#include "libslic3r/libslic3r.h" #include "libslic3r/Utils.hpp" #include "libslic3r/Print.hpp" #include "GCodeProcessor.hpp" #include #include #include #if ENABLE_GCODE_VIEWER #if ENABLE_GCODE_VIEWER_STATISTICS #include #endif // ENABLE_GCODE_VIEWER_STATISTICS static const float INCHES_TO_MM = 25.4f; static const float MMMIN_TO_MMSEC = 1.0f / 60.0f; static const float DEFAULT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2 namespace Slic3r { const std::string GCodeProcessor::Extrusion_Role_Tag = "PrusaSlicer__EXTRUSION_ROLE:"; const std::string GCodeProcessor::Width_Tag = "PrusaSlicer__WIDTH:"; const std::string GCodeProcessor::Height_Tag = "PrusaSlicer__HEIGHT:"; const std::string GCodeProcessor::Mm3_Per_Mm_Tag = "PrusaSlicer__MM3_PER_MM:"; const std::string GCodeProcessor::Color_Change_Tag = "PrusaSlicer__COLOR_CHANGE"; const std::string GCodeProcessor::Pause_Print_Tag = "PrusaSlicer__PAUSE_PRINT"; const std::string GCodeProcessor::Custom_Code_Tag = "PrusaSlicer__CUSTOM_CODE"; static bool is_valid_extrusion_role(int value) { return (static_cast(erNone) <= value) && (value <= static_cast(erMixed)); } static void set_option_value(ConfigOptionFloats& option, size_t id, float value) { if (id < option.values.size()) option.values[id] = static_cast(value); }; static float get_option_value(const ConfigOptionFloats& option, size_t id) { return option.values.empty() ? 0.0f : ((id < option.values.size()) ? static_cast(option.values[id]) : static_cast(option.values.back())); } static float estimated_acceleration_distance(float initial_rate, float target_rate, float acceleration) { return (acceleration == 0.0f) ? 0.0f : (sqr(target_rate) - sqr(initial_rate)) / (2.0f * acceleration); } static float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { return (acceleration == 0.0f) ? 0.0f : (2.0f * acceleration * distance - sqr(initial_rate) + sqr(final_rate)) / (4.0f * acceleration); } static float speed_from_distance(float initial_feedrate, float distance, float acceleration) { // to avoid invalid negative numbers due to numerical errors float value = std::max(0.0f, sqr(initial_feedrate) + 2.0f * acceleration * distance); return ::sqrt(value); } // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // acceleration within the allotted distance. static float max_allowable_speed(float acceleration, float target_velocity, float distance) { // to avoid invalid negative numbers due to numerical errors float value = std::max(0.0f, sqr(target_velocity) - 2.0f * acceleration * distance); return std::sqrt(value); } static float acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration) { return (acceleration != 0.0f) ? (speed_from_distance(initial_feedrate, distance, acceleration) - initial_feedrate) / acceleration : 0.0f; } void GCodeProcessor::CachedPosition::reset() { std::fill(position.begin(), position.end(), FLT_MAX); feedrate = FLT_MAX; } void GCodeProcessor::CpColor::reset() { counter = 0; current = 0; } float GCodeProcessor::Trapezoid::acceleration_time(float entry_feedrate, float acceleration) const { return acceleration_time_from_distance(entry_feedrate, accelerate_until, acceleration); } float GCodeProcessor::Trapezoid::cruise_time() const { return (cruise_feedrate != 0.0f) ? cruise_distance() / cruise_feedrate : 0.0f; } float GCodeProcessor::Trapezoid::deceleration_time(float distance, float acceleration) const { return acceleration_time_from_distance(cruise_feedrate, (distance - decelerate_after), -acceleration); } float GCodeProcessor::Trapezoid::cruise_distance() const { return decelerate_after - accelerate_until; } void GCodeProcessor::TimeBlock::calculate_trapezoid() { trapezoid.cruise_feedrate = feedrate_profile.cruise; float accelerate_distance = std::max(0.0f, estimated_acceleration_distance(feedrate_profile.entry, feedrate_profile.cruise, acceleration)); float decelerate_distance = std::max(0.0f, estimated_acceleration_distance(feedrate_profile.cruise, feedrate_profile.exit, -acceleration)); float cruise_distance = distance - accelerate_distance - decelerate_distance; // Not enough space to reach the nominal feedrate. // This means no cruising, and we'll have to use intersection_distance() to calculate when to abort acceleration // and start braking in order to reach the exit_feedrate exactly at the end of this block. if (cruise_distance < 0.0f) { accelerate_distance = std::clamp(intersection_distance(feedrate_profile.entry, feedrate_profile.exit, acceleration, distance), 0.0f, distance); cruise_distance = 0.0f; trapezoid.cruise_feedrate = speed_from_distance(feedrate_profile.entry, accelerate_distance, acceleration); } trapezoid.accelerate_until = accelerate_distance; trapezoid.decelerate_after = accelerate_distance + cruise_distance; } float GCodeProcessor::TimeBlock::time() const { return trapezoid.acceleration_time(feedrate_profile.entry, acceleration) + trapezoid.cruise_time() + trapezoid.deceleration_time(distance, acceleration); } void GCodeProcessor::TimeMachine::State::reset() { feedrate = 0.0f; safe_feedrate = 0.0f; axis_feedrate = { 0.0f, 0.0f, 0.0f, 0.0f }; abs_axis_feedrate = { 0.0f, 0.0f, 0.0f, 0.0f }; } void GCodeProcessor::TimeMachine::CustomGCodeTime::reset() { needed = false; cache = 0.0f; times = std::vector>(); } void GCodeProcessor::TimeMachine::reset() { enabled = false; acceleration = 0.0f; extrude_factor_override_percentage = 1.0f; time = 0.0f; curr.reset(); prev.reset(); gcode_time.reset(); blocks = std::vector(); std::fill(moves_time.begin(), moves_time.end(), 0.0f); std::fill(roles_time.begin(), roles_time.end(), 0.0f); } void GCodeProcessor::TimeMachine::simulate_st_synchronize(float additional_time) { if (!enabled) return; time += additional_time; gcode_time.cache += additional_time; calculate_time(); } static void planner_forward_pass_kernel(GCodeProcessor::TimeBlock& prev, GCodeProcessor::TimeBlock& curr) { // If the previous block is an acceleration block, but it is not long enough to complete the // full speed change within the block, we need to adjust the entry speed accordingly. Entry // speeds have already been reset, maximized, and reverse planned by reverse planner. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. if (!prev.flags.nominal_length) { if (prev.feedrate_profile.entry < curr.feedrate_profile.entry) { float entry_speed = std::min(curr.feedrate_profile.entry, max_allowable_speed(-prev.acceleration, prev.feedrate_profile.entry, prev.distance)); // Check for junction speed change if (curr.feedrate_profile.entry != entry_speed) { curr.feedrate_profile.entry = entry_speed; curr.flags.recalculate = true; } } } } void planner_reverse_pass_kernel(GCodeProcessor::TimeBlock& curr, GCodeProcessor::TimeBlock& next) { // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and // check for maximum allowable speed reductions to ensure maximum possible planned speed. if (curr.feedrate_profile.entry != curr.max_entry_speed) { // If nominal length true, max junction speed is guaranteed to be reached. Only compute // for max allowable speed if block is decelerating and nominal length is false. if (!curr.flags.nominal_length && curr.max_entry_speed > next.feedrate_profile.entry) curr.feedrate_profile.entry = std::min(curr.max_entry_speed, max_allowable_speed(-curr.acceleration, next.feedrate_profile.entry, curr.distance)); else curr.feedrate_profile.entry = curr.max_entry_speed; curr.flags.recalculate = true; } } static void recalculate_trapezoids(std::vector& blocks) { GCodeProcessor::TimeBlock* curr = nullptr; GCodeProcessor::TimeBlock* next = nullptr; for (size_t i = 0; i < blocks.size(); ++i) { GCodeProcessor::TimeBlock& b = blocks[i]; curr = next; next = &b; if (curr != nullptr) { // Recalculate if current block entry or exit junction speed has changed. if (curr->flags.recalculate || next->flags.recalculate) { // NOTE: Entry and exit factors always > 0 by all previous logic operations. GCodeProcessor::TimeBlock block = *curr; block.feedrate_profile.exit = next->feedrate_profile.entry; block.calculate_trapezoid(); curr->trapezoid = block.trapezoid; curr->flags.recalculate = false; // Reset current only to ensure next trapezoid is computed } } } // Last/newest block in buffer. Always recalculated. if (next != nullptr) { GCodeProcessor::TimeBlock block = *next; block.feedrate_profile.exit = next->safe_feedrate; block.calculate_trapezoid(); next->trapezoid = block.trapezoid; next->flags.recalculate = false; } } void GCodeProcessor::TimeMachine::calculate_time(size_t keep_last_n_blocks) { if (!enabled || blocks.size() < 2) return; assert(keep_last_n_blocks <= blocks.size()); // forward_pass for (size_t i = 0; i + 1 < blocks.size(); ++i) { planner_forward_pass_kernel(blocks[i], blocks[i + 1]); } // reverse_pass for (int i = static_cast(blocks.size()) - 1; i > 0; --i) planner_reverse_pass_kernel(blocks[i - 1], blocks[i]); recalculate_trapezoids(blocks); size_t n_blocks_process = blocks.size() - keep_last_n_blocks; // m_g1_times.reserve(m_g1_times.size() + n_blocks_process); for (size_t i = 0; i < n_blocks_process; ++i) { const TimeBlock& block = blocks[i]; float block_time = block.time(); time += block_time; gcode_time.cache += block_time; moves_time[static_cast(block.move_type)] += block_time; roles_time[static_cast(block.role)] += block_time; // if (block.g1_line_id >= 0) // m_g1_times.emplace_back(block.g1_line_id, time); } if (keep_last_n_blocks) blocks.erase(blocks.begin(), blocks.begin() + n_blocks_process); else blocks.clear(); } void GCodeProcessor::TimeProcessor::reset() { extruder_unloaded = true; machine_limits = MachineEnvelopeConfig(); filament_load_times = std::vector(); filament_unload_times = std::vector(); for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { machines[i].reset(); } machines[static_cast(ETimeMode::Normal)].enabled = true; } unsigned int GCodeProcessor::s_result_id = 0; void GCodeProcessor::apply_config(const PrintConfig& config) { m_parser.apply_config(config); m_flavor = config.gcode_flavor; size_t extruders_count = config.nozzle_diameter.values.size(); m_extruder_offsets.resize(extruders_count); for (size_t id = 0; id < extruders_count; ++id) { Vec2f offset = config.extruder_offset.get_at(id).cast(); m_extruder_offsets[id] = Vec3f(offset(0), offset(1), 0.0f); } m_extruders_color.resize(extruders_count); for (size_t id = 0; id < extruders_count; ++id) { m_extruders_color[id] = static_cast(id); } m_time_processor.machine_limits = reinterpret_cast(config); // Filament load / unload times are not specific to a firmware flavor. Let anybody use it if they find it useful. // As of now the fields are shown at the UI dialog in the same combo box as the ramming values, so they // are considered to be active for the single extruder multi-material printers only. m_time_processor.filament_load_times.clear(); for (double d : config.filament_load_time.values) { m_time_processor.filament_load_times.push_back(static_cast(d)); } m_time_processor.filament_unload_times.clear(); for (double d : config.filament_unload_time.values) { m_time_processor.filament_unload_times.push_back(static_cast(d)); } for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { float max_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_extruding, i); m_time_processor.machines[i].acceleration = (max_acceleration > 0.0f) ? max_acceleration : DEFAULT_ACCELERATION; } } void GCodeProcessor::enable_stealth_time_estimator(bool enabled) { m_time_processor.machines[static_cast(ETimeMode::Stealth)].enabled = enabled; } void GCodeProcessor::reset() { m_units = EUnits::Millimeters; m_global_positioning_type = EPositioningType::Absolute; m_e_local_positioning_type = EPositioningType::Absolute; m_extruder_offsets = std::vector(1, Vec3f::Zero()); m_flavor = gcfRepRap; m_start_position = { 0.0f, 0.0f, 0.0f, 0.0f }; m_end_position = { 0.0f, 0.0f, 0.0f, 0.0f }; m_origin = { 0.0f, 0.0f, 0.0f, 0.0f }; m_cached_position.reset(); m_feedrate = 0.0f; m_width = 0.0f; m_height = 0.0f; m_mm3_per_mm = 0.0f; m_fan_speed = 0.0f; m_extrusion_role = erNone; m_extruder_id = 0; m_extruders_color = ExtrudersColor(); m_cp_color.reset(); m_time_processor.reset(); m_result.reset(); m_result.id = ++s_result_id; } void GCodeProcessor::process_file(const std::string& filename) { #if ENABLE_GCODE_VIEWER_STATISTICS auto start_time = std::chrono::high_resolution_clock::now(); #endif // ENABLE_GCODE_VIEWER_STATISTICS m_result.id = ++s_result_id; m_result.moves.emplace_back(MoveVertex()); m_parser.parse_file(filename, [this](GCodeReader& reader, const GCodeReader::GCodeLine& line) { process_gcode_line(line); }); // process the remaining time blocks for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { TimeMachine& machine = m_time_processor.machines[i]; TimeMachine::CustomGCodeTime& gcode_time = machine.gcode_time; machine.calculate_time(); if (gcode_time.needed && gcode_time.cache != 0.0f) gcode_time.times.push_back({ CustomGCode::ColorChange, gcode_time.cache }); } #if ENABLE_GCODE_VIEWER_STATISTICS m_result.time = std::chrono::duration_cast(std::chrono::high_resolution_clock::now() - start_time).count(); #endif // ENABLE_GCODE_VIEWER_STATISTICS } void GCodeProcessor::update_print_stats_estimated_times(PrintStatistics& print_statistics) { print_statistics.estimated_normal_print_time = get_time(GCodeProcessor::ETimeMode::Normal); print_statistics.estimated_normal_custom_gcode_print_times = get_custom_gcode_times(GCodeProcessor::ETimeMode::Normal, true); print_statistics.estimated_normal_moves_times = get_moves_time(GCodeProcessor::ETimeMode::Normal); print_statistics.estimated_normal_roles_times = get_roles_time(GCodeProcessor::ETimeMode::Normal); if (m_time_processor.machines[static_cast(GCodeProcessor::ETimeMode::Stealth)].enabled) { print_statistics.estimated_silent_print_time = get_time(GCodeProcessor::ETimeMode::Stealth); print_statistics.estimated_silent_custom_gcode_print_times = get_custom_gcode_times(GCodeProcessor::ETimeMode::Stealth, true); print_statistics.estimated_silent_moves_times = get_moves_time(GCodeProcessor::ETimeMode::Stealth); print_statistics.estimated_silent_roles_times = get_roles_time(GCodeProcessor::ETimeMode::Stealth); } else { print_statistics.estimated_silent_print_time = 0.0f; print_statistics.estimated_silent_custom_gcode_print_times.clear(); print_statistics.estimated_silent_moves_times.clear(); print_statistics.estimated_silent_roles_times.clear(); } } float GCodeProcessor::get_time(ETimeMode mode) const { return (mode < ETimeMode::Count) ? m_time_processor.machines[static_cast(mode)].time : 0.0f; } std::string GCodeProcessor::get_time_dhm(ETimeMode mode) const { return (mode < ETimeMode::Count) ? short_time(get_time_dhms(m_time_processor.machines[static_cast(mode)].time)) : std::string("N/A"); } std::vector>> GCodeProcessor::get_custom_gcode_times(ETimeMode mode, bool include_remaining) const { std::vector>> ret; if (mode < ETimeMode::Count) { const TimeMachine& machine = m_time_processor.machines[static_cast(mode)]; float total_time = 0.0f; for (const auto& [type, time] : machine.gcode_time.times) { float remaining = include_remaining ? machine.time - total_time : 0.0f; ret.push_back({ type, { time, remaining } }); total_time += time; } } return ret; } std::vector> GCodeProcessor::get_moves_time(ETimeMode mode) const { std::vector> ret; if (mode < ETimeMode::Count) { for (size_t i = 0; i < m_time_processor.machines[static_cast(mode)].moves_time.size(); ++i) { float time = m_time_processor.machines[static_cast(mode)].moves_time[i]; if (time > 0.0f) ret.push_back({ static_cast(i), time }); } } return ret; } std::vector> GCodeProcessor::get_roles_time(ETimeMode mode) const { std::vector> ret; if (mode < ETimeMode::Count) { for (size_t i = 0; i < m_time_processor.machines[static_cast(mode)].roles_time.size(); ++i) { float time = m_time_processor.machines[static_cast(mode)].roles_time[i]; if (time > 0.0f) ret.push_back({ static_cast(i), time }); } } return ret; } void GCodeProcessor::process_gcode_line(const GCodeReader::GCodeLine& line) { /* std::cout << line.raw() << std::endl; */ // update start position m_start_position = m_end_position; std::string cmd = line.cmd(); if (cmd.length() > 1) { // process command lines switch (::toupper(cmd[0])) { case 'G': { switch (::atoi(&cmd[1])) { case 0: { process_G0(line); break; } // Move case 1: { process_G1(line); break; } // Move case 10: { process_G10(line); break; } // Retract case 11: { process_G11(line); break; } // Unretract case 20: { process_G20(line); break; } // Set Units to Inches case 21: { process_G21(line); break; } // Set Units to Millimeters case 22: { process_G22(line); break; } // Firmware controlled retract case 23: { process_G23(line); break; } // Firmware controlled unretract case 90: { process_G90(line); break; } // Set to Absolute Positioning case 91: { process_G91(line); break; } // Set to Relative Positioning case 92: { process_G92(line); break; } // Set Position default: { break; } } break; } case 'M': { switch (::atoi(&cmd[1])) { case 1: { process_M1(line); break; } // Sleep or Conditional stop case 82: { process_M82(line); break; } // Set extruder to absolute mode case 83: { process_M83(line); break; } // Set extruder to relative mode case 106: { process_M106(line); break; } // Set fan speed case 107: { process_M107(line); break; } // Disable fan case 108: { process_M108(line); break; } // Set tool (Sailfish) case 132: { process_M132(line); break; } // Recall stored home offsets case 135: { process_M135(line); break; } // Set tool (MakerWare) case 201: { process_M201(line); break; } // Set max printing acceleration case 203: { process_M203(line); break; } // Set maximum feedrate case 204: { process_M204(line); break; } // Set default acceleration case 205: { process_M205(line); break; } // Advanced settings case 221: { process_M221(line); break; } // Set extrude factor override percentage case 401: { process_M401(line); break; } // Repetier: Store x, y and z position case 402: { process_M402(line); break; } // Repetier: Go to stored position case 566: { process_M566(line); break; } // Set allowable instantaneous speed change case 702: { process_M702(line); break; } // Unload the current filament into the MK3 MMU2 unit at the end of print. default: { break; } } break; } case 'T': { process_T(line); // Select Tool break; } default: { break; } } } else { std::string comment = line.comment(); if (comment.length() > 1) // process tags embedded into comments process_tags(comment); } } void GCodeProcessor::process_tags(const std::string& comment) { // extrusion role tag size_t pos = comment.find(Extrusion_Role_Tag); if (pos != comment.npos) { try { int role = std::stoi(comment.substr(pos + Extrusion_Role_Tag.length())); if (is_valid_extrusion_role(role)) m_extrusion_role = static_cast(role); else { // todo: show some error ? } } catch (...) { BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Extrusion Role (" << comment << ")."; } return; } // width tag pos = comment.find(Width_Tag); if (pos != comment.npos) { try { m_width = std::stof(comment.substr(pos + Width_Tag.length())); } catch (...) { BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Width (" << comment << ")."; } return; } // height tag pos = comment.find(Height_Tag); if (pos != comment.npos) { try { m_height = std::stof(comment.substr(pos + Height_Tag.length())); } catch (...) { BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Height (" << comment << ")."; } return; } // mm3 per mm tag pos = comment.find(Mm3_Per_Mm_Tag); if (pos != comment.npos) { try { m_mm3_per_mm = std::stof(comment.substr(pos + Mm3_Per_Mm_Tag.length())); } catch (...) { BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Mm3_Per_Mm (" << comment << ")."; } return; } // color change tag pos = comment.find(Color_Change_Tag); if (pos != comment.npos) { pos = comment.find_last_of(",T"); try { unsigned char extruder_id = (pos == comment.npos) ? 0 : static_cast(std::stoi(comment.substr(pos + 1))); m_extruders_color[extruder_id] = static_cast(m_extruder_offsets.size()) + m_cp_color.counter; // color_change position in list of color for preview ++m_cp_color.counter; if (m_cp_color.counter == UCHAR_MAX) m_cp_color.counter = 0; if (m_extruder_id == extruder_id) { m_cp_color.current = m_extruders_color[extruder_id]; store_move_vertex(EMoveType::Color_change); } process_custom_gcode_time(CustomGCode::ColorChange); } catch (...) { BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Color_Change (" << comment << ")."; } return; } // pause print tag pos = comment.find(Pause_Print_Tag); if (pos != comment.npos) { store_move_vertex(EMoveType::Pause_Print); process_custom_gcode_time(CustomGCode::PausePrint); return; } // custom code tag pos = comment.find(Custom_Code_Tag); if (pos != comment.npos) { store_move_vertex(EMoveType::Custom_GCode); return; } } void GCodeProcessor::process_G0(const GCodeReader::GCodeLine& line) { process_G1(line); } void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line) { auto absolute_position = [this](Axis axis, const GCodeReader::GCodeLine& lineG1) { bool is_relative = (m_global_positioning_type == EPositioningType::Relative); if (axis == E) is_relative |= (m_e_local_positioning_type == EPositioningType::Relative); if (lineG1.has(Slic3r::Axis(axis))) { float lengthsScaleFactor = (m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f; float ret = lineG1.value(Slic3r::Axis(axis)) * lengthsScaleFactor; return is_relative ? m_start_position[axis] + ret : m_origin[axis] + ret; } else return m_start_position[axis]; }; auto move_type = [this](const AxisCoords& delta_pos) { EMoveType type = EMoveType::Noop; if (delta_pos[E] < 0.0f) { type = (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f || delta_pos[Z] != 0.0f) ? EMoveType::Travel : EMoveType::Retract; } else if (delta_pos[E] > 0.0f) { if (delta_pos[X] == 0.0f && delta_pos[Y] == 0.0f && delta_pos[Z] == 0.0f) type = EMoveType::Unretract; else if (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f) type = EMoveType::Extrude; } else if (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f || delta_pos[Z] != 0.0f) type = EMoveType::Travel; #if ENABLE_GCODE_VIEWER_AS_STATE if (type == EMoveType::Extrude && (m_width == 0.0f || m_height == 0.0f)) { if (m_extrusion_role != erCustom) { m_width = 0.5f; m_height = 0.5f; } type = EMoveType::Travel; } #else if (type == EMoveType::Extrude && (m_width == 0.0f || m_height == 0.0f || !is_valid_extrusion_role(m_extrusion_role))) type = EMoveType::Travel; #endif // ENABLE_GCODE_VIEWER_AS_STATE return type; }; // updates axes positions from line for (unsigned char a = X; a <= E; ++a) { m_end_position[a] = absolute_position((Axis)a, line); } // updates feedrate from line, if present if (line.has_f()) m_feedrate = line.f() * MMMIN_TO_MMSEC; // calculates movement deltas float max_abs_delta = 0.0f; AxisCoords delta_pos; for (unsigned char a = X; a <= E; ++a) { delta_pos[a] = m_end_position[a] - m_start_position[a]; max_abs_delta = std::max(max_abs_delta, std::abs(delta_pos[a])); } // no displacement, return if (max_abs_delta == 0.0f) return; EMoveType type = move_type(delta_pos); // time estimate section auto move_length = [](const AxisCoords& delta_pos) { float sq_xyz_length = sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]); return (sq_xyz_length > 0.0f) ? std::sqrt(sq_xyz_length) : std::abs(delta_pos[E]); }; auto is_extrusion_only_move = [](const AxisCoords& delta_pos) { return delta_pos[X] == 0.0f && delta_pos[Y] == 0.0f && delta_pos[Z] == 0.0f && delta_pos[E] != 0.0f; }; float distance = move_length(delta_pos); assert(distance != 0.0f); float inv_distance = 1.0f / distance; for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { TimeMachine& machine = m_time_processor.machines[i]; if (!machine.enabled) continue; TimeMachine::State& curr = machine.curr; TimeMachine::State& prev = machine.prev; std::vector& blocks = machine.blocks; curr.feedrate = (delta_pos[E] == 0.0f) ? minimum_travel_feedrate(static_cast(i), m_feedrate) : minimum_feedrate(static_cast(i), m_feedrate); TimeBlock block; block.move_type = type; block.role = m_extrusion_role; block.distance = distance; // calculates block cruise feedrate float min_feedrate_factor = 1.0f; for (unsigned char a = X; a <= E; ++a) { curr.axis_feedrate[a] = curr.feedrate * delta_pos[a] * inv_distance; if (a == E) curr.axis_feedrate[a] *= machine.extrude_factor_override_percentage; curr.abs_axis_feedrate[a] = std::abs(curr.axis_feedrate[a]); if (curr.abs_axis_feedrate[a] != 0.0f) { float axis_max_feedrate = get_axis_max_feedrate(static_cast(i), static_cast(a)); if (axis_max_feedrate != 0.0f) min_feedrate_factor = std::min(min_feedrate_factor, axis_max_feedrate / curr.abs_axis_feedrate[a]); } } block.feedrate_profile.cruise = min_feedrate_factor * curr.feedrate; if (min_feedrate_factor < 1.0f) { for (unsigned char a = X; a <= E; ++a) { curr.axis_feedrate[a] *= min_feedrate_factor; curr.abs_axis_feedrate[a] *= min_feedrate_factor; } } // calculates block acceleration float acceleration = is_extrusion_only_move(delta_pos) ? get_retract_acceleration(static_cast(i)) : get_acceleration(static_cast(i)); for (unsigned char a = X; a <= E; ++a) { float axis_max_acceleration = get_axis_max_acceleration(static_cast(i), static_cast(a)); if (acceleration * std::abs(delta_pos[a]) * inv_distance > axis_max_acceleration) acceleration = axis_max_acceleration; } block.acceleration = acceleration; // calculates block exit feedrate curr.safe_feedrate = block.feedrate_profile.cruise; for (unsigned char a = X; a <= E; ++a) { float axis_max_jerk = get_axis_max_jerk(static_cast(i), static_cast(a)); if (curr.abs_axis_feedrate[a] > axis_max_jerk) curr.safe_feedrate = std::min(curr.safe_feedrate, axis_max_jerk); } block.feedrate_profile.exit = curr.safe_feedrate; static const float PREVIOUS_FEEDRATE_THRESHOLD = 0.0001f; // calculates block entry feedrate float vmax_junction = curr.safe_feedrate; if (!blocks.empty() && prev.feedrate > PREVIOUS_FEEDRATE_THRESHOLD) { bool prev_speed_larger = prev.feedrate > block.feedrate_profile.cruise; float smaller_speed_factor = prev_speed_larger ? (block.feedrate_profile.cruise / prev.feedrate) : (prev.feedrate / block.feedrate_profile.cruise); // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. vmax_junction = prev_speed_larger ? block.feedrate_profile.cruise : prev.feedrate; float v_factor = 1.0f; bool limited = false; for (unsigned char a = X; a <= E; ++a) { // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop. float v_exit = prev.axis_feedrate[a]; float v_entry = curr.axis_feedrate[a]; if (prev_speed_larger) v_exit *= smaller_speed_factor; if (limited) { v_exit *= v_factor; v_entry *= v_factor; } // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction. float jerk = (v_exit > v_entry) ? (((v_entry > 0.0f) || (v_exit < 0.0f)) ? // coasting (v_exit - v_entry) : // axis reversal std::max(v_exit, -v_entry)) : // v_exit <= v_entry (((v_entry < 0.0f) || (v_exit > 0.0f)) ? // coasting (v_entry - v_exit) : // axis reversal std::max(-v_exit, v_entry)); float axis_max_jerk = get_axis_max_jerk(static_cast(i), static_cast(a)); if (jerk > axis_max_jerk) { v_factor *= axis_max_jerk / jerk; limited = true; } } if (limited) vmax_junction *= v_factor; // Now the transition velocity is known, which maximizes the shared exit / entry velocity while // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints. float vmax_junction_threshold = vmax_junction * 0.99f; // Not coasting. The machine will stop and start the movements anyway, better to start the segment from start. if ((prev.safe_feedrate > vmax_junction_threshold) && (curr.safe_feedrate > vmax_junction_threshold)) vmax_junction = curr.safe_feedrate; } float v_allowable = max_allowable_speed(-acceleration, curr.safe_feedrate, block.distance); block.feedrate_profile.entry = std::min(vmax_junction, v_allowable); block.max_entry_speed = vmax_junction; block.flags.nominal_length = (block.feedrate_profile.cruise <= v_allowable); block.flags.recalculate = true; block.safe_feedrate = curr.safe_feedrate; // calculates block trapezoid block.calculate_trapezoid(); // updates previous prev = curr; blocks.push_back(block); if (blocks.size() > TimeProcessor::Planner::refresh_threshold) machine.calculate_time(TimeProcessor::Planner::queue_size); } // store move store_move_vertex(type); } void GCodeProcessor::process_G10(const GCodeReader::GCodeLine& line) { // stores retract move store_move_vertex(EMoveType::Retract); } void GCodeProcessor::process_G11(const GCodeReader::GCodeLine& line) { // stores unretract move store_move_vertex(EMoveType::Unretract); } void GCodeProcessor::process_G20(const GCodeReader::GCodeLine& line) { m_units = EUnits::Inches; } void GCodeProcessor::process_G21(const GCodeReader::GCodeLine& line) { m_units = EUnits::Millimeters; } void GCodeProcessor::process_G22(const GCodeReader::GCodeLine& line) { // stores retract move store_move_vertex(EMoveType::Retract); } void GCodeProcessor::process_G23(const GCodeReader::GCodeLine& line) { // stores unretract move store_move_vertex(EMoveType::Unretract); } void GCodeProcessor::process_G90(const GCodeReader::GCodeLine& line) { m_global_positioning_type = EPositioningType::Absolute; } void GCodeProcessor::process_G91(const GCodeReader::GCodeLine& line) { m_global_positioning_type = EPositioningType::Relative; } void GCodeProcessor::process_G92(const GCodeReader::GCodeLine& line) { float lengths_scale_factor = (m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f; bool any_found = false; if (line.has_x()) { m_origin[X] = m_end_position[X] - line.x() * lengths_scale_factor; any_found = true; } if (line.has_y()) { m_origin[Y] = m_end_position[Y] - line.y() * lengths_scale_factor; any_found = true; } if (line.has_z()) { m_origin[Z] = m_end_position[Z] - line.z() * lengths_scale_factor; any_found = true; } if (line.has_e()) { // extruder coordinate can grow to the point where its float representation does not allow for proper addition with small increments, // we set the value taken from the G92 line as the new current position for it m_end_position[E] = line.e() * lengths_scale_factor; any_found = true; } else simulate_st_synchronize(); if (!any_found && !line.has_unknown_axis()) { // The G92 may be called for axes that PrusaSlicer does not recognize, for example see GH issue #3510, // where G92 A0 B0 is called although the extruder axis is till E. for (unsigned char a = X; a <= E; ++a) { m_origin[a] = m_end_position[a]; } } } void GCodeProcessor::process_M1(const GCodeReader::GCodeLine& line) { simulate_st_synchronize(); } void GCodeProcessor::process_M82(const GCodeReader::GCodeLine& line) { m_e_local_positioning_type = EPositioningType::Absolute; } void GCodeProcessor::process_M83(const GCodeReader::GCodeLine& line) { m_e_local_positioning_type = EPositioningType::Relative; } void GCodeProcessor::process_M106(const GCodeReader::GCodeLine& line) { if (!line.has('P')) { // The absence of P means the print cooling fan, so ignore anything else. float new_fan_speed; if (line.has_value('S', new_fan_speed)) m_fan_speed = (100.0f / 255.0f) * new_fan_speed; else m_fan_speed = 100.0f; } } void GCodeProcessor::process_M107(const GCodeReader::GCodeLine& line) { m_fan_speed = 0.0f; } void GCodeProcessor::process_M108(const GCodeReader::GCodeLine& line) { // These M-codes are used by Sailfish to change active tool. // They have to be processed otherwise toolchanges will be unrecognised // by the analyzer - see https://github.com/prusa3d/PrusaSlicer/issues/2566 if (m_flavor != gcfSailfish) return; std::string cmd = line.raw(); size_t pos = cmd.find("T"); if (pos != std::string::npos) process_T(cmd.substr(pos)); } void GCodeProcessor::process_M132(const GCodeReader::GCodeLine& line) { // This command is used by Makerbot to load the current home position from EEPROM // see: https://github.com/makerbot/s3g/blob/master/doc/GCodeProtocol.md // Using this command to reset the axis origin to zero helps in fixing: https://github.com/prusa3d/PrusaSlicer/issues/3082 if (line.has_x()) m_origin[X] = 0.0f; if (line.has_y()) m_origin[Y] = 0.0f; if (line.has_z()) m_origin[Z] = 0.0f; if (line.has_e()) m_origin[E] = 0.0f; } void GCodeProcessor::process_M135(const GCodeReader::GCodeLine& line) { // These M-codes are used by MakerWare to change active tool. // They have to be processed otherwise toolchanges will be unrecognised // by the analyzer - see https://github.com/prusa3d/PrusaSlicer/issues/2566 if (m_flavor != gcfMakerWare) return; std::string cmd = line.raw(); size_t pos = cmd.find("T"); if (pos != std::string::npos) process_T(cmd.substr(pos)); } void GCodeProcessor::process_M201(const GCodeReader::GCodeLine& line) { // see http://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration float factor = (m_flavor != gcfRepRap && m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f; for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { if (line.has_x()) set_option_value(m_time_processor.machine_limits.machine_max_acceleration_x, i, line.x() * factor); if (line.has_y() && i < m_time_processor.machine_limits.machine_max_acceleration_y.values.size()) set_option_value(m_time_processor.machine_limits.machine_max_acceleration_y, i, line.y() * factor); if (line.has_z() && i < m_time_processor.machine_limits.machine_max_acceleration_z.values.size()) set_option_value(m_time_processor.machine_limits.machine_max_acceleration_z, i, line.z() * factor); if (line.has_e() && i < m_time_processor.machine_limits.machine_max_acceleration_e.values.size()) set_option_value(m_time_processor.machine_limits.machine_max_acceleration_e, i, line.e() * factor); } } void GCodeProcessor::process_M203(const GCodeReader::GCodeLine& line) { // see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate if (m_flavor == gcfRepetier) return; // see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate // http://smoothieware.org/supported-g-codes float factor = (m_flavor == gcfMarlin || m_flavor == gcfSmoothie) ? 1.0f : MMMIN_TO_MMSEC; for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { if (line.has_x()) set_option_value(m_time_processor.machine_limits.machine_max_feedrate_x, i, line.x() * factor); if (line.has_y()) set_option_value(m_time_processor.machine_limits.machine_max_feedrate_y, i, line.y() * factor); if (line.has_z()) set_option_value(m_time_processor.machine_limits.machine_max_feedrate_z, i, line.z() * factor); if (line.has_e()) set_option_value(m_time_processor.machine_limits.machine_max_feedrate_e, i, line.e() * factor); } } void GCodeProcessor::process_M204(const GCodeReader::GCodeLine& line) { float value; for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { if (line.has_value('S', value)) { // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware, // and it is also generated by Slic3r to control acceleration per extrusion type // (there is a separate acceleration settings in Slicer for perimeter, first layer etc). set_acceleration(static_cast(i), value); if (line.has_value('T', value)) set_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, i, value); } else { // New acceleration format, compatible with the upstream Marlin. if (line.has_value('P', value)) set_acceleration(static_cast(i), value); if (line.has_value('R', value)) set_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, i, value); if (line.has_value('T', value)) { // Interpret the T value as the travel acceleration in the new Marlin format. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value. // set_travel_acceleration(value); } } } } void GCodeProcessor::process_M205(const GCodeReader::GCodeLine& line) { for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { if (line.has_x()) { float max_jerk = line.x(); set_option_value(m_time_processor.machine_limits.machine_max_jerk_x, i, max_jerk); set_option_value(m_time_processor.machine_limits.machine_max_jerk_y, i, max_jerk); } if (line.has_y()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_y, i, line.y()); if (line.has_z()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_z, i, line.z()); if (line.has_e()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_e, i, line.e()); float value; if (line.has_value('S', value)) set_option_value(m_time_processor.machine_limits.machine_min_extruding_rate, i, value); if (line.has_value('T', value)) set_option_value(m_time_processor.machine_limits.machine_min_travel_rate, i, value); } } void GCodeProcessor::process_M221(const GCodeReader::GCodeLine& line) { float value_s; float value_t; if (line.has_value('S', value_s) && !line.has_value('T', value_t)) { value_s *= 0.01f; for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { m_time_processor.machines[i].extrude_factor_override_percentage = value_s; } } } void GCodeProcessor::process_M401(const GCodeReader::GCodeLine& line) { if (m_flavor != gcfRepetier) return; for (unsigned char a = 0; a <= 3; ++a) { m_cached_position.position[a] = m_start_position[a]; } m_cached_position.feedrate = m_feedrate; } void GCodeProcessor::process_M402(const GCodeReader::GCodeLine& line) { if (m_flavor != gcfRepetier) return; // see for reference: // https://github.com/repetier/Repetier-Firmware/blob/master/src/ArduinoAVR/Repetier/Printer.cpp // void Printer::GoToMemoryPosition(bool x, bool y, bool z, bool e, float feed) bool has_xyz = !(line.has_x() || line.has_y() || line.has_z()); float p = FLT_MAX; for (unsigned char a = X; a <= Z; ++a) { if (has_xyz || line.has(a)) { p = m_cached_position.position[a]; if (p != FLT_MAX) m_start_position[a] = p; } } p = m_cached_position.position[E]; if (p != FLT_MAX) m_start_position[E] = p; p = FLT_MAX; if (!line.has_value(4, p)) p = m_cached_position.feedrate; if (p != FLT_MAX) m_feedrate = p; } void GCodeProcessor::process_M566(const GCodeReader::GCodeLine& line) { for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { if (line.has_x()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_x, i, line.x() * MMMIN_TO_MMSEC); if (line.has_y()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_y, i, line.y() * MMMIN_TO_MMSEC); if (line.has_z()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_z, i, line.z() * MMMIN_TO_MMSEC); if (line.has_e()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_e, i, line.e() * MMMIN_TO_MMSEC); } } void GCodeProcessor::process_M702(const GCodeReader::GCodeLine& line) { if (line.has('C')) { // MK3 MMU2 specific M code: // M702 C is expected to be sent by the custom end G-code when finalizing a print. // The MK3 unit shall unload and park the active filament into the MMU2 unit. m_time_processor.extruder_unloaded = true; simulate_st_synchronize(get_filament_unload_time(m_extruder_id)); } } void GCodeProcessor::process_T(const GCodeReader::GCodeLine& line) { process_T(line.cmd()); } void GCodeProcessor::process_T(const std::string& command) { if (command.length() > 1) { try { unsigned char id = static_cast(std::stoi(command.substr(1))); if (m_extruder_id != id) { unsigned char extruders_count = static_cast(m_extruder_offsets.size()); if (id >= extruders_count) BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid toolchange, maybe from a custom gcode."; else { unsigned char old_extruder_id = m_extruder_id; m_extruder_id = id; m_cp_color.current = m_extruders_color[id]; // Specific to the MK3 MMU2: // The initial value of extruder_unloaded is set to true indicating // that the filament is parked in the MMU2 unit and there is nothing to be unloaded yet. float extra_time = get_filament_unload_time(static_cast(old_extruder_id)); m_time_processor.extruder_unloaded = false; extra_time += get_filament_load_time(static_cast(m_extruder_id)); simulate_st_synchronize(extra_time); } // store tool change move store_move_vertex(EMoveType::Tool_change); } } catch (...) { BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid toolchange (" << command << ")."; } } } void GCodeProcessor::store_move_vertex(EMoveType type) { MoveVertex vertex; vertex.type = type; vertex.extrusion_role = m_extrusion_role; vertex.position = Vec3f(m_end_position[X], m_end_position[Y], m_end_position[Z]) + m_extruder_offsets[m_extruder_id]; vertex.delta_extruder = m_end_position[E] - m_start_position[E]; vertex.feedrate = m_feedrate; vertex.width = m_width; vertex.height = m_height; vertex.mm3_per_mm = m_mm3_per_mm; vertex.fan_speed = m_fan_speed; vertex.extruder_id = m_extruder_id; vertex.cp_color_id = m_cp_color.current; vertex.time = static_cast(m_result.moves.size()); m_result.moves.emplace_back(vertex); } float GCodeProcessor::minimum_feedrate(ETimeMode mode, float feedrate) const { if (m_time_processor.machine_limits.machine_min_extruding_rate.empty()) return feedrate; return std::max(feedrate, get_option_value(m_time_processor.machine_limits.machine_min_extruding_rate, static_cast(mode))); } float GCodeProcessor::minimum_travel_feedrate(ETimeMode mode, float feedrate) const { if (m_time_processor.machine_limits.machine_min_travel_rate.empty()) return feedrate; return std::max(feedrate, get_option_value(m_time_processor.machine_limits.machine_min_travel_rate, static_cast(mode))); } float GCodeProcessor::get_axis_max_feedrate(ETimeMode mode, Axis axis) const { switch (axis) { case X: { return get_option_value(m_time_processor.machine_limits.machine_max_feedrate_x, static_cast(mode)); } case Y: { return get_option_value(m_time_processor.machine_limits.machine_max_feedrate_y, static_cast(mode)); } case Z: { return get_option_value(m_time_processor.machine_limits.machine_max_feedrate_z, static_cast(mode)); } case E: { return get_option_value(m_time_processor.machine_limits.machine_max_feedrate_e, static_cast(mode)); } default: { return 0.0f; } } } float GCodeProcessor::get_axis_max_acceleration(ETimeMode mode, Axis axis) const { switch (axis) { case X: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_x, static_cast(mode)); } case Y: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_y, static_cast(mode)); } case Z: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_z, static_cast(mode)); } case E: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_e, static_cast(mode)); } default: { return 0.0f; } } } float GCodeProcessor::get_axis_max_jerk(ETimeMode mode, Axis axis) const { switch (axis) { case X: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_x, static_cast(mode)); } case Y: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_y, static_cast(mode)); } case Z: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_z, static_cast(mode)); } case E: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_e, static_cast(mode)); } default: { return 0.0f; } } } float GCodeProcessor::get_retract_acceleration(ETimeMode mode) const { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, static_cast(mode)); } float GCodeProcessor::get_acceleration(ETimeMode mode) const { size_t id = static_cast(mode); return (id < m_time_processor.machines.size()) ? m_time_processor.machines[id].acceleration : DEFAULT_ACCELERATION; } void GCodeProcessor::set_acceleration(ETimeMode mode, float value) { size_t id = static_cast(mode); if (id < m_time_processor.machines.size()) { float max_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_extruding, id); m_time_processor.machines[id].acceleration = (max_acceleration == 0.0f) ? value : std::min(value, max_acceleration); } } float GCodeProcessor::get_filament_load_time(size_t extruder_id) { return (m_time_processor.filament_load_times.empty() || m_time_processor.extruder_unloaded) ? 0.0f : ((extruder_id < m_time_processor.filament_load_times.size()) ? m_time_processor.filament_load_times[extruder_id] : m_time_processor.filament_load_times.front()); } float GCodeProcessor::get_filament_unload_time(size_t extruder_id) { return (m_time_processor.filament_unload_times.empty() || m_time_processor.extruder_unloaded) ? 0.0f : ((extruder_id < m_time_processor.filament_unload_times.size()) ? m_time_processor.filament_unload_times[extruder_id] : m_time_processor.filament_unload_times.front()); } void GCodeProcessor::process_custom_gcode_time(CustomGCode::Type code) { for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { TimeMachine& machine = m_time_processor.machines[i]; if (!machine.enabled) continue; TimeMachine::CustomGCodeTime& gcode_time = machine.gcode_time; gcode_time.needed = true; //FIXME this simulates st_synchronize! is it correct? // The estimated time may be longer than the real print time. machine.simulate_st_synchronize(); if (gcode_time.cache != 0.0f) { gcode_time.times.push_back({ code, gcode_time.cache }); gcode_time.cache = 0.0f; } } } void GCodeProcessor::simulate_st_synchronize(float additional_time) { for (size_t i = 0; i < static_cast(ETimeMode::Count); ++i) { m_time_processor.machines[i].simulate_st_synchronize(additional_time); } } } /* namespace Slic3r */ #endif // ENABLE_GCODE_VIEWER