temporal_spread < dec_vars_T[undecided[j]]);
}
}
else
{
// should not happen
assert(false);
}
}
for (unsigned int i = 0; i < undecided.size(); ++i)
{
if (lepox_to_next[undecided[i]])
{
int next_i = undecided[i] + 1;
/* Undecided --> Undecided */
if (is_undecided(next_i, undecided))
{
#ifdef DEBUG
{
printf("Undecided --> Undecided: %d --> %d standard\n", undecided[i], next_i);
}
#endif
lepox_assumptions.push_back((dec_vars_T[undecided[i]] < 0 || dec_vars_T[next_i] < 0) || (dec_vars_T[undecided[i]] + temporal_spread < dec_vars_T[next_i] && dec_vars_T[undecided[i]] + temporal_spread + temporal_spread / 2 > dec_vars_T[next_i]));
}
/* Undecided --> missing */
else
{
#ifdef DEBUG
{
printf("Undecided --> Undecided: %d missing\n", undecided[i]);
}
#endif
for (unsigned int j = 0; j < undecided.size(); ++j)
{
if (i != j)
{
lepox_assumptions.push_back(dec_vars_T[undecided[j]] < 0 || dec_vars_T[undecided[j]] + temporal_spread < dec_vars_T[undecided[i]]);
}
}
for (unsigned int j = 0; j < fixed.size(); ++j)
{
lepox_assumptions.push_back(dec_vars_T[undecided[i]] < 0 || Context.real_val(dec_values_T[fixed[j]].numerator, dec_values_T[fixed[j]].denominator) + temporal_spread < dec_vars_T[undecided[i]]);
}
}
}
}
for (unsigned int i = 0; i < fixed.size(); ++i)
{
if (lepox_to_next[fixed[i]])
{
int next_i = fixed[i] + 1;
/* Fixed --> Undecided */
if (is_undecided(next_i, undecided))
{
#ifdef DEBUG
{
printf("Fixed --> Undecided: %d --> %d standard\n", fixed[i], next_i);
}
#endif
lepox_assumptions.push_back(dec_vars_T[next_i] < 0 || ( Context.real_val(dec_values_T[fixed[i]].numerator, dec_values_T[fixed[i]].denominator) + temporal_spread < dec_vars_T[next_i]
&& Context.real_val(dec_values_T[fixed[i]].numerator, dec_values_T[fixed[i]].denominator) + temporal_spread + temporal_spread / 2 > dec_vars_T[next_i]));
}
/* Fixed --> Fixed */
else if (is_fixed(next_i, fixed))
{
#ifdef DEBUG
{
printf("All out of the link: %d --> %d\n", fixed[i], next_i);
}
#endif
for (unsigned int j = 0; j < undecided.size(); ++j)
{
lepox_assumptions.push_back(dec_vars_T[undecided[j]] < 0 || ( Context.real_val(dec_values_T[fixed[i]].numerator, dec_values_T[fixed[i]].denominator) > dec_vars_T[undecided[j]] + temporal_spread
|| Context.real_val(dec_values_T[next_i].numerator, dec_values_T[next_i].denominator) + temporal_spread < dec_vars_T[undecided[j]]));
}
}
}
}
#ifdef DEBUG
{
printf("Origo\n");
for (unsigned int i = 0; i < fixed.size(); ++i)
{
printf("%.3f\n", dec_values_T[fixed[i]].as_double());
}
}
#endif
}
/*----------------------------------------------------------------*/ /*----------------------------------------------------------------*/
void introduce_LineNonIntersection(z3::solver &Solver, void introduce_LineNonIntersection(z3::solver &Solver,
@ -11194,17 +11356,6 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
undecided, undecided,
solver_configuration.temporal_spread, solver_configuration.temporal_spread,
polygons); polygons);
introduce_ConsequentialTemporalLepoxAgainstFixed(z_solver,
z_context,
local_dec_vars_T,
local_values_T,
decided_polygons,
undecided,
solver_configuration.temporal_spread,
polygons,
lepox_to_next,
trans_bed_lepox);
std::vector<int> missing; std::vector<int> missing;
std::vector<int> remaining_local; std::vector<int> remaining_local;
@ -11212,7 +11363,19 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
while(object_group_size > 0) while(object_group_size > 0)
{ {
z3::expr_vector presence_assumptions(z_context); z3::expr_vector presence_assumptions(z_context);
assume_ConsequentialObjectPresence(z_context, local_dec_vars_T, undecided, missing, presence_assumptions); assume_ConsequentialObjectPresence(z_context, local_dec_vars_T, undecided, missing, presence_assumptions);
assume_ConsequentialTemporalLepoxAgainstFixed(z_solver,
z_context,
local_dec_vars_T,
local_values_T,
decided_polygons,
undecided,
solver_configuration.temporal_spread,
polygons,
lepox_to_next,
trans_bed_lepox,
presence_assumptions);
#ifdef DEBUG #ifdef DEBUG
{ {
@ -11371,9 +11534,9 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
int progress_total_object_phases, int progress_total_object_phases,
std::function<void(int)> progress_callback) std::function<void(int)> progress_callback)
{ {
std::vector<int> undecided; std::vector<int> undecided;
decided_polygons.clear(); decided_polygons.clear();
remaining_polygons.clear(); remaining_polygons.clear();
dec_values_X.resize(solvable_objects.size()); dec_values_X.resize(solvable_objects.size());
@ -11419,9 +11582,10 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
unreachable_polygons.push_back(solvable_object.unreachable_polygons); unreachable_polygons.push_back(solvable_object.unreachable_polygons);
lepox_to_next.push_back(solvable_object.lepox_to_next); lepox_to_next.push_back(solvable_object.lepox_to_next);
} }
for (unsigned int curr_polygon = 0; curr_polygon < solvable_objects.size(); /* nothing */) unsigned int curr_polygon;
{ for (curr_polygon = 0; curr_polygon < solvable_objects.size(); /* nothing */)
{
bool optimized = false; bool optimized = false;
z3::set_param("timeout", solver_configuration.optimization_timeout.c_str()); z3::set_param("timeout", solver_configuration.optimization_timeout.c_str());
@ -11489,24 +11653,24 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
undecided, undecided,
solver_configuration.temporal_spread, solver_configuration.temporal_spread,
polygons); polygons);
introduce_ConsequentialTemporalLepoxAgainstFixed(z_solver, std::vector<int> remaining_local;
z_context,
local_dec_vars_T,
local_values_T,
decided_polygons,
undecided,
solver_configuration.temporal_spread,
polygons,
lepox_to_next,
trans_bed_lepox);
std::vector<int> missing;
std::vector<int> remaining_local;
while(object_group_size > 0) while(object_group_size > 0)
{ {
z3::expr_vector presence_assumptions(z_context); z3::expr_vector presence_assumptions(z_context);
assume_ConsequentialObjectPresence(z_context, local_dec_vars_T, undecided, missing, presence_assumptions); assume_ConsequentialObjectPresence(z_context, local_dec_vars_T, undecided, remaining_local, presence_assumptions);
assume_ConsequentialTemporalLepoxAgainstFixed(z_solver,
z_context,
local_dec_vars_T,
local_values_T,
decided_polygons,
undecided,
solver_configuration.temporal_spread,
polygons,
lepox_to_next,
trans_bed_lepox,
presence_assumptions);
#ifdef DEBUG #ifdef DEBUG
{ {
@ -11630,7 +11794,7 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
progress_callback((SEQ_PROGRESS_RANGE * progress_object_phases_done) / progress_total_object_phases); progress_callback((SEQ_PROGRESS_RANGE * progress_object_phases_done) / progress_total_object_phases);
return true; return true;
} }
curr_polygon += solver_configuration.object_group_size; curr_polygon += object_group_size;
progress_callback((SEQ_PROGRESS_RANGE * progress_object_phases_done) / progress_total_object_phases); progress_callback((SEQ_PROGRESS_RANGE * progress_object_phases_done) / progress_total_object_phases);
break; break;
} }
@ -11646,18 +11810,30 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
++progress_object_phases_done; ++progress_object_phases_done;
} }
remaining_local.push_back(undecided.back()); remaining_local.push_back(undecided.back());
} undecided.pop_back();
missing.push_back(undecided.back());
undecided.pop_back();
--object_group_size; --object_group_size;
progress_callback((SEQ_PROGRESS_RANGE * progress_object_phases_done) / progress_total_object_phases); progress_callback((SEQ_PROGRESS_RANGE * progress_object_phases_done) / progress_total_object_phases);
}
} }
std::reverse(remaining_local.begin(), remaining_local.end()); std::reverse(remaining_local.begin(), remaining_local.end());
remaining_polygons.insert(remaining_polygons.end(), remaining_local.begin(), remaining_local.end()); remaining_polygons.insert(remaining_polygons.end(), remaining_local.begin(), remaining_local.end());
if (!optimized) if (optimized)
{
if (object_group_size < solver_configuration.object_group_size)
{
int group_size_diff = solver_configuration.object_group_size - object_group_size;
if (curr_polygon + group_size_diff < solvable_objects.size())
{
curr_polygon += group_size_diff;
break;
}
return true;
}
}
else
{ {
if (curr_polygon <= 0) if (curr_polygon <= 0)
{ {
@ -11668,17 +11844,24 @@ bool optimize_SubglobalConsequentialPolygonNonoverlappingBinaryCentered(const So
if (curr_polygon + solver_configuration.object_group_size < solvable_objects.size()) if (curr_polygon + solver_configuration.object_group_size < solvable_objects.size())
{ {
curr_polygon += solver_configuration.object_group_size; curr_polygon += solver_configuration.object_group_size;
break;
for (; curr_polygon < solvable_objects.size(); ++curr_polygon)
{
remaining_polygons.push_back(curr_polygon);
}
} }
return true; return true;
} }
} }
} }
assert(remaining_polygons.empty()); for (; curr_polygon < solvable_objects.size(); ++curr_polygon)
{
remaining_polygons.push_back(curr_polygon);
}
#ifdef DEBUG
{
for (unsigned int i = 0; i < remaining_polygons.size(); ++i)
{
printf("Remaining: %d\n", remaining_polygons[i]);
}
}
#endif
return true; return true;
} }

View File

@ -347,6 +347,18 @@ void introduce_ConsequentialTemporalLepoxAgainstFixed(z3::solver
const std::vector<bool> &lepox_to_next, const std::vector<bool> &lepox_to_next,
bool trans_bed_lepox); bool trans_bed_lepox);
void assume_ConsequentialTemporalLepoxAgainstFixed(z3::solver &Solver,
z3::context &Context,
const z3::expr_vector &dec_vars_T,
std::vector<Rational> &dec_values_T,
const std::vector<int> &fixed,
const std::vector<int> &undecided,
int temporal_spread,
const std::vector<Slic3r::Polygon> &SEQ_UNUSED(polygons),
const std::vector<bool> &lepox_to_next,
bool trans_bed_lepox,
z3::expr_vector &lepox_assumptions);
/*----------------------------------------------------------------*/ /*----------------------------------------------------------------*/
void introduce_LineNonIntersection(z3::solver &Solver, void introduce_LineNonIntersection(z3::solver &Solver,