#include "../Layer.hpp" #include "../GCode.hpp" #include "../EdgeGrid.hpp" #include "../Print.hpp" #include "../Polygon.hpp" #include "../ExPolygon.hpp" #include "../ClipperUtils.hpp" #include "../SVG.hpp" #include "AvoidCrossingPerimeters.hpp" #include #include namespace Slic3r { struct TravelPoint { Point point; // Index of the polygon containing this point. A negative value indicates that the point is not on any border int border_idx; }; struct Intersection { // Index of the polygon containing this point of intersection. size_t border_idx; // Index of the line on the polygon containing this point of intersection. size_t line_idx; // Point of intersection projected on the travel path. Point point_transformed; // Point of intersection. Point point; Intersection(size_t border_idx, size_t line_idx, const Point &point_transformed, const Point &point) : border_idx(border_idx), line_idx(line_idx), point_transformed(point_transformed), point(point){}; inline bool operator<(const Intersection &other) const { return this->point_transformed.x() < other.point_transformed.x(); } }; struct AllIntersectionsVisitor { AllIntersectionsVisitor(const EdgeGrid::Grid &grid, std::vector &intersections) : grid(grid), intersections(intersections) {} AllIntersectionsVisitor(const EdgeGrid::Grid &grid, std::vector &intersections, const Matrix2d &transform_to_x_axis, const Line &travel_line) : grid(grid), intersections(intersections), transform_to_x_axis(transform_to_x_axis), travel_line(travel_line) {} void reset() { intersection_set.clear(); } bool operator()(coord_t iy, coord_t ix) { // Called with a row and colum of the grid cell, which is intersected by a line. auto cell_data_range = grid.cell_data_range(iy, ix); for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) { // End points of the line segment and their vector. auto segment = grid.segment(*it_contour_and_segment); Point intersection_point; if (travel_line.intersection(Line(segment.first, segment.second), &intersection_point) && intersection_set.find(*it_contour_and_segment) == intersection_set.end()) { intersections.emplace_back(it_contour_and_segment->first, it_contour_and_segment->second, (transform_to_x_axis * intersection_point.cast()).cast(), intersection_point); intersection_set.insert(*it_contour_and_segment); } } // Continue traversing the grid along the edge. return true; } const EdgeGrid::Grid &grid; std::vector &intersections; Matrix2d transform_to_x_axis; Line travel_line; std::unordered_set, boost::hash>> intersection_set; }; // Create a rotation matrix for projection on the given vector static Matrix2d rotation_by_direction(const Point &direction) { Matrix2d rotation; rotation.block<1, 2>(0, 0) = direction.cast() / direction.cast().norm(); rotation(1, 0) = -rotation(0, 1); rotation(1, 1) = rotation(0, 0); return rotation; } static Point find_first_different_vertex(const Polygon &polygon, const size_t point_idx, const Point &point, bool forward) { assert(point_idx < polygon.size()); if (point != polygon.points[point_idx]) return polygon.points[point_idx]; int line_idx = int(point_idx); if (forward) for (; point == polygon.points[line_idx]; line_idx = (((line_idx + 1) < int(polygon.points.size())) ? (line_idx + 1) : 0)); else for (; point == polygon.points[line_idx]; line_idx = (((line_idx - 1) >= 0) ? (line_idx - 1) : (int(polygon.points.size()) - 1))); return polygon.points[line_idx]; } static Vec2d three_points_inward_normal(const Point &left, const Point &middle, const Point &right) { assert(left != middle); assert(middle != right); Vec2d normal_1(-1 * (middle.y() - left.y()), middle.x() - left.x()); Vec2d normal_2(-1 * (right.y() - middle.y()), right.x() - middle.x()); normal_1.normalize(); normal_2.normalize(); return (normal_1 + normal_2).normalized(); } // Compute normal of the polygon's vertex in an inward direction static Vec2d get_polygon_vertex_inward_normal(const Polygon &polygon, const size_t point_idx) { const size_t left_idx = (point_idx <= 0) ? (polygon.size() - 1) : (point_idx - 1); const size_t right_idx = (point_idx >= (polygon.size() - 1)) ? 0 : (point_idx + 1); const Point &middle = polygon.points[point_idx]; const Point &left = find_first_different_vertex(polygon, left_idx, middle, false); const Point &right = find_first_different_vertex(polygon, right_idx, middle, true); return three_points_inward_normal(left, middle, right); } // Compute offset of point_idx of the polygon in a direction of inward normal static Point get_polygon_vertex_offset(const Polygon &polygon, const size_t point_idx, const int offset) { return polygon.points[point_idx] + (get_polygon_vertex_inward_normal(polygon, point_idx) * double(offset)).cast(); } // Compute offset (in the direction of inward normal) of the point(passed on "middle") based on the nearest points laying on the polygon (left_idx and right_idx). static Point get_middle_point_offset(const Polygon &polygon, const size_t left_idx, const size_t right_idx, const Point &middle, const coord_t offset) { const Point &left = find_first_different_vertex(polygon, left_idx, middle, false); const Point &right = find_first_different_vertex(polygon, right_idx, middle, true); return middle + (three_points_inward_normal(left, middle, right) * double(offset)).cast(); } static bool check_if_could_cross_perimeters(const BoundingBox &bbox, const Point &start, const Point &end) { bool start_out_of_bound = !bbox.contains(start), end_out_of_bound = !bbox.contains(end); // When both endpoints are out of the bounding box, it needs to check in more detail. if (start_out_of_bound && end_out_of_bound) { Point intersection; return bbox.polygon().intersection(Line(start, end), &intersection); } return true; } static std::pair clamp_endpoints_by_bounding_box(const BoundingBox &bbox, const Point &start, const Point &end) { bool start_out_of_bound = !bbox.contains(start), end_out_of_bound = !bbox.contains(end); Point start_clamped = start, end_clamped = end; Points intersections; if (start_out_of_bound || end_out_of_bound) { bbox.polygon().intersections(Line(start, end), &intersections); assert(intersections.size() <= 2); } if (start_out_of_bound && !end_out_of_bound && intersections.size() == 1) { start_clamped = intersections[0]; } else if (!start_out_of_bound && end_out_of_bound && intersections.size() == 1) { end_clamped = intersections[0]; } else if (start_out_of_bound && end_out_of_bound && intersections.size() == 2) { if ((intersections[0] - start).cast().norm() < (intersections[1] - start).cast().norm()) { start_clamped = intersections[0]; end_clamped = intersections[1]; } else { start_clamped = intersections[1]; end_clamped = intersections[0]; } } return std::make_pair(start_clamped, end_clamped); } static inline float get_default_perimeter_spacing(const Print &print) { const std::vector &nozzle_diameters = print.config().nozzle_diameter.values; return float(scale_(*std::max_element(nozzle_diameters.begin(), nozzle_diameters.end()))); } static float get_perimeter_spacing(const Layer &layer) { size_t regions_count = 0; float perimeter_spacing = 0.f; for (const LayerRegion *layer_region : layer.regions()) { perimeter_spacing += layer_region->flow(frPerimeter).scaled_spacing(); ++regions_count; } assert(perimeter_spacing >= 0.f); if (regions_count != 0) perimeter_spacing /= float(regions_count); else perimeter_spacing = get_default_perimeter_spacing(*layer.object()->print()); return perimeter_spacing; } static float get_perimeter_spacing_external(const Layer &layer) { size_t regions_count = 0; float perimeter_spacing = 0.f; for (const PrintObject *object : layer.object()->print()->objects()) for (Layer *l : object->layers()) if ((layer.print_z - EPSILON) <= l->print_z && l->print_z <= (layer.print_z + EPSILON)) for (const LayerRegion *layer_region : l->regions()) { perimeter_spacing += layer_region->flow(frPerimeter).scaled_spacing(); ++regions_count; } assert(perimeter_spacing >= 0.f); if (regions_count != 0) perimeter_spacing /= float(regions_count); else perimeter_spacing = get_default_perimeter_spacing(*layer.object()->print()); return perimeter_spacing; } // Check if anyone of ExPolygons contains whole travel. template static bool any_expolygon_contains(const ExPolygons &ex_polygons, const T &travel) { for (const ExPolygon &ex_polygon : ex_polygons) if (ex_polygon.contains(travel)) return true; return false; } static std::pair split_expolygon(const ExPolygons &ex_polygons) { Polygons contours, holes; contours.reserve(ex_polygons.size()); holes.reserve(std::accumulate(ex_polygons.begin(), ex_polygons.end(), size_t(0), [](size_t sum, const ExPolygon &ex_poly) { return sum + ex_poly.holes.size(); })); for (const ExPolygon &ex_poly : ex_polygons) { contours.emplace_back(ex_poly.contour); append(holes, ex_poly.holes); } return std::make_pair(std::move(contours), std::move(holes)); } static Polyline to_polyline(const std::vector &travel) { Polyline result; result.points.reserve(travel.size()); for (const TravelPoint &t_point : travel) result.append(t_point.point); return result; } static double travel_length(const std::vector &travel) { double total_length = 0; for (size_t idx = 1; idx < travel.size(); ++idx) total_length += (travel[idx].point - travel[idx - 1].point).cast().norm(); return total_length; } #ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT static void export_travel_to_svg(const Polygons &boundary, const Line &original_travel, const Polyline &result_travel, const std::vector &intersections, const std::string &path) { BoundingBox bbox = get_extents(boundary); ::Slic3r::SVG svg(path, bbox); svg.draw_outline(boundary, "green"); svg.draw(original_travel, "blue"); svg.draw(result_travel, "red"); svg.draw(original_travel.a, "black"); svg.draw(original_travel.b, "grey"); for (const Intersection &intersection : intersections) svg.draw(intersection.point, "lightseagreen"); } static void export_travel_to_svg(const Polygons &boundary, const Line &original_travel, const std::vector &result_travel, const std::vector &intersections, const std::string &path) { export_travel_to_svg(boundary, original_travel, to_polyline(result_travel), intersections, path); } #endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */ static ExPolygons get_boundary(const Layer &layer) { const float perimeter_spacing = get_perimeter_spacing(layer); const float perimeter_offset = perimeter_spacing / 2.f; size_t polygons_count = 0; for (const LayerRegion *layer_region : layer.regions()) polygons_count += layer_region->slices.surfaces.size(); ExPolygons boundary; boundary.reserve(polygons_count); for (const LayerRegion *layer_region : layer.regions()) for (const Surface &surface : layer_region->slices.surfaces) boundary.emplace_back(surface.expolygon); boundary = union_ex(boundary); ExPolygons perimeter_boundary = offset_ex(boundary, -perimeter_offset); ExPolygons result_boundary; if (perimeter_boundary.size() != boundary.size()) { // If any part of the polygon is missing after shrinking, then for misisng parts are is used the boundary of the slice. ExPolygons missing_perimeter_boundary = offset_ex(diff_ex(boundary, offset_ex(perimeter_boundary, perimeter_offset + float(SCALED_EPSILON) / 2.f)), perimeter_offset + float(SCALED_EPSILON)); perimeter_boundary = offset_ex(perimeter_boundary, perimeter_offset); perimeter_boundary.reserve(perimeter_boundary.size() + missing_perimeter_boundary.size()); perimeter_boundary.insert(perimeter_boundary.end(), missing_perimeter_boundary.begin(), missing_perimeter_boundary.end()); // By calling intersection_ex some artifacts arose by previous operations are removed. result_boundary = union_ex(intersection_ex(offset_ex(perimeter_boundary, -perimeter_offset), boundary)); } else { result_boundary = std::move(perimeter_boundary); } auto [contours, holes] = split_expolygon(boundary); // Add an outer boundary to avoid crossing perimeters from supports ExPolygons outer_boundary = union_ex( diff(static_cast(Geometry::convex_hull(offset(contours, 2.f * perimeter_spacing))), offset(contours, perimeter_spacing + perimeter_offset))); result_boundary.insert(result_boundary.end(), outer_boundary.begin(), outer_boundary.end()); ExPolygons holes_boundary = offset_ex(holes, -perimeter_spacing); result_boundary.insert(result_boundary.end(), holes_boundary.begin(), holes_boundary.end()); result_boundary = union_ex(result_boundary); // Collect all top layers that will not be crossed. polygons_count = 0; for (const LayerRegion *layer_region : layer.regions()) for (const Surface &surface : layer_region->fill_surfaces.surfaces) if (surface.is_top()) ++polygons_count; if (polygons_count > 0) { ExPolygons top_layer_polygons; top_layer_polygons.reserve(polygons_count); for (const LayerRegion *layer_region : layer.regions()) for (const Surface &surface : layer_region->fill_surfaces.surfaces) if (surface.is_top()) top_layer_polygons.emplace_back(surface.expolygon); top_layer_polygons = union_ex(top_layer_polygons); return diff_ex(result_boundary, offset_ex(top_layer_polygons, -perimeter_offset)); } return result_boundary; } static ExPolygons get_boundary_external(const Layer &layer) { const float perimeter_spacing = get_perimeter_spacing_external(layer); const float perimeter_offset = perimeter_spacing / 2.f; ExPolygons boundary; // Collect all polygons for all printed objects and their instances, which will be printed at the same time as passed "layer". for (const PrintObject *object : layer.object()->print()->objects()) { ExPolygons polygons_per_obj; for (Layer *l : object->layers()) if ((layer.print_z - EPSILON) <= l->print_z && l->print_z <= (layer.print_z + EPSILON)) for (const LayerRegion *layer_region : l->regions()) for (const Surface &surface : layer_region->slices.surfaces) polygons_per_obj.emplace_back(surface.expolygon); for (const PrintInstance &instance : object->instances()) { size_t boundary_idx = boundary.size(); boundary.reserve(boundary.size() + polygons_per_obj.size()); boundary.insert(boundary.end(), polygons_per_obj.begin(), polygons_per_obj.end()); for (; boundary_idx < boundary.size(); ++boundary_idx) boundary[boundary_idx].translate(instance.shift.x(), instance.shift.y()); } } boundary = union_ex(boundary); auto [contours, holes] = split_expolygon(boundary); // Polygons in which is possible traveling without crossing perimeters of another object. // A convex hull allows removing unnecessary detour caused by following the boundary of the object. ExPolygons result_boundary = union_ex( diff(static_cast(Geometry::convex_hull(offset(contours, 2.f * perimeter_spacing))), offset(contours, perimeter_spacing + perimeter_offset))); // All holes are extended for forcing travel around the outer perimeter of a hole when a hole is crossed. ExPolygons holes_boundary = union_ex(diff(offset(holes, perimeter_spacing), offset(holes, perimeter_offset))); result_boundary.reserve(result_boundary.size() + holes_boundary.size()); result_boundary.insert(result_boundary.end(), holes_boundary.begin(), holes_boundary.end()); result_boundary = union_ex(result_boundary); return result_boundary; } // Returns a direction of the shortest path along the polygon boundary enum class Direction { Forward, Backward }; static Direction get_shortest_direction(const Lines &lines, const size_t start_idx, const size_t end_idx, const Point &intersection_first, const Point &intersection_last) { double total_length_forward = (lines[start_idx].b - intersection_first).cast().norm(); double total_length_backward = (lines[start_idx].a - intersection_first).cast().norm(); auto cyclic_index = [&lines](int index) { if (index >= int(lines.size())) index = 0; else if (index < 0) index = int(lines.size()) - 1; return index; }; for (int line_idx = cyclic_index(int(start_idx) + 1); line_idx != int(end_idx); line_idx = cyclic_index(line_idx + 1)) total_length_forward += lines[line_idx].length(); for (int line_idx = cyclic_index(int(start_idx) - 1); line_idx != int(end_idx); line_idx = cyclic_index(line_idx - 1)) total_length_backward += lines[line_idx].length(); total_length_forward += (lines[end_idx].a - intersection_last).cast().norm(); total_length_backward += (lines[end_idx].b - intersection_last).cast().norm(); return (total_length_forward < total_length_backward) ? Direction::Forward : Direction::Backward; } static std::vector simplify_travel(const EdgeGrid::Grid& edge_grid, const std::vector& travel, const Polygons& boundaries, const bool use_heuristics); static size_t avoid_perimeters(const Polygons &boundaries, const EdgeGrid::Grid &edge_grid, const Point &start, const Point &end, const bool use_heuristics, std::vector *result_out) { const Point direction = end - start; Matrix2d transform_to_x_axis = rotation_by_direction(direction); const Line travel_line_orig(start, end); const Line travel_line((transform_to_x_axis * start.cast()).cast(), (transform_to_x_axis * end.cast()).cast()); std::vector intersections; { AllIntersectionsVisitor visitor(edge_grid, intersections, transform_to_x_axis, travel_line_orig); edge_grid.visit_cells_intersecting_line(start, end, visitor); } std::sort(intersections.begin(), intersections.end()); std::vector result; result.push_back({start, -1}); for (auto it_first = intersections.begin(); it_first != intersections.end(); ++it_first) { // The entry point to the boundary polygon const Intersection &intersection_first = *it_first; // Skip the it_first from the search for the farthest exit point from the boundary polygon auto it_last_item = std::make_reverse_iterator(it_first) - 1; // Search for the farthest intersection different from it_first but with the same border_idx auto it_second_r = std::find_if(intersections.rbegin(), it_last_item, [&intersection_first](const Intersection &intersection) { return intersection_first.border_idx == intersection.border_idx; }); // Append the first intersection into the path size_t left_idx = intersection_first.line_idx; size_t right_idx = (intersection_first.line_idx >= (boundaries[intersection_first.border_idx].points.size() - 1)) ? 0 : (intersection_first.line_idx + 1); // Offset of the polygon's point using get_middle_point_offset is used to simplify the calculation of intersection between the // boundary and the travel. The appended point is translated in the direction of inward normal. This translation ensures that the // appended point will be inside the polygon and not on the polygon border. result.push_back({get_middle_point_offset(boundaries[intersection_first.border_idx], left_idx, right_idx, intersection_first.point, coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)}); // Check if intersection line also exit the boundary polygon if (it_second_r != it_last_item) { // Transform reverse iterator to forward auto it_second = (it_second_r.base() - 1); // The exit point from the boundary polygon const Intersection &intersection_second = *it_second; Lines border_lines = boundaries[intersection_first.border_idx].lines(); Direction shortest_direction = get_shortest_direction(border_lines, intersection_first.line_idx, intersection_second.line_idx, intersection_first.point, intersection_second.point); // Append the path around the border into the path if (shortest_direction == Direction::Forward) for (int line_idx = int(intersection_first.line_idx); line_idx != int(intersection_second.line_idx); line_idx = (((line_idx + 1) < int(border_lines.size())) ? (line_idx + 1) : 0)) result.push_back({get_polygon_vertex_offset(boundaries[intersection_first.border_idx], (line_idx + 1 == int(boundaries[intersection_first.border_idx].points.size())) ? 0 : (line_idx + 1), coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)}); else for (int line_idx = int(intersection_first.line_idx); line_idx != int(intersection_second.line_idx); line_idx = (((line_idx - 1) >= 0) ? (line_idx - 1) : (int(border_lines.size()) - 1))) result.push_back({get_polygon_vertex_offset(boundaries[intersection_second.border_idx], line_idx + 0, coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)}); // Append the farthest intersection into the path left_idx = intersection_second.line_idx; right_idx = (intersection_second.line_idx >= (boundaries[intersection_second.border_idx].points.size() - 1)) ? 0 : (intersection_second.line_idx + 1); result.push_back({get_middle_point_offset(boundaries[intersection_second.border_idx], left_idx, right_idx, intersection_second.point, coord_t(SCALED_EPSILON)), int(intersection_second.border_idx)}); // Skip intersections in between it_first = it_second; } } result.push_back({end, -1}); #ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT { static int iRun = 0; export_travel_to_svg(boundaries, travel_line_orig, result, intersections, debug_out_path("AvoidCrossingPerimeters-initial-%d.svg", iRun++)); } #endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */ if(!intersections.empty()) result = simplify_travel(edge_grid, result, boundaries, use_heuristics); #ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT { static int iRun = 0; export_travel_to_svg(boundaries, travel_line_orig, result, intersections, debug_out_path("AvoidCrossingPerimeters-final-%d.svg", iRun++)); } #endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */ result_out->reserve(result_out->size() + result.size()); result_out->insert(result_out->end(), result.begin(), result.end()); return intersections.size(); } static std::vector simplify_travel_heuristics(const EdgeGrid::Grid &edge_grid, const std::vector &travel, const Polygons &boundaries) { std::vector simplified_path; std::vector intersections; AllIntersectionsVisitor visitor(edge_grid, intersections); simplified_path.reserve(travel.size()); simplified_path.emplace_back(travel.front()); for (size_t point_idx = 1; point_idx < travel.size(); ++point_idx) { // Skip all indexes on the same polygon while (point_idx < travel.size() && travel[point_idx - 1].border_idx == travel[point_idx].border_idx) { simplified_path.emplace_back(travel[point_idx]); point_idx++; } if (point_idx < travel.size()) { const TravelPoint ¤t = travel[point_idx - 1]; const TravelPoint &next = travel[point_idx]; TravelPoint new_next = next; size_t new_point_idx = point_idx; double path_length = (next.point - current.point).cast().norm(); double new_path_shorter_by = 0.; size_t border_idx_change_count = 0; std::vector shortcut; for (size_t point_idx_2 = point_idx + 1; point_idx_2 < travel.size(); ++point_idx_2) { const TravelPoint &possible_new_next = travel[point_idx_2]; if (travel[point_idx_2 - 1].border_idx != travel[point_idx_2].border_idx) border_idx_change_count++; if (border_idx_change_count >= 2) break; path_length += (possible_new_next.point - travel[point_idx_2 - 1].point).cast().norm(); double shortcut_length = (possible_new_next.point - current.point).cast().norm(); if ((path_length - shortcut_length) <= scale_(10.0)) continue; intersections.clear(); visitor.reset(); visitor.travel_line.a = current.point; visitor.travel_line.b = possible_new_next.point; visitor.transform_to_x_axis = rotation_by_direction(visitor.travel_line.vector()); edge_grid.visit_cells_intersecting_line(visitor.travel_line.a, visitor.travel_line.b, visitor); if (!intersections.empty()) { std::sort(intersections.begin(), intersections.end()); size_t last_border_idx_count = 0; for (const Intersection &intersection : intersections) if (int(intersection.border_idx) == possible_new_next.border_idx) ++last_border_idx_count; if (last_border_idx_count > 0) continue; std::vector possible_shortcut; avoid_perimeters(boundaries, edge_grid, current.point, possible_new_next.point, false, &possible_shortcut); double shortcut_travel = travel_length(possible_shortcut); if (path_length > shortcut_travel && (path_length - shortcut_travel) > new_path_shorter_by) { new_path_shorter_by = path_length - shortcut_travel; shortcut = possible_shortcut; new_next = possible_new_next; new_point_idx = point_idx_2; } } } if (!shortcut.empty()) { assert(shortcut.size() >= 2); simplified_path.insert(simplified_path.end(), shortcut.begin() + 1, shortcut.end() - 1); point_idx = new_point_idx; } simplified_path.emplace_back(new_next); } } return simplified_path; } static std::vector simplify_travel(const EdgeGrid::Grid &edge_grid, const std::vector &travel, const Polygons &boundaries, const bool use_heuristics) { struct Visitor { Visitor(const EdgeGrid::Grid &grid) : grid(grid) {} bool operator()(coord_t iy, coord_t ix) { assert(pt_current != nullptr); assert(pt_next != nullptr); // Called with a row and colum of the grid cell, which is intersected by a line. auto cell_data_range = grid.cell_data_range(iy, ix); this->intersect = false; for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) { // End points of the line segment and their vector. auto segment = grid.segment(*it_contour_and_segment); if (Geometry::segments_intersect(segment.first, segment.second, *pt_current, *pt_next)) { this->intersect = true; return false; } } // Continue traversing the grid along the edge. return true; } const EdgeGrid::Grid &grid; const Slic3r::Point *pt_current = nullptr; const Slic3r::Point *pt_next = nullptr; bool intersect = false; } visitor(edge_grid); std::vector simplified_path; simplified_path.reserve(travel.size()); simplified_path.emplace_back(travel.front()); // Try to skip some points in the path. for (size_t point_idx = 1; point_idx < travel.size(); ++point_idx) { const Point ¤t_point = travel[point_idx - 1].point; TravelPoint next = travel[point_idx]; visitor.pt_current = ¤t_point; for (size_t point_idx_2 = point_idx + 1; point_idx_2 < travel.size(); ++point_idx_2) { if (travel[point_idx_2].point == current_point) { next = travel[point_idx_2]; point_idx = point_idx_2; continue; } visitor.pt_next = &travel[point_idx_2].point; edge_grid.visit_cells_intersecting_line(*visitor.pt_current, *visitor.pt_next, visitor); // Check if deleting point causes crossing a boundary if (!visitor.intersect) { next = travel[point_idx_2]; point_idx = point_idx_2; } } simplified_path.emplace_back(next); } if(use_heuristics) { simplified_path = simplify_travel_heuristics(edge_grid, simplified_path, boundaries); std::reverse(simplified_path.begin(),simplified_path.end()); simplified_path = simplify_travel_heuristics(edge_grid, simplified_path, boundaries); std::reverse(simplified_path.begin(),simplified_path.end()); } return simplified_path; } static bool need_wipe(const GCode &gcodegen, const ExPolygons &slice, const Line &original_travel, const Polyline &result_travel, const size_t intersection_count) { bool z_lift_enabled = gcodegen.config().retract_lift.get_at(gcodegen.writer().extruder()->id()) > 0.; bool wipe_needed = false; // If the original unmodified path doesn't have any intersection with boundary, then it is entirely inside the object otherwise is entirely // outside the object. if (intersection_count > 0) { // The original layer is intersected with defined boundaries. Then it is necessary to make a detailed test. // If the z-lift is enabled, then a wipe is needed when the original travel leads above the holes. if (z_lift_enabled) { if (any_expolygon_contains(slice, original_travel)) { // Check if original_travel and result_travel are not same. // If both are the same, then it is possible to skip testing of result_travel if (result_travel.size() == 2 && result_travel.first_point() == original_travel.a && result_travel.last_point() == original_travel.b) { wipe_needed = false; } else { wipe_needed = !any_expolygon_contains(slice, result_travel); } } else { wipe_needed = true; } } else { wipe_needed = !any_expolygon_contains(slice, result_travel); } } return wipe_needed; } // Plan travel, which avoids perimeter crossings by following the boundaries of the layer. Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point &point, bool *could_be_wipe_disabled) { // If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset). // Otherwise perform the path planning in the coordinate system of the active object. bool use_external = m_use_external_mp || m_use_external_mp_once; Point scaled_origin = use_external ? Point::new_scale(gcodegen.origin()(0), gcodegen.origin()(1)) : Point(0, 0); Point start = gcodegen.last_pos() + scaled_origin; Point end = point + scaled_origin; Polyline result_pl; size_t travel_intersection_count = 0; if (!check_if_could_cross_perimeters(use_external ? m_bbox_external : m_bbox, start, end)) { result_pl = Polyline({start, end}); travel_intersection_count = 0; } else { std::vector result; auto [start_clamped, end_clamped] = clamp_endpoints_by_bounding_box(use_external ? m_bbox_external : m_bbox, start, end); if (use_external) travel_intersection_count = avoid_perimeters(m_boundaries_external, m_grid_external, start_clamped, end_clamped, true, &result); else travel_intersection_count = avoid_perimeters(m_boundaries, m_grid, start_clamped, end_clamped, true, &result); result_pl = to_polyline(result); } result_pl.points.front() = start; result_pl.points.back() = end; Line travel(start, end); double max_detour_length scale_(gcodegen.config().avoid_crossing_perimeters_max_detour); if ((max_detour_length > 0) && ((result_pl.length() - travel.length()) > max_detour_length)) { result_pl = Polyline({start, end}); } if (use_external) { result_pl.translate(-scaled_origin); *could_be_wipe_disabled = false; } else *could_be_wipe_disabled = !need_wipe(gcodegen, m_slice, travel, result_pl, travel_intersection_count); return result_pl; } void AvoidCrossingPerimeters::init_layer(const Layer &layer) { m_slice.clear(); m_boundaries.clear(); m_boundaries_external.clear(); for (const LayerRegion *layer_region : layer.regions()) append(m_slice, (ExPolygons) layer_region->slices); m_boundaries = to_polygons(get_boundary(layer)); m_boundaries_external = to_polygons(get_boundary_external(layer)); m_bbox = get_extents(m_boundaries); m_bbox.offset(SCALED_EPSILON); m_bbox_external = get_extents(m_boundaries_external); m_bbox_external.offset(SCALED_EPSILON); m_grid.set_bbox(m_bbox); m_grid.create(m_boundaries, coord_t(scale_(1.))); m_grid_external.set_bbox(m_bbox_external); m_grid_external.create(m_boundaries_external, coord_t(scale_(1.))); } } // namespace Slic3r