///|/ Copyright (c) Prusa Research 2016 - 2023 Vojtěch Bubník @bubnikv, Lukáš Hejl @hejllukas, Lukáš Matěna @lukasmatena, Enrico Turri @enricoturri1966, Oleksandra Iushchenko @YuSanka ///|/ Copyright (c) SuperSlicer 2023 Remi Durand @supermerill ///|/ Copyright (c) 2017 Eyal Soha @eyal0 ///|/ Copyright (c) Slic3r 2013 - 2016 Alessandro Ranellucci @alranel ///|/ ///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher ///|/ #ifndef slic3r_ExtrusionEntity_hpp_ #define slic3r_ExtrusionEntity_hpp_ #include #include #include #include #include #include #include #include #include #include #include #include "libslic3r.h" #include "ExtrusionRole.hpp" #include "Flow.hpp" #include "Polygon.hpp" #include "Polyline.hpp" #include "libslic3r/ExPolygon.hpp" #include "libslic3r/Point.hpp" namespace Slic3r { class ExPolygon; using ExPolygons = std::vector; class ExtrusionEntityCollection; class Extruder; class ExtrusionEntity { public: virtual ExtrusionRole role() const = 0; virtual bool is_collection() const { return false; } virtual bool is_loop() const { return false; } virtual bool can_reverse() const { return true; } virtual ExtrusionEntity* clone() const = 0; // Create a new object, initialize it with this object using the move semantics. virtual ExtrusionEntity* clone_move() = 0; virtual ~ExtrusionEntity() = default; virtual void reverse() = 0; virtual const Point& first_point() const = 0; virtual const Point& last_point() const = 0; // Returns an approximately middle point of a path, loop or an extrusion collection. // Used to get a sample point of an extrusion or extrusion collection, which is possibly deep inside its island. virtual const Point& middle_point() const = 0; // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. virtual void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const = 0; // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0; Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; } Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; } // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. virtual double min_mm3_per_mm() const = 0; virtual Polyline as_polyline() const = 0; virtual void collect_polylines(Polylines &dst) const = 0; virtual void collect_points(Points &dst) const = 0; virtual Polylines as_polylines() const { Polylines dst; this->collect_polylines(dst); return dst; } virtual double length() const = 0; virtual double total_volume() const = 0; }; using ExtrusionEntitiesPtr = std::vector; // Const reference for ordering extrusion entities without having to modify them. class ExtrusionEntityReference final { public: ExtrusionEntityReference() = delete; ExtrusionEntityReference(const ExtrusionEntity &extrusion_entity, bool flipped) : m_extrusion_entity(&extrusion_entity), m_flipped(flipped) {} ExtrusionEntityReference operator=(const ExtrusionEntityReference &rhs) { m_extrusion_entity = rhs.m_extrusion_entity; m_flipped = rhs.m_flipped; return *this; } const ExtrusionEntity& extrusion_entity() const { return *m_extrusion_entity; } template const Type* cast() const { return dynamic_cast(m_extrusion_entity); } bool flipped() const { return m_flipped; } private: const ExtrusionEntity *m_extrusion_entity; bool m_flipped; }; using ExtrusionEntityReferences = std::vector; struct ExtrusionFlow { ExtrusionFlow() = default; ExtrusionFlow(double mm3_per_mm, float width, float height) : mm3_per_mm{ mm3_per_mm }, width{ width }, height{ height } {} ExtrusionFlow(const Flow &flow) : mm3_per_mm(flow.mm3_per_mm()), width(flow.width()), height(flow.height()) {} // Volumetric velocity. mm^3 of plastic per mm of linear head motion. Used by the G-code generator. double mm3_per_mm{ -1. }; // Width of the extrusion, used for visualization purposes. float width{ -1.f }; // Height of the extrusion, used for visualization purposes. float height{ -1.f }; }; inline bool operator==(const ExtrusionFlow &lhs, const ExtrusionFlow &rhs) { return lhs.mm3_per_mm == rhs.mm3_per_mm && lhs.width == rhs.width && lhs.height == rhs.height; } struct OverhangAttributes { float start_distance_from_prev_layer; float end_distance_from_prev_layer; float proximity_to_curled_lines; //value between 0 and 1 }; inline bool operator==(const OverhangAttributes &lhs, const OverhangAttributes &rhs) { if (std::abs(lhs.start_distance_from_prev_layer - rhs.start_distance_from_prev_layer) > std::numeric_limits::epsilon()) { return false; } if (std::abs(lhs.end_distance_from_prev_layer - rhs.end_distance_from_prev_layer) > std::numeric_limits::epsilon()) { return false; } if (std::abs(lhs.proximity_to_curled_lines - rhs.proximity_to_curled_lines) > std::numeric_limits::epsilon()) { return false; } return true; } struct ExtrusionAttributes : ExtrusionFlow { ExtrusionAttributes() = default; ExtrusionAttributes(ExtrusionRole role) : role{ role } {} ExtrusionAttributes(ExtrusionRole role, const Flow &flow) : role{ role }, ExtrusionFlow{ flow } {} ExtrusionAttributes(ExtrusionRole role, const ExtrusionFlow &flow) : role{ role }, ExtrusionFlow{ flow } {} ExtrusionAttributes(ExtrusionRole role, const ExtrusionFlow &flow, const bool maybe_self_crossing) : role{role}, ExtrusionFlow{flow}, maybe_self_crossing(maybe_self_crossing) {} // What is the role / purpose of this extrusion? ExtrusionRole role{ ExtrusionRole::None }; bool maybe_self_crossing{false}; // OVerhangAttributes are currently computed for perimeters if dynamic overhangs are enabled. // They are used to control fan and print speed in export. std::optional overhang_attributes; }; inline bool operator==(const ExtrusionAttributes &lhs, const ExtrusionAttributes &rhs) { return static_cast(lhs) == static_cast(rhs) && lhs.role == rhs.role && lhs.overhang_attributes == rhs.overhang_attributes; } class ExtrusionPath : public ExtrusionEntity { public: Polyline polyline; ExtrusionPath(ExtrusionRole role) : m_attributes{ role } {} ExtrusionPath(const ExtrusionAttributes &attributes) : m_attributes(attributes) {} ExtrusionPath(const ExtrusionPath &rhs) : polyline(rhs.polyline), m_attributes(rhs.m_attributes) {} ExtrusionPath(ExtrusionPath &&rhs) : polyline(std::move(rhs.polyline)), m_attributes(rhs.m_attributes) {} ExtrusionPath(const Polyline &polyline, const ExtrusionAttributes &attribs) : polyline(polyline), m_attributes(attribs) {} ExtrusionPath(Polyline &&polyline, const ExtrusionAttributes &attribs) : polyline(std::move(polyline)), m_attributes(attribs) {} ExtrusionPath& operator=(const ExtrusionPath &rhs) { this->polyline = rhs.polyline; m_attributes = rhs.m_attributes; return *this; } ExtrusionPath& operator=(ExtrusionPath &&rhs) { this->polyline = std::move(rhs.polyline); m_attributes = rhs.m_attributes; return *this; } ExtrusionEntity* clone() const override { return new ExtrusionPath(*this); } // Create a new object, initialize it with this object using the move semantics. ExtrusionEntity* clone_move() override { return new ExtrusionPath(std::move(*this)); } void reverse() override { this->polyline.reverse(); } const Point& first_point() const override { return this->polyline.points.front(); } const Point& last_point() const override { return this->polyline.points.back(); } const Point& middle_point() const override { return this->polyline.points[this->polyline.size() / 2]; } size_t size() const { return this->polyline.size(); } bool empty() const { return this->polyline.empty(); } bool is_closed() const { return ! this->empty() && this->polyline.points.front() == this->polyline.points.back(); } // Produce a list of extrusion paths into retval by clipping this path by ExPolygons. // Currently not used. void intersect_expolygons(const ExPolygons &collection, ExtrusionEntityCollection* retval) const; // Produce a list of extrusion paths into retval by removing parts of this path by ExPolygons. // Currently not used. void subtract_expolygons(const ExPolygons &collection, ExtrusionEntityCollection* retval) const; void clip_end(double distance); void simplify(double tolerance); double length() const override; const ExtrusionAttributes& attributes() const { return m_attributes; } ExtrusionRole role() const override { return m_attributes.role; } float width() const { return m_attributes.width; } float height() const { return m_attributes.height; } double mm3_per_mm() const { return m_attributes.mm3_per_mm; } // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. double min_mm3_per_mm() const override { return m_attributes.mm3_per_mm; } std::optional& overhang_attributes_mutable() { return m_attributes.overhang_attributes; } // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override; // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override; Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; } Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; } Polyline as_polyline() const override { return this->polyline; } void collect_polylines(Polylines &dst) const override { if (! this->polyline.empty()) dst.emplace_back(this->polyline); } void collect_points(Points &dst) const override { append(dst, this->polyline.points); } double total_volume() const override { return m_attributes.mm3_per_mm * unscale(length()); } private: void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const; ExtrusionAttributes m_attributes; }; class ExtrusionPathOriented : public ExtrusionPath { public: ExtrusionPathOriented(const ExtrusionAttributes &attribs) : ExtrusionPath(attribs) {} ExtrusionPathOriented(const Polyline &polyline, const ExtrusionAttributes &attribs) : ExtrusionPath(polyline, attribs) {} ExtrusionPathOriented(Polyline &&polyline, const ExtrusionAttributes &attribs) : ExtrusionPath(std::move(polyline), attribs) {} ExtrusionEntity* clone() const override { return new ExtrusionPathOriented(*this); } // Create a new object, initialize it with this object using the move semantics. ExtrusionEntity* clone_move() override { return new ExtrusionPathOriented(std::move(*this)); } virtual bool can_reverse() const override { return false; } }; typedef std::vector ExtrusionPaths; // Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging. class ExtrusionMultiPath : public ExtrusionEntity { public: ExtrusionPaths paths; ExtrusionMultiPath() {} ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : paths(rhs.paths) {} ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : paths(std::move(rhs.paths)) {} ExtrusionMultiPath(const ExtrusionPaths &paths) : paths(paths) {} ExtrusionMultiPath(const ExtrusionPath &path) { this->paths.push_back(path); } ExtrusionMultiPath& operator=(const ExtrusionMultiPath &rhs) { this->paths = rhs.paths; return *this; } ExtrusionMultiPath& operator=(ExtrusionMultiPath &&rhs) { this->paths = std::move(rhs.paths); return *this; } bool is_loop() const override { return false; } bool can_reverse() const override { return true; } ExtrusionEntity* clone() const override { return new ExtrusionMultiPath(*this); } // Create a new object, initialize it with this object using the move semantics. ExtrusionEntity* clone_move() override { return new ExtrusionMultiPath(std::move(*this)); } void reverse() override; const Point& first_point() const override { return this->paths.front().polyline.points.front(); } const Point& last_point() const override { return this->paths.back().polyline.points.back(); } const Point& middle_point() const override { auto &path = this->paths[this->paths.size() / 2]; return path.polyline.points[path.polyline.size() / 2]; } size_t size() const { return this->paths.size(); } bool empty() const { return this->paths.empty(); } double length() const override; ExtrusionRole role() const override { return this->paths.empty() ? ExtrusionRole::None : this->paths.front().role(); } // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override; // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override; Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; } Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; } // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. double min_mm3_per_mm() const override; Polyline as_polyline() const override; void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); } void collect_points(Points &dst) const override { size_t n = std::accumulate(paths.begin(), paths.end(), 0, [](const size_t n, const ExtrusionPath &p){ return n + p.polyline.size(); }); dst.reserve(dst.size() + n); for (const ExtrusionPath &p : this->paths) append(dst, p.polyline.points); } double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; } }; // Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging. class ExtrusionLoop : public ExtrusionEntity { public: ExtrusionPaths paths; ExtrusionLoop() = default; ExtrusionLoop(ExtrusionLoopRole role) : m_loop_role(role) {} ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault) : paths(paths), m_loop_role(role) {} ExtrusionLoop(ExtrusionPaths &&paths, ExtrusionLoopRole role = elrDefault) : paths(std::move(paths)), m_loop_role(role) {} ExtrusionLoop(const ExtrusionPath &path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role) { this->paths.push_back(path); } ExtrusionLoop(ExtrusionPath &&path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role) { this->paths.emplace_back(std::move(path)); } bool is_loop() const override{ return true; } bool can_reverse() const override { return false; } ExtrusionEntity* clone() const override{ return new ExtrusionLoop (*this); } // Create a new object, initialize it with this object using the move semantics. ExtrusionEntity* clone_move() override { return new ExtrusionLoop(std::move(*this)); } double area() const; bool is_counter_clockwise() const { return this->area() > 0; } bool is_clockwise() const { return this->area() < 0; } // Reverse shall never be called on ExtrusionLoop using a virtual function call, it is most likely never what one wants, // as this->can_reverse() returns false for an ExtrusionLoop. void reverse() override; // Used by PerimeterGenerator to reorient extrusion loops. void reverse_loop(); const Point& first_point() const override { return this->paths.front().polyline.points.front(); } const Point& last_point() const override { assert(this->first_point() == this->paths.back().polyline.points.back()); return this->first_point(); } const Point& middle_point() const override { auto& path = this->paths[this->paths.size() / 2]; return path.polyline.points[path.polyline.size() / 2]; } Polygon polygon() const; double length() const override; bool split_at_vertex(const Point &point, const double scaled_epsilon = scaled(0.001)); void split_at(const Point &point, bool prefer_non_overhang, const double scaled_epsilon = scaled(0.001)); struct ClosestPathPoint { size_t path_idx; size_t segment_idx; Point foot_pt; }; ClosestPathPoint get_closest_path_and_point(const Point& point, bool prefer_non_overhang) const; void clip_end(double distance, ExtrusionPaths* paths) const; // Test, whether the point is extruded by a bridging flow. // This used to be used to avoid placing seams on overhangs, but now the EdgeGrid is used instead. bool has_overhang_point(const Point &point) const; ExtrusionRole role() const override { return this->paths.empty() ? ExtrusionRole::None : this->paths.front().role(); } ExtrusionLoopRole loop_role() const { return m_loop_role; } // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override; // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override; Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; } Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; } // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. double min_mm3_per_mm() const override; Polyline as_polyline() const override { return this->polygon().split_at_first_point(); } void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); } void collect_points(Points &dst) const override { size_t n = std::accumulate(paths.begin(), paths.end(), 0, [](const size_t n, const ExtrusionPath &p){ return n + p.polyline.size(); }); dst.reserve(dst.size() + n); for (const ExtrusionPath &p : this->paths) append(dst, p.polyline.points); } double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; } #ifndef NDEBUG bool validate() const { assert(this->first_point() == this->paths.back().polyline.points.back()); for (size_t i = 1; i < paths.size(); ++ i) assert(this->paths[i - 1].polyline.points.back() == this->paths[i].polyline.points.front()); return true; } #endif /* NDEBUG */ private: ExtrusionLoopRole m_loop_role{ elrDefault }; }; inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, const ExtrusionAttributes &attributes) { dst.reserve(dst.size() + polylines.size()); for (Polyline &polyline : polylines) if (polyline.is_valid()) dst.emplace_back(polyline, attributes); } inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, const ExtrusionAttributes &attributes) { dst.reserve(dst.size() + polylines.size()); for (Polyline &polyline : polylines) if (polyline.is_valid()) dst.emplace_back(std::move(polyline), attributes); polylines.clear(); } inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, const Polylines &polylines, const ExtrusionAttributes &attributes, bool can_reverse = true) { dst.reserve(dst.size() + polylines.size()); for (const Polyline &polyline : polylines) if (polyline.is_valid()) dst.emplace_back(can_reverse ? new ExtrusionPath(polyline, attributes) : new ExtrusionPathOriented(polyline, attributes)); } inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, const ExtrusionAttributes &attributes, bool can_reverse = true) { dst.reserve(dst.size() + polylines.size()); for (Polyline &polyline : polylines) if (polyline.is_valid()) dst.emplace_back(can_reverse ? new ExtrusionPath(std::move(polyline), attributes) : new ExtrusionPathOriented(std::move(polyline), attributes)); polylines.clear(); } inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &&loops, const ExtrusionAttributes &attributes) { dst.reserve(dst.size() + loops.size()); for (Polygon &poly : loops) { if (poly.is_valid()) { ExtrusionPath path(attributes); path.polyline.points = std::move(poly.points); path.polyline.points.push_back(path.polyline.points.front()); dst.emplace_back(new ExtrusionLoop(std::move(path))); } } loops.clear(); } inline void extrusion_entities_append_loops_and_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, const ExtrusionAttributes &attributes) { dst.reserve(dst.size() + polylines.size()); for (Polyline &polyline : polylines) if (polyline.is_valid()) dst.emplace_back(polyline.is_closed() ? static_cast(new ExtrusionLoop(ExtrusionPath{ std::move(polyline), attributes })) : static_cast(new ExtrusionPath(std::move(polyline), attributes))); polylines.clear(); } } #endif