#include #include #include #include #include #include #include "libslic3r/ClipperUtils.hpp" #include "libslic3r/Layer.hpp" #include "libslic3r/GCode/SeamGeometry.hpp" #include "libslic3r/GCode/SeamPerimeters.hpp" #include "libslic3r/ExPolygon.hpp" #include "libslic3r/GCode/SeamPainting.hpp" #include "libslic3r/MultiPoint.hpp" #include "tcbspan/span.hpp" namespace Slic3r::Seams::Perimeters::Impl { std::vector oversample_painted( const std::vector &points, const std::function &is_painted, const double slice_z, const double max_distance ) { std::vector result; for (std::size_t index{0}; index < points.size(); ++index) { const Vec2d &point{points[index]}; result.push_back(point); const std::size_t next_index{index == points.size() - 1 ? 0 : index + 1}; const Vec2d &next_point{points[next_index]}; const float next_point_distance{static_cast((point - next_point).norm())}; const Vec2d middle_point{(point + next_point) / 2.0}; Vec3f point3d{to_3d(middle_point, slice_z).cast()}; if (is_painted(point3d, next_point_distance / 2.0)) { for (const Vec2d &edge_point : Geometry::oversample_edge(point, next_point, max_distance)) { result.push_back(edge_point); } } } return result; } std::pair, std::vector> remove_redundant_points( const std::vector &points, const std::vector &point_types, const double tolerance ) { std::vector points_result; std::vector point_types_result; auto range_start{points.begin()}; for (auto iterator{points.begin()}; iterator != points.end(); ++iterator) { const std::int64_t index{std::distance(points.begin(), iterator)}; if (next(iterator) == points.end() || point_types[index] != point_types[index + 1]) { std::vector simplification_result; douglas_peucker(range_start, next(iterator), std::back_inserter(simplification_result), tolerance); points_result.insert( points_result.end(), simplification_result.begin(), simplification_result.end() ); const std::vector point_types_to_add(simplification_result.size(), point_types[index]); point_types_result.insert( point_types_result.end(), point_types_to_add.begin(), point_types_to_add.end() ); range_start = next(iterator); } } return {points_result, point_types_result}; } std::vector get_point_types( const std::vector &positions, const ModelInfo::Painting &painting, const double slice_z, const double painting_radius ) { std::vector result; result.reserve(positions.size()); using std::transform, std::back_inserter; transform( positions.begin(), positions.end(), back_inserter(result), [&](const Vec2d &point) { const Vec3f point3d{to_3d(point.cast(), static_cast(slice_z))}; if (painting.is_blocked(point3d, painting_radius)) { return PointType::blocker; } if (painting.is_enforced(point3d, painting_radius)) { return PointType::enforcer; } return PointType::common; } ); return result; } std::vector classify_points( const std::vector &embeddings, const std::optional> &overhangs, const double overhang_threshold, const double embedding_threshold ) { std::vector result; result.reserve(embeddings.size()); using std::transform, std::back_inserter; transform( embeddings.begin(), embeddings.end(), back_inserter(result), [&, i = 0](const double embedding) mutable { const unsigned index = i++; if (overhangs && overhangs->operator[](index) > overhang_threshold) { return PointClassification::overhang; } if (embedding > embedding_threshold) { return PointClassification::embedded; } return PointClassification::common; } ); return result; } std::vector get_angle_types( const std::vector &angles, const double convex_threshold, const double concave_threshold ) { std::vector result; using std::transform, std::back_inserter; transform(angles.begin(), angles.end(), back_inserter(result), [&](const double angle) { if (angle > convex_threshold) { return AngleType::convex; } if (angle < -concave_threshold) { return AngleType::concave; } return AngleType::smooth; }); return result; } std::vector merge_angle_types( const std::vector &angle_types, const std::vector &smooth_angle_types, const std::vector &points, const double min_arm_length ) { std::vector result; result.reserve(angle_types.size()); for (std::size_t index{0}; index < angle_types.size(); ++index) { const AngleType &angle_type{angle_types[index]}; const AngleType &smooth_angle_type{smooth_angle_types[index]}; AngleType resulting_type{angle_type}; if (smooth_angle_type != angle_type && smooth_angle_type != AngleType::smooth) { resulting_type = smooth_angle_type; // Check if there is a sharp angle in the vicinity. If so, do not use the smooth angle. Geometry::visit_forward(index, angle_types.size(), [&](const std::size_t forward_index) { const double distance{(points[forward_index] - points[index]).norm()}; if (distance > min_arm_length) { return true; } if (angle_types[forward_index] == smooth_angle_type) { resulting_type = angle_type; } return false; }); Geometry::visit_backward(index, angle_types.size(), [&](const std::size_t backward_index) { const double distance{(points[backward_index] - points[index]).norm()}; if (distance > min_arm_length) { return true; } if (angle_types[backward_index] == smooth_angle_type) { resulting_type = angle_type; } return false; }); } result.push_back(resulting_type); } return result; } } // namespace Slic3r::Seams::Perimeters::Impl namespace Slic3r::Seams::Perimeters { LayerInfos get_layer_infos( tcb::span object_layers, const double elephant_foot_compensation ) { LayerInfos result(object_layers.size()); using Range = tbb::blocked_range; const Range range{0, object_layers.size()}; tbb::parallel_for(range, [&](Range range) { for (std::size_t layer_index{range.begin()}; layer_index < range.end(); ++layer_index) { result[layer_index] = LayerInfo::create( *object_layers[layer_index], layer_index, elephant_foot_compensation ); } }); return result; } LayerInfo LayerInfo::create( const Slic3r::Layer &object_layer, const std::size_t index, const double elephant_foot_compensation ) { AABBTreeLines::LinesDistancer perimeter_distancer{ to_unscaled_linesf({object_layer.lslices})}; using PreviousLayerDistancer = std::optional>; PreviousLayerDistancer previous_layer_perimeter_distancer; if (object_layer.lower_layer != nullptr) { previous_layer_perimeter_distancer = PreviousLayerDistancer{ to_unscaled_linesf(object_layer.lower_layer->lslices)}; } return { std::move(perimeter_distancer), std::move(previous_layer_perimeter_distancer), index, object_layer.height, object_layer.slice_z, index == 0 ? elephant_foot_compensation : 0.0}; } double Perimeter::IndexToCoord::operator()(const size_t index, size_t dim) const { return positions[index][dim]; } Perimeter::PointTrees get_kd_trees( const PointType point_type, const std::vector &all_point_types, const std::vector &point_classifications, const Perimeter::IndexToCoord &index_to_coord ) { std::vector overhang_indexes; std::vector embedded_indexes; std::vector common_indexes; for (std::size_t i{0}; i < all_point_types.size(); ++i) { if (all_point_types[i] == point_type) { switch (point_classifications[i]) { case PointClassification::overhang: overhang_indexes.push_back(i); break; case PointClassification::embedded: embedded_indexes.push_back(i); break; case PointClassification::common: common_indexes.push_back(i); break; } } } Perimeter::PointTrees trees; if (!overhang_indexes.empty()) { trees.overhanging_points = Perimeter::PointTree{index_to_coord}; trees.overhanging_points->build(overhang_indexes); } if (!embedded_indexes.empty()) { trees.embedded_points = Perimeter::PointTree{index_to_coord}; trees.embedded_points->build(embedded_indexes); } if (!common_indexes.empty()) { trees.common_points = Perimeter::PointTree{index_to_coord}; trees.common_points->build(common_indexes); } return trees; } Perimeter::Perimeter( const double slice_z, const std::size_t layer_index, const bool is_hole, std::vector &&positions, std::vector &&angles, std::vector &&point_types, std::vector &&point_classifications, std::vector &&angle_types ) : slice_z(slice_z) , layer_index(layer_index) , is_hole(is_hole) , positions(std::move(positions)) , angles(std::move(angles)) , index_to_coord(IndexToCoord{tcb::span{this->positions}}) , point_types(std::move(point_types)) , point_classifications(std::move(point_classifications)) , angle_types(std::move(angle_types)) , enforced_points(get_kd_trees( PointType::enforcer, this->point_types, this->point_classifications, this->index_to_coord )) , common_points(get_kd_trees( PointType::common, this->point_types, this->point_classifications, this->index_to_coord )) , blocked_points(get_kd_trees( PointType::blocker, this->point_types, this->point_classifications, this->index_to_coord )) {} Perimeter Perimeter::create_degenerate( std::vector &&points, const double slice_z, const std::size_t layer_index ) { std::vector point_types(points.size(), PointType::common); std::vector point_classifications(points.size(), PointClassification::common); std::vector angles(points.size()); std::vector angle_types(points.size(), AngleType::smooth); Perimeter perimeter{ slice_z, layer_index, false, std::move(points), std::move(angles), std::move(point_types), std::move(point_classifications), std::move(angle_types)}; perimeter.is_degenerate = true; return perimeter; } Perimeter Perimeter::create( const Polygon &polygon, const ModelInfo::Painting &painting, const LayerInfo &layer_info, const PerimeterParams ¶ms, const double offset_inside ) { if (polygon.size() < 3) { return Perimeter::create_degenerate( Geometry::unscaled(polygon.points), layer_info.slice_z, layer_info.index ); } std::vector points; if (layer_info.elephant_foot_compensation > 0) { const Polygons expanded{expand(polygon, scaled(layer_info.elephant_foot_compensation))}; if (expanded.empty()) { points = Geometry::unscaled(polygon.points); } else { points = Geometry::unscaled(expanded.front().points); } } else { points = Geometry::unscaled(polygon.points); } auto is_painted{[&](const Vec3f &point, const double radius) { return painting.is_enforced(point, radius) || painting.is_blocked(point, radius); }}; std::vector perimeter_points{ Impl::oversample_painted(points, is_painted, layer_info.slice_z, params.oversampling_max_distance)}; std::vector point_types{ Impl::get_point_types(perimeter_points, painting, layer_info.slice_z, offset_inside > 0 ? offset_inside * 2 : params.painting_radius)}; // Geometry converted from extrusions has non zero offset_inside. // Do not remomve redundant points for extrusions, becouse the redundant // points can be on overhangs. if (offset_inside < std::numeric_limits::epsilon()) { // The following is optimization with significant impact. If in doubt, run // the "Seam benchmarks" test case in fff_print_tests. std::tie(perimeter_points, point_types) = Impl::remove_redundant_points(perimeter_points, point_types, params.simplification_epsilon); } const std::vector embeddings{ Geometry::get_embedding_distances(perimeter_points, layer_info.distancer)}; std::optional> overhangs; if (layer_info.previous_distancer) { overhangs = Geometry::get_overhangs( perimeter_points, *layer_info.previous_distancer, layer_info.height ); } std::vector point_classifications{ Impl::classify_points(embeddings, overhangs, params.overhang_threshold, params.embedding_threshold)}; std::vector smooth_angles{Geometry::get_vertex_angles(perimeter_points, params.smooth_angle_arm_length)}; std::vector angles{Geometry::get_vertex_angles(perimeter_points, params.sharp_angle_arm_length)}; std::vector angle_types{ Impl::get_angle_types(angles, params.convex_threshold, params.concave_threshold)}; std::vector smooth_angle_types{ Impl::get_angle_types(smooth_angles, params.convex_threshold, params.concave_threshold)}; angle_types = Impl::merge_angle_types(angle_types, smooth_angle_types, perimeter_points, params.smooth_angle_arm_length); const bool is_hole{polygon.is_clockwise()}; return Perimeter{ layer_info.slice_z, layer_info.index, is_hole, std::move(perimeter_points), std::move(angles), std::move(point_types), std::move(point_classifications), std::move(angle_types)}; } LayerPerimeters create_perimeters( const std::vector &polygons, const std::vector &layer_infos, const ModelInfo::Painting &painting, const PerimeterParams ¶ms ) { LayerPerimeters result; result.reserve(polygons.size()); std::transform( polygons.begin(), polygons.end(), std::back_inserter(result), [](const Geometry::BoundedPolygons &layer) { return BoundedPerimeters(layer.size()); } ); Geometry::iterate_nested( polygons, [&](const std::size_t layer_index, const std::size_t polygon_index) { const Geometry::BoundedPolygons &layer{polygons[layer_index]}; const Geometry::BoundedPolygon &bounded_polygon{layer[polygon_index]}; const LayerInfo &layer_info{layer_infos[layer_index]}; result[layer_index][polygon_index] = BoundedPerimeter{ Perimeter::create(bounded_polygon.polygon, painting, layer_info, params, bounded_polygon.offset_inside), bounded_polygon.bounding_box}; } ); return result; } } // namespace Slic3r::Seams::Perimeter