#ifndef slic3r_TriangleMesh_hpp_ #define slic3r_TriangleMesh_hpp_ #include "libslic3r.h" #include #include #include #include "BoundingBox.hpp" #include "Line.hpp" #include "Point.hpp" #include "Polygon.hpp" #include "ExPolygon.hpp" namespace Slic3r { class TriangleMesh; class TriangleMeshSlicer; typedef std::vector TriangleMeshPtrs; class TriangleMesh { public: TriangleMesh() : repaired(false) {} TriangleMesh(const Pointf3s &points, const std::vector &facets); explicit TriangleMesh(const indexed_triangle_set &M); void clear() { this->stl.clear(); this->its.clear(); this->repaired = false; } bool ReadSTLFile(const char* input_file) { return stl_open(&stl, input_file); } bool write_ascii(const char* output_file) { return stl_write_ascii(&this->stl, output_file, ""); } bool write_binary(const char* output_file) { return stl_write_binary(&this->stl, output_file, ""); } void repair(bool update_shared_vertices = true); float volume(); void check_topology(); bool is_manifold() const { return this->stl.stats.connected_facets_3_edge == (int)this->stl.stats.number_of_facets; } void WriteOBJFile(const char* output_file) const; void scale(float factor); void scale(const Vec3d &versor); void translate(float x, float y, float z); void translate(const Vec3f &displacement); void rotate(float angle, const Axis &axis); void rotate(float angle, const Vec3d& axis); void rotate_x(float angle) { this->rotate(angle, X); } void rotate_y(float angle) { this->rotate(angle, Y); } void rotate_z(float angle) { this->rotate(angle, Z); } void mirror(const Axis &axis); void mirror_x() { this->mirror(X); } void mirror_y() { this->mirror(Y); } void mirror_z() { this->mirror(Z); } void transform(const Transform3d& t, bool fix_left_handed = false); void transform(const Matrix3d& t, bool fix_left_handed = false); void align_to_origin(); void rotate(double angle, Point* center); TriangleMeshPtrs split() const; void merge(const TriangleMesh &mesh); ExPolygons horizontal_projection() const; const float* first_vertex() const { return this->stl.facet_start.empty() ? nullptr : &this->stl.facet_start.front().vertex[0](0); } // 2D convex hull of a 3D mesh projected into the Z=0 plane. Polygon convex_hull(); BoundingBoxf3 bounding_box() const; // Returns the bbox of this TriangleMesh transformed by the given transformation BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const; // Return the size of the mesh in coordinates. Vec3d size() const { return stl.stats.size.cast(); } /// Return the center of the related bounding box. Vec3d center() const { return this->bounding_box().center(); } // Returns the convex hull of this TriangleMesh TriangleMesh convex_hull_3d() const; // Slice this mesh at the provided Z levels and return the vector std::vector slice(const std::vector& z); void reset_repair_stats(); bool needed_repair() const; void require_shared_vertices(); bool has_shared_vertices() const { return ! this->its.vertices.empty(); } size_t facets_count() const { return this->stl.stats.number_of_facets; } bool empty() const { return this->facets_count() == 0; } bool is_splittable() const; // Estimate of the memory occupied by this structure, important for keeping an eye on the Undo / Redo stack allocation. size_t memsize() const; // Release optional data from the mesh if the object is on the Undo / Redo stack only. Returns the amount of memory released. size_t release_optional(); // Restore optional data possibly released by release_optional(). void restore_optional(); stl_file stl; indexed_triangle_set its; bool repaired; private: std::deque find_unvisited_neighbors(std::vector &facet_visited) const; }; // Create an index of faces belonging to each vertex. The returned vector can // be indexed with vertex indices and contains a list of face indices for each // vertex. std::vector> create_vertex_faces_index(const indexed_triangle_set &its); // Map from a face edge to a unique edge identifier or -1 if no neighbor exists. // Two neighbor faces share a unique edge identifier even if they are flipped. // Used for chaining slice lines into polygons. std::vector create_face_neighbors_index(const indexed_triangle_set &its); std::vector create_face_neighbors_index(const indexed_triangle_set &its, std::function throw_on_cancel_callback); // Merge duplicate vertices, return number of vertices removed. // This function will happily create non-manifolds if more than two faces share the same vertex position // or more than two faces share the same edge position! int its_merge_vertices(indexed_triangle_set &its, bool shrink_to_fit = true); // Remove degenerate faces, return number of faces removed. int its_remove_degenerate_faces(indexed_triangle_set &its, bool shrink_to_fit = true); // Remove vertices, which none of the faces references. Return number of freed vertices. int its_compactify_vertices(indexed_triangle_set &its, bool shrink_to_fit = true); // Shrink the vectors of its.vertices and its.faces to a minimum size by reallocating the two vectors. void its_shrink_to_fit(indexed_triangle_set &its); // For convex hull calculation: Transform mesh, trim it by the Z plane and collect all vertices. Duplicate vertices will be produced. void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Matrix3f &m, const float z, Points &all_pts); void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Transform3f &t, const float z, Points &all_pts); // Calculate 2D convex hull of a transformed and clipped mesh. Uses the function above. Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Matrix3f &m, const float z); Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Transform3f &t, const float z); TriangleMesh make_cube(double x, double y, double z); // Generate a TriangleMesh of a cylinder TriangleMesh make_cylinder(double r, double h, double fa=(2*PI/360)); TriangleMesh make_sphere(double rho, double fa=(2*PI/360)); } // Serialization through the Cereal library #include namespace cereal { template struct specialize {}; template void load(Archive &archive, Slic3r::TriangleMesh &mesh) { stl_file &stl = mesh.stl; stl.stats.type = inmemory; archive(stl.stats.number_of_facets, stl.stats.original_num_facets); stl_allocate(&stl); archive.loadBinary((char*)stl.facet_start.data(), stl.facet_start.size() * 50); stl_get_size(&stl); mesh.repair(); } template void save(Archive &archive, const Slic3r::TriangleMesh &mesh) { const stl_file& stl = mesh.stl; archive(stl.stats.number_of_facets, stl.stats.original_num_facets); archive.saveBinary((char*)stl.facet_start.data(), stl.facet_start.size() * 50); } } #endif