#include "SupportableIssuesSearch.hpp" #include "tbb/parallel_for.h" #include "tbb/blocked_range.h" #include "tbb/parallel_reduce.h" #include #include #include #include #include "libslic3r/Layer.hpp" #include "libslic3r/ClipperUtils.hpp" #include "Geometry/ConvexHull.hpp" #include "PolygonPointTest.hpp" #define DEBUG_FILES #ifdef DEBUG_FILES #include #endif namespace Slic3r { namespace SupportableIssues { void Issues::add(const Issues &layer_issues) { supports_nedded.insert(supports_nedded.end(), layer_issues.supports_nedded.begin(), layer_issues.supports_nedded.end()); curling_up.insert(curling_up.end(), layer_issues.curling_up.begin(), layer_issues.curling_up.end()); } bool Issues::empty() const { return supports_nedded.empty() && curling_up.empty(); } SupportPoint::SupportPoint(const Vec3f &position, float weight) : position(position), weight(weight) { } SupportPoint::SupportPoint(const Vec3f &position) : position(position), weight(0.0f) { } CurledFilament::CurledFilament(const Vec3f &position, float estimated_height) : position(position), estimated_height(estimated_height) { } CurledFilament::CurledFilament(const Vec3f &position) : position(position), estimated_height(0.0f) { } struct Cell { float weight; float curled_height; int island_id = std::numeric_limits::max(); }; struct CentroidAccumulator { Polygon convex_hull { }; Points points { }; Vec3d accumulated_value { }; float accumulated_weight { }; const double base_height { }; explicit CentroidAccumulator(double base_height) : base_height(base_height) { } void calculate_base_hull() { convex_hull = Geometry::convex_hull(points); } }; struct CentroidAccumulators { std::unordered_map mapping; std::vector acccumulators; explicit CentroidAccumulators(size_t reserve_count) { acccumulators.reserve(reserve_count); } CentroidAccumulator& create_accumulator(int id, double base_height) { mapping[id] = acccumulators.size(); acccumulators.push_back(CentroidAccumulator { base_height }); return this->access(id); } CentroidAccumulator& access(int id) { return acccumulators[mapping[id]]; } void merge_to(int from_id, int to_id) { if (from_id == to_id) { return; } CentroidAccumulator &from_acc = this->access(from_id); CentroidAccumulator &to_acc = this->access(to_id); to_acc.accumulated_value += from_acc.accumulated_value; to_acc.accumulated_weight += from_acc.accumulated_weight; to_acc.points.insert(to_acc.points.end(), from_acc.points.begin(), from_acc.points.end()); to_acc.calculate_base_hull(); mapping[from_id] = mapping[to_id]; } }; struct WeightDistributionMatrix { // Lets make Z coord half the size of X (and Y). // This corresponds to angle of ~26 degrees between center of one cell and other one up and sideways // which is approximately a limiting printable angle. WeightDistributionMatrix() = default; void init(const PrintObject *po, size_t layer_idx_begin, size_t layer_idx_end) { Vec2crd size_half = po->size().head<2>().cwiseQuotient(Vec2crd(2, 2)) + Vec2crd::Ones(); Vec3crd min = Vec3crd(-size_half.x(), -size_half.y(), 0); Vec3crd max = Vec3crd(size_half.x(), size_half.y(), po->height()); cell_size = Vec3crd { int(cell_height * 2), int(cell_height * 2), int(cell_height) }; assert(cell_size.x() == cell_size.y()); global_origin = min; global_size = max - min; global_cell_count = global_size.cwiseQuotient(cell_size) + Vec3i::Ones(); coord_t local_min_z = scale_(po->layers()[layer_idx_begin]->print_z); coord_t local_max_z = scale_(po->layers()[layer_idx_end > 0 ? layer_idx_end - 1 : 0]->print_z); int local_min_z_index = local_min_z / cell_size.z(); int local_max_z_index = local_max_z / cell_size.z() + 1; local_z_index_offset = local_min_z_index; local_z_cell_count = local_max_z_index + 1 - local_min_z_index; cells.resize(local_z_cell_count * global_cell_count.y() * global_cell_count.x()); } Vec3i to_global_cell_coords(const Vec3i &local_cell_coords) const { return local_cell_coords + local_z_index_offset * Vec3i::UnitZ(); } Vec3i to_local_cell_coords(const Vec3i &global_cell_coords) const { return global_cell_coords - local_z_index_offset * Vec3i::UnitZ(); } Vec3i to_global_cell_coords(const Point &p, float print_z) const { Vec3crd position = Vec3crd { p.x(), p.y(), int(scale_(print_z)) }; Vec3i cell_coords = (position - this->global_origin).cwiseQuotient(this->cell_size); return cell_coords; } Vec3i to_global_cell_coords(const Vec3f &position) const { Vec3crd scaled_position = scaled(position); Vec3i cell_coords = (scaled_position - this->global_origin).cwiseQuotient(this->cell_size); return cell_coords; } Vec3i to_local_cell_coords(const Point &p, float print_z) const { Vec3i cell_coords = this->to_global_cell_coords(p, print_z); return this->to_local_cell_coords(cell_coords); } size_t to_cell_index(const Vec3i &local_cell_coords) const { assert(local_cell_coords.x() >= 0); assert(local_cell_coords.x() < global_cell_count.x()); assert(local_cell_coords.y() >= 0); assert(local_cell_coords.y() < global_cell_count.y()); assert(local_cell_coords.z() >= 0); assert(local_cell_coords.z() < local_z_cell_count); return local_cell_coords.z() * global_cell_count.x() * global_cell_count.y() + local_cell_coords.y() * global_cell_count.x() + local_cell_coords.x(); } Vec3crd get_cell_center(const Vec3i &global_cell_coords) const { return global_origin + global_cell_coords.cwiseProduct(this->cell_size) + this->cell_size.cwiseQuotient(Vec3crd(2, 2, 2)); } Cell& access_cell(const Point &p, float print_z) { return cells[this->to_cell_index(to_local_cell_coords(p, print_z))]; } Cell& access_cell(const Vec3f &unscaled_position) { return cells[this->to_cell_index(this->to_local_cell_coords(this->to_global_cell_coords(unscaled_position)))]; } Cell& access_cell(const Vec3i &local_cell_coords) { return cells[this->to_cell_index(local_cell_coords)]; } const Cell& access_cell(const Vec3i &local_cell_coords) const { return cells[this->to_cell_index(local_cell_coords)]; } void distribute_edge_weight(const Point &p1, const Point &p2, float print_z, float unscaled_width) { Vec2d dir = (p2 - p1).cast(); double length = dir.norm(); if (length < 0.01) { return; } dir /= length; double step_size = this->cell_size.x() / 2.0; double distributed_length = 0; while (distributed_length < length) { double next_len = std::min(length, distributed_length + step_size); double current_dist_payload = next_len - distributed_length; Point location = p1 + ((next_len / length) * dir).cast(); float payload = unscale(current_dist_payload) * unscaled_width; this->access_cell(location, print_z).weight += payload; distributed_length = next_len; } } void merge(const WeightDistributionMatrix &other) { int z_start = std::max(local_z_index_offset, other.local_z_index_offset); int z_end = std::min(local_z_index_offset + local_z_cell_count, other.local_z_index_offset + other.local_z_cell_count); for (int x = 0; x < global_cell_count.x(); ++x) { for (int y = 0; y < global_cell_count.y(); ++y) { for (int z = z_start; z < z_end; ++z) { Vec3i global_coords { x, y, z }; Vec3i local_coords = this->to_local_cell_coords(global_coords); Vec3i other_local_coords = other.to_local_cell_coords(global_coords); this->access_cell(local_coords).weight += other.access_cell(other_local_coords).weight; } } } } void analyze(Issues &issues) { CentroidAccumulators accumulators(issues.supports_nedded.size() + 4); int next_island_id = -1; for (int y = 0; y < global_cell_count.y(); ++y) { for (int x = 0; x < global_cell_count.x(); ++x) { Cell &cell = this->access_cell(Vec3i(x, y, 0)); if (cell.weight > 0 && cell.island_id == std::numeric_limits::max()) { CentroidAccumulator &acc = accumulators.create_accumulator(next_island_id, 0); std::set coords_to_check { Vec2i(x, y) }; while (!coords_to_check.empty()) { Vec2i current_coords = *coords_to_check.begin(); coords_to_check.erase(coords_to_check.begin()); cell = this->access_cell(Vec3i(current_coords.x(), current_coords.y(), 0)); if (cell.weight > 0 && cell.island_id == std::numeric_limits::max()) { cell.island_id = next_island_id; Vec3crd cell_center = this->get_cell_center( Vec3i(current_coords.x(), current_coords.y(), local_z_index_offset)); acc.points.push_back(Point(cell_center.head<2>())); acc.accumulated_value += cell_center.cast() * cell.weight; acc.accumulated_weight += cell.weight; for (int y_offset = -1; y_offset <= 1; ++y_offset) { for (int x_offset = -1; x_offset <= 1; ++x_offset) { if (y_offset != 0 || x_offset != 0) { coords_to_check.insert(Vec2i(current_coords.x() + x_offset, current_coords.y() + y_offset)); } } } } } next_island_id--; acc.calculate_base_hull(); } } } std::sort(issues.supports_nedded.begin(), issues.supports_nedded.end(), [](const SupportPoint &left, const SupportPoint &right) { return left.position.z() < right.position.z(); }); for (int index = 0; index < int(issues.supports_nedded.size()); ++index) { Vec3i local_coords = this->to_local_cell_coords(this->to_global_cell_coords(issues.supports_nedded[index].position)); this->access_cell(local_coords).island_id = index; CentroidAccumulator &acc = accumulators.create_accumulator(index, issues.supports_nedded[index].position.z()); acc.points.push_back(Point(scaled(Vec2f(issues.supports_nedded[index].position.head<2>())))); acc.calculate_base_hull(); } for (const CurledFilament &curling : issues.curling_up) { this->access_cell(curling.position).curled_height += curling.estimated_height; } const auto validate_xy_coords = [&](const Vec2i &local_coords) { return local_coords.x() >= 0 && local_coords.y() >= 0 && local_coords.x() < this->global_cell_count.x() && local_coords.y() < this->global_cell_count.y(); }; std::unordered_set modified_acc_ids; modified_acc_ids.reserve(issues.supports_nedded.size() + 1); for (int z = 1; z < local_z_cell_count; ++z) { modified_acc_ids.clear(); for (int x = 0; x < global_cell_count.x(); ++x) { for (int y = 0; y < global_cell_count.y(); ++y) { Cell ¤t = this->access_cell(Vec3i(x, y, z)); //first determine island id if (current.island_id == std::numeric_limits::max()) { for (int y_offset = -1; y_offset <= 1; ++y_offset) { for (int x_offset = -1; x_offset <= 1; ++x_offset) { Vec2i xy_coords { x + x_offset, y + y_offset }; if (validate_xy_coords(xy_coords)) { Cell &under = this->access_cell(Vec3i(x, y, z - 1)); int island_id = std::min(under.island_id, current.island_id); int merging_id = std::max(under.island_id, current.island_id); if (merging_id != std::numeric_limits::max() && island_id != merging_id) { accumulators.merge_to(merging_id, island_id); } if (island_id != std::numeric_limits::max()) { current.island_id = island_id; modified_acc_ids.insert(current.island_id); } current.curled_height += under.curled_height / (2 + std::abs(x_offset) + std::abs(y_offset)); } } } } //Propagate to accumulators. TODO what to do if no supporter is found? if (current.island_id != std::numeric_limits::max()) { CentroidAccumulator &acc = accumulators.access(current.island_id); acc.accumulated_value += current.weight * this->get_cell_center(this->to_global_cell_coords(Vec3i(x, y, z))).cast(); acc.accumulated_weight += current.weight; } } } // check stability of modified centroid accumulators. // Stability is the amount of work needed to push the object from stable position into unstable. // This amount of work is proportional to the increase of height of the centroid during toppling. // image here: https://hgphysics.com/gph/c-forces/2-force-effects/1-moment/stability/ // better image in Czech here in the first question: https://www.priklady.eu/cs/fyzika/mechanika-tuheho-telesa/stabilita-teles.alej for (int acc_index : modified_acc_ids) { CentroidAccumulator &acc = accumulators.access(acc_index); Vec3d centroid = acc.accumulated_value / acc.accumulated_weight; //determine signed shortest distance to the convex hull Point centroid_base_projection = Point(centroid.head<2>().cast()); double distance_sq = std::numeric_limits::max(); bool inside = true; for (Line line : acc.convex_hull.lines()) { distance_sq = std::min(line.distance_to_squared(centroid_base_projection), distance_sq); } } } } #ifdef DEBUG_FILES void debug_export(std::string file_name) const { Slic3r::CNumericLocalesSetter locales_setter; { FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_matrix.obj").c_str()).c_str(), "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "Debug files: Couldn't open " << file_name << " for writing"; return; } float max_weight = 0; for (int x = 0; x < global_cell_count.x(); ++x) { for (int y = 0; y < global_cell_count.y(); ++y) { for (int z = 0; z < local_z_cell_count; ++z) { const Cell &cell = access_cell(Vec3i(x, y, z)); max_weight = std::max(max_weight, cell.weight); } } } max_weight *= 0.8; for (int x = 0; x < global_cell_count.x(); ++x) { for (int y = 0; y < global_cell_count.y(); ++y) { for (int z = 0; z < local_z_cell_count; ++z) { Vec3f center = unscale(get_cell_center(to_global_cell_coords(Vec3i { x, y, z }))).cast(); const Cell &cell = access_cell(Vec3i(x, y, z)); if (cell.weight != 0) { fprintf(fp, "v %f %f %f %f %f %f\n", center(0), center(1), center(2), cell.weight / max_weight, 0.0, 0.0); } } } } fclose(fp); } } #endif static constexpr float cell_height = scale_(0.3f); Vec3crd cell_size { }; Vec3crd global_origin { }; Vec3crd global_size { }; Vec3i global_cell_count { }; int local_z_index_offset { }; int local_z_cell_count { }; std::vector cells { }; } ; namespace Impl { #ifdef DEBUG_FILES void debug_export(Issues issues, std::string file_name) { Slic3r::CNumericLocalesSetter locales_setter; { FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_supports.obj").c_str()).c_str(), "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "Debug files: Couldn't open " << file_name << " for writing"; return; } for (size_t i = 0; i < issues.supports_nedded.size(); ++i) { fprintf(fp, "v %f %f %f %f %f %f\n", issues.supports_nedded[i].position(0), issues.supports_nedded[i].position(1), issues.supports_nedded[i].position(2), 1.0, 0.0, 0.0); } fclose(fp); } { FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_curling.obj").c_str()).c_str(), "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "Debug files: Couldn't open " << file_name << " for writing"; return; } for (size_t i = 0; i < issues.curling_up.size(); ++i) { fprintf(fp, "v %f %f %f %f %f %f\n", issues.curling_up[i].position(0), issues.curling_up[i].position(1), issues.curling_up[i].position(2), 0.0, 1.0, 0.0); } fclose(fp); } } #endif EdgeGridWrapper compute_layer_edge_grid(const Layer *layer) { float min_region_flow_width { 1.0f }; for (const auto *region : layer->regions()) { min_region_flow_width = std::min(min_region_flow_width, region->flow(FlowRole::frExternalPerimeter).width()); } std::vector lines; for (const LayerRegion *layer_region : layer->regions()) { for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) { lines.push_back(Points { }); ex_entity->collect_points(lines.back()); } // ex_entity for (const ExtrusionEntity *ex_entity : layer_region->fills.entities) { lines.push_back(Points { }); ex_entity->collect_points(lines.back()); } // ex_entity } return EdgeGridWrapper(scale_(min_region_flow_width), lines); } //TODO needs revision coordf_t get_flow_width(const LayerRegion *region, ExtrusionRole role) { switch (role) { case ExtrusionRole::erBridgeInfill: return region->flow(FlowRole::frExternalPerimeter).scaled_width(); case ExtrusionRole::erExternalPerimeter: return region->flow(FlowRole::frExternalPerimeter).scaled_width(); case ExtrusionRole::erGapFill: return region->flow(FlowRole::frInfill).scaled_width(); case ExtrusionRole::erPerimeter: return region->flow(FlowRole::frPerimeter).scaled_width(); case ExtrusionRole::erSolidInfill: return region->flow(FlowRole::frSolidInfill).scaled_width(); default: return region->flow(FlowRole::frPerimeter).scaled_width(); } } coordf_t get_max_allowed_distance(ExtrusionRole role, coordf_t flow_width, bool external_perimeters_first, const Params ¶ms) { // <= distance / flow_width (can be larger for perimeter, if not external perimeter first) if ((role == ExtrusionRole::erExternalPerimeter || role == ExtrusionRole::erOverhangPerimeter) && (external_perimeters_first)) { return params.max_first_ex_perim_unsupported_distance_factor * flow_width; } else { return params.max_unsupported_distance_factor * flow_width; } } struct SegmentAccumulator { float distance = 0; //accumulated distance float curvature = 0; //accumulated signed ccw angles float max_curvature = 0; //max absolute accumulated value void add_distance(float dist) { distance += dist; } void add_angle(float ccw_angle) { curvature += ccw_angle; max_curvature = std::max(max_curvature, std::abs(curvature)); } void reset() { distance = 0; curvature = 0; max_curvature = 0; } }; Issues check_extrusion_entity_stability(const ExtrusionEntity *entity, float print_z, const LayerRegion *layer_region, const EdgeGridWrapper &supported_grid, WeightDistributionMatrix &weight_matrix, const Params ¶ms) { Issues issues { }; if (entity->is_collection()) { for (const auto *e : static_cast(entity)->entities) { issues.add(check_extrusion_entity_stability(e, print_z, layer_region, supported_grid, weight_matrix, params)); } } else { //single extrusion path, with possible varying parameters //prepare stack of points on the extrusion path. If there are long segments, additional points might be pushed onto the stack during the algorithm. std::stack points { }; for (const auto &p : entity->as_polyline().points) { points.push(p); } SegmentAccumulator supports_acc { }; supports_acc.add_distance(params.bridge_distance + 1.0f); // initialize unsupported distance with larger than tolerable distance -> // -> it prevents extruding perimeter start and short loops into air. SegmentAccumulator curling_acc { }; const auto to_vec3f = [print_z](const Point &point) { Vec2f tmp = unscale(point).cast(); return Vec3f(tmp.x(), tmp.y(), print_z); }; Point prev_point = points.top(); // prev point of the path. Initialize with first point. Vec3f prev_fpoint = to_vec3f(prev_point); coordf_t flow_width = get_flow_width(layer_region, entity->role()); bool external_perimters_first = layer_region->region().config().external_perimeters_first; const coordf_t max_allowed_dist_from_prev_layer = get_max_allowed_distance(entity->role(), flow_width, external_perimters_first, params); while (!points.empty()) { Point point = points.top(); points.pop(); Vec3f fpoint = to_vec3f(point); float edge_len = (fpoint - prev_fpoint).norm(); weight_matrix.distribute_edge_weight(prev_point, point, print_z, unscale(flow_width)); coordf_t dist_from_prev_layer { 0 }; if (!supported_grid.signed_distance(point, flow_width, dist_from_prev_layer)) { // dist from prev layer not found, assume empty layer issues.supports_nedded.push_back(SupportPoint(fpoint)); supports_acc.reset(); } float angle = 0; if (!points.empty()) { const Vec2f v1 = (fpoint - prev_fpoint).head<2>(); const Vec2f v2 = unscale(points.top()).cast() - fpoint.head<2>(); float dot = v1(0) * v2(0) + v1(1) * v2(1); float cross = v1(0) * v2(1) - v1(1) * v2(0); angle = float(atan2(float(cross), float(dot))); // ccw angle, TODO replace with angle func, once it gets into master } supports_acc.add_angle(angle); curling_acc.add_angle(angle); if (dist_from_prev_layer > max_allowed_dist_from_prev_layer) { //extrusion point is unsupported supports_acc.add_distance(edge_len); // for algorithm simplicity, expect that the whole line between prev and current point is unsupported if (supports_acc.distance // if unsupported distance is larger than bridge distance linearly decreased by curvature, enforce supports. > params.bridge_distance / (1.0f + (supports_acc.max_curvature * params.bridge_distance_decrease_by_curvature_factor / PI))) { issues.supports_nedded.push_back(SupportPoint(fpoint)); supports_acc.reset(); } } else { supports_acc.reset(); } // Estimation of short curvy segments which are not supported -> problems with curling if (dist_from_prev_layer > 0.0f) { //extrusion point is unsupported or poorly supported curling_acc.add_distance(edge_len); if (curling_acc.max_curvature / (PI * curling_acc.distance) > params.limit_curvature) { issues.curling_up.push_back(CurledFilament(fpoint, layer_region->layer()->height)); curling_acc.reset(); } } else { curling_acc.reset(); } prev_point = point; prev_fpoint = fpoint; if (!points.empty()) { //oversampling if necessary Vec2f next = unscale(points.top()).cast(); Vec2f reverse_v = fpoint.head<2>() - next; // vector from next to current float dist_to_next = reverse_v.norm(); reverse_v.normalize(); int new_points_count = dist_to_next / params.bridge_distance; float step_size = dist_to_next / (new_points_count + 1); for (int i = 1; i <= new_points_count; ++i) { points.push(Point::new_scale(Vec2f(next + reverse_v * (i * step_size)))); } } } } return issues; } Issues check_layer_stability(const PrintObject *po, size_t layer_idx, bool full_check, WeightDistributionMatrix &weight_matrix, const Params ¶ms) { std::cout << "Checking: " << layer_idx << std::endl; if (layer_idx == 0) { // first layer is usually ok return {}; } const Layer *layer = po->get_layer(layer_idx); //Prepare edge grid of previous layer, will be used to check if the extrusion path is supported EdgeGridWrapper supported_grid = compute_layer_edge_grid(layer->lower_layer); Issues issues { }; if (full_check) { // If full checkm check stability of perimeters, gap fills, and bridges. for (const LayerRegion *layer_region : layer->regions()) { for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) { for (const ExtrusionEntity *perimeter : static_cast(ex_entity)->entities) { issues.add( check_extrusion_entity_stability(perimeter, layer->print_z, layer_region, supported_grid, weight_matrix, params)); } // perimeter } // ex_entity for (const ExtrusionEntity *ex_entity : layer_region->fills.entities) { for (const ExtrusionEntity *fill : static_cast(ex_entity)->entities) { if (fill->role() == ExtrusionRole::erGapFill || fill->role() == ExtrusionRole::erBridgeInfill) { issues.add( check_extrusion_entity_stability(fill, layer->print_z, layer_region, supported_grid, weight_matrix, params)); } } // fill } // ex_entity } // region } else { // If NOT full check, check only external perimeters for (const LayerRegion *layer_region : layer->regions()) { for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) { for (const ExtrusionEntity *perimeter : static_cast(ex_entity)->entities) { if (perimeter->role() == ExtrusionRole::erExternalPerimeter || perimeter->role() == ExtrusionRole::erOverhangPerimeter) { issues.add( check_extrusion_entity_stability(perimeter, layer->print_z, layer_region, supported_grid, weight_matrix, params)); }; // ex_perimeter } // perimeter } // ex_entity } //region } return issues; } } //Impl End std::vector quick_search(const PrintObject *po, const Params ¶ms) { using namespace Impl; WeightDistributionMatrix matrix { }; matrix.init(po, 0, po->layers().size()); std::mutex matrix_mutex; size_t layer_count = po->layer_count(); std::vector layer_needs_supports(layer_count, false); tbb::parallel_for(tbb::blocked_range(1, layer_count), [&](tbb::blocked_range r) { WeightDistributionMatrix weight_matrix { }; weight_matrix.init(po, r.begin(), r.end()); for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) { auto layer_issues = check_layer_stability(po, layer_idx, false, weight_matrix, params); if (!layer_issues.supports_nedded.empty()) { layer_needs_supports[layer_idx] = true; } } matrix_mutex.lock(); matrix.merge(weight_matrix); matrix_mutex.unlock(); }); std::vector problematic_layers; for (size_t index = 0; index < layer_needs_supports.size(); ++index) { if (layer_needs_supports[index]) { problematic_layers.push_back(index); } } return problematic_layers; } Issues full_search(const PrintObject *po, const Params ¶ms) { using namespace Impl; WeightDistributionMatrix matrix { }; matrix.init(po, 0, po->layers().size()); std::mutex matrix_mutex; size_t layer_count = po->layer_count(); Issues found_issues = tbb::parallel_reduce(tbb::blocked_range(1, layer_count), Issues { }, [&](tbb::blocked_range r, const Issues &init) { WeightDistributionMatrix weight_matrix { }; weight_matrix.init(po, r.begin(), r.end()); Issues issues = init; for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) { auto layer_issues = check_layer_stability(po, layer_idx, true, weight_matrix, params); if (!layer_issues.empty()) { issues.add(layer_issues); } } matrix_mutex.lock(); matrix.merge(weight_matrix); matrix_mutex.unlock(); return issues; }, [](Issues left, const Issues &right) { left.add(right); return left; } ); matrix.analyze(found_issues); matrix.debug_export("weight"); #ifdef DEBUG_FILES Impl::debug_export(found_issues, "issues"); #endif return found_issues; } } }