///|/ Copyright (c) Prusa Research 2023 Vojtěch Bubník @bubnikv, Pavel Mikuš @Godrak, Lukáš Hejl @hejllukas ///|/ ///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher ///|/ #include "FillEnsuring.hpp" #include #include #include #include #include #include #include #include #include "libslic3r/ClipperUtils.hpp" #include "libslic3r/ShortestPath.hpp" #include "libslic3r/Arachne/WallToolPaths.hpp" #include "libslic3r/AABBTreeLines.hpp" #include "libslic3r/Algorithm/PathSorting.hpp" #include "libslic3r/BoundingBox.hpp" #include "libslic3r/ExPolygon.hpp" #include "libslic3r/KDTreeIndirect.hpp" #include "libslic3r/Line.hpp" #include "libslic3r/Point.hpp" #include "libslic3r/Polygon.hpp" #include "libslic3r/Polyline.hpp" #include "libslic3r/libslic3r.h" #include "libslic3r/Arachne/utils/ExtrusionLine.hpp" #include "libslic3r/Fill/FillBase.hpp" #include "libslic3r/Surface.hpp" namespace Slic3r { const constexpr coord_t MAX_LINE_LENGTH_TO_FILTER = scaled(4.); // 4 mm. const constexpr size_t MAX_SKIPS_ALLOWED = 2; // Skip means propagation through long line. const constexpr size_t MIN_DEPTH_FOR_LINE_REMOVING = 5; struct LineNode { struct State { // The total number of long lines visited before this node was reached. // We just need the minimum number of all possible paths to decide whether we can remove the line or not. int min_skips_taken = 0; // The total number of short lines visited before this node was reached. int total_short_lines = 0; // Some initial line is touching some long line. This information is propagated to neighbors. bool initial_touches_long_lines = false; bool initialized = false; void reset() { this->min_skips_taken = 0; this->total_short_lines = 0; this->initial_touches_long_lines = false; this->initialized = false; } }; explicit LineNode(const Line &line) : line(line) {} Line line; // Pointers to line nodes in the previous and the next section that overlap with this line. std::vector next_section_overlapping_lines; std::vector prev_section_overlapping_lines; bool is_removed = false; State state; // Return true if some initial line is touching some long line and this information was propagated into the current line. bool is_initial_line_touching_long_lines() const { if (prev_section_overlapping_lines.empty()) return false; for (LineNode *line_node : prev_section_overlapping_lines) { if (line_node->state.initial_touches_long_lines) return true; } return false; } // Return true if the current line overlaps with some long line in the previous section. bool is_touching_long_lines_in_previous_layer() const { if (prev_section_overlapping_lines.empty()) return false; for (LineNode *line_node : prev_section_overlapping_lines) { if (!line_node->is_removed && line_node->line.length() >= MAX_LINE_LENGTH_TO_FILTER) return true; } return false; } // Return true if the current line overlaps with some line in the next section. bool has_next_layer_neighbours() const { if (next_section_overlapping_lines.empty()) return false; for (LineNode *line_node : next_section_overlapping_lines) { if (!line_node->is_removed) return true; } return false; } }; using LineNodes = std::vector; inline bool are_lines_overlapping_in_y_axes(const Line &first_line, const Line &second_line) { return (second_line.a.y() <= first_line.a.y() && first_line.a.y() <= second_line.b.y()) || (second_line.a.y() <= first_line.b.y() && first_line.b.y() <= second_line.b.y()) || (first_line.a.y() <= second_line.a.y() && second_line.a.y() <= first_line.b.y()) || (first_line.a.y() <= second_line.b.y() && second_line.b.y() <= first_line.b.y()); } bool can_line_note_be_removed(const LineNode &line_node) { return (line_node.line.length() < MAX_LINE_LENGTH_TO_FILTER) && (line_node.state.total_short_lines > int(MIN_DEPTH_FOR_LINE_REMOVING) || (!line_node.is_initial_line_touching_long_lines() && !line_node.has_next_layer_neighbours())); } // Remove the node and propagate its removal to the previous sections. void propagate_line_node_remove(const LineNode &line_node) { std::queue line_node_queue; for (LineNode *prev_line : line_node.prev_section_overlapping_lines) { if (prev_line->is_removed) continue; line_node_queue.emplace(prev_line); } for (; !line_node_queue.empty(); line_node_queue.pop()) { LineNode &line_to_check = *line_node_queue.front(); if (can_line_note_be_removed(line_to_check)) { line_to_check.is_removed = true; for (LineNode *prev_line : line_to_check.prev_section_overlapping_lines) { if (prev_line->is_removed) continue; line_node_queue.emplace(prev_line); } } } } // Filter out short extrusions that could create vibrations. static std::vector filter_vibrating_extrusions(const std::vector &lines_sections) { // Initialize all line nodes. std::vector line_nodes_sections(lines_sections.size()); for (const Lines &lines_section : lines_sections) { const size_t section_idx = &lines_section - lines_sections.data(); line_nodes_sections[section_idx].reserve(lines_section.size()); for (const Line &line : lines_section) { line_nodes_sections[section_idx].emplace_back(line); } } // Precalculate for each line node which line nodes in the previous and next section this line node overlaps. for (auto curr_lines_section_it = line_nodes_sections.begin(); curr_lines_section_it != line_nodes_sections.end(); ++curr_lines_section_it) { if (curr_lines_section_it != line_nodes_sections.begin()) { const auto prev_lines_section_it = std::prev(curr_lines_section_it); for (LineNode &curr_line : *curr_lines_section_it) { for (LineNode &prev_line : *prev_lines_section_it) { if (are_lines_overlapping_in_y_axes(curr_line.line, prev_line.line)) { curr_line.prev_section_overlapping_lines.emplace_back(&prev_line); } } } } if (std::next(curr_lines_section_it) != line_nodes_sections.end()) { const auto next_lines_section_it = std::next(curr_lines_section_it); for (LineNode &curr_line : *curr_lines_section_it) { for (LineNode &next_line : *next_lines_section_it) { if (are_lines_overlapping_in_y_axes(curr_line.line, next_line.line)) { curr_line.next_section_overlapping_lines.emplace_back(&next_line); } } } } } // Select each section as the initial lines section and propagate line node states from this initial lines section to the last lines section. // During this propagation, we remove those lines that meet the conditions for its removal. // When some line is removed, we propagate this removal to previous layers. for (size_t initial_line_section_idx = 0; initial_line_section_idx < line_nodes_sections.size(); ++initial_line_section_idx) { // Stars from non-removed short lines. for (LineNode &initial_line : line_nodes_sections[initial_line_section_idx]) { if (initial_line.is_removed || initial_line.line.length() >= MAX_LINE_LENGTH_TO_FILTER) continue; initial_line.state.reset(); initial_line.state.total_short_lines = 1; initial_line.state.initial_touches_long_lines = initial_line.is_touching_long_lines_in_previous_layer(); initial_line.state.initialized = true; } // Iterate from the initial lines section until the last lines section. for (size_t propagation_line_section_idx = initial_line_section_idx; propagation_line_section_idx < line_nodes_sections.size(); ++propagation_line_section_idx) { // Before we propagate node states into next lines sections, we reset the state of all line nodes in the next line section. if (propagation_line_section_idx + 1 < line_nodes_sections.size()) { for (LineNode &propagation_line : line_nodes_sections[propagation_line_section_idx + 1]) { propagation_line.state.reset(); } } for (LineNode &propagation_line : line_nodes_sections[propagation_line_section_idx]) { if (propagation_line.is_removed || !propagation_line.state.initialized) continue; for (LineNode *neighbour_line : propagation_line.next_section_overlapping_lines) { if (neighbour_line->is_removed) continue; const bool is_short_line = neighbour_line->line.length() < MAX_LINE_LENGTH_TO_FILTER; const bool is_skip_allowed = propagation_line.state.min_skips_taken < int(MAX_SKIPS_ALLOWED); if (!is_short_line && !is_skip_allowed) continue; const int neighbour_total_short_lines = propagation_line.state.total_short_lines + int(is_short_line); const int neighbour_min_skips_taken = propagation_line.state.min_skips_taken + int(!is_short_line); if (neighbour_line->state.initialized) { // When the state of the node was previously filled, then we need to update data in such a way // that will maximize the possibility of removing this node. neighbour_line->state.min_skips_taken = std::max(neighbour_line->state.min_skips_taken, neighbour_total_short_lines); neighbour_line->state.min_skips_taken = std::min(neighbour_line->state.min_skips_taken, neighbour_min_skips_taken); // We will keep updating neighbor initial_touches_long_lines until it is equal to false. if (neighbour_line->state.initial_touches_long_lines) { neighbour_line->state.initial_touches_long_lines = propagation_line.state.initial_touches_long_lines; } } else { neighbour_line->state.total_short_lines = neighbour_total_short_lines; neighbour_line->state.min_skips_taken = neighbour_min_skips_taken; neighbour_line->state.initial_touches_long_lines = propagation_line.state.initial_touches_long_lines; neighbour_line->state.initialized = true; } } if (can_line_note_be_removed(propagation_line)) { // Remove the current node and propagate its removal to the previous sections. propagation_line.is_removed = true; propagate_line_node_remove(propagation_line); } } } } // Create lines sections without filtered-out lines. std::vector lines_sections_out(line_nodes_sections.size()); for (const std::vector &line_nodes_section : line_nodes_sections) { const size_t section_idx = &line_nodes_section - line_nodes_sections.data(); for (const LineNode &line_node : line_nodes_section) { if (!line_node.is_removed) { lines_sections_out[section_idx].emplace_back(line_node.line); } } } return lines_sections_out; } ThickPolylines make_fill_polylines( const Fill *fill, const Surface *surface, const FillParams ¶ms, bool stop_vibrations, bool fill_gaps, bool connect_extrusions) { assert(fill->print_config != nullptr && fill->print_object_config != nullptr); auto rotate_thick_polylines = [](ThickPolylines &tpolylines, double cos_angle, double sin_angle) { for (ThickPolyline &tp : tpolylines) { for (auto &p : tp.points) { double px = double(p.x()); double py = double(p.y()); p.x() = coord_t(round(cos_angle * px - sin_angle * py)); p.y() = coord_t(round(cos_angle * py + sin_angle * px)); } } }; const coord_t scaled_spacing = scaled(fill->spacing); double distance_limit_reconnection = 2.0 * double(scaled_spacing); double squared_distance_limit_reconnection = distance_limit_reconnection * distance_limit_reconnection; Polygons filled_area = to_polygons(surface->expolygon); std::pair rotate_vector = fill->_infill_direction(surface); double aligning_angle = -rotate_vector.first + PI; polygons_rotate(filled_area, aligning_angle); BoundingBox bb = get_extents(filled_area); Polygons inner_area = stop_vibrations ? intersection(filled_area, opening(filled_area, 2 * scaled_spacing, 3 * scaled_spacing)) : filled_area; inner_area = shrink(inner_area, scaled_spacing * 0.5 - scaled(fill->overlap)); AABBTreeLines::LinesDistancer area_walls{to_lines(inner_area)}; const size_t n_vlines = (bb.max.x() - bb.min.x() + scaled_spacing - 1) / scaled_spacing; const coord_t y_min = bb.min.y(); const coord_t y_max = bb.max.y(); Lines vertical_lines(n_vlines); for (size_t i = 0; i < n_vlines; i++) { coord_t x = bb.min.x() + i * double(scaled_spacing); vertical_lines[i].a = Point{x, y_min}; vertical_lines[i].b = Point{x, y_max}; } if (!vertical_lines.empty()) { vertical_lines.push_back(vertical_lines.back()); vertical_lines.back().a = Point{coord_t(bb.min.x() + n_vlines * double(scaled_spacing) + scaled_spacing * 0.5), y_min}; vertical_lines.back().b = Point{vertical_lines.back().a.x(), y_max}; } std::vector polygon_sections(n_vlines); for (size_t i = 0; i < n_vlines; i++) { const auto intersections = area_walls.intersections_with_line(vertical_lines[i]); for (int intersection_idx = 0; intersection_idx < int(intersections.size()) - 1; intersection_idx++) { const auto &a = intersections[intersection_idx]; const auto &b = intersections[intersection_idx + 1]; if (area_walls.outside((a.first + b.first) / 2) < 0) { if (std::abs(a.first.y() - b.first.y()) > scaled_spacing) { polygon_sections[i].emplace_back(a.first, b.first); } } } } if (stop_vibrations) { polygon_sections = filter_vibrating_extrusions(polygon_sections); } ThickPolylines thick_polylines; { for (const auto &polygon_slice : polygon_sections) { for (const Line &segment : polygon_slice) { ThickPolyline &new_path = thick_polylines.emplace_back(); new_path.points.push_back(segment.a); new_path.width.push_back(scaled_spacing); new_path.points.push_back(segment.b); new_path.width.push_back(scaled_spacing); new_path.endpoints = {true, true}; } } } if (fill_gaps) { Polygons reconstructed_area{}; // reconstruct polygon from polygon sections { struct TracedPoly { Points lows; Points highs; }; std::vector> polygon_sections_w_width = polygon_sections; for (auto &slice : polygon_sections_w_width) { for (Line &l : slice) { l.a -= Point{0.0, 0.5 * scaled_spacing}; l.b += Point{0.0, 0.5 * scaled_spacing}; } } std::vector current_traced_polys; for (const auto &polygon_slice : polygon_sections_w_width) { std::unordered_set used_segments; for (TracedPoly &traced_poly : current_traced_polys) { auto candidates_begin = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.lows.back(), [](const Point &low, const Line &seg) { return seg.b.y() > low.y(); }); auto candidates_end = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.highs.back(), [](const Point &high, const Line &seg) { return seg.a.y() > high.y(); }); bool segment_added = false; for (auto candidate = candidates_begin; candidate != candidates_end && !segment_added; candidate++) { if (used_segments.find(&(*candidate)) != used_segments.end()) { continue; } if (connect_extrusions && (traced_poly.lows.back() - candidates_begin->a).cast().squaredNorm() < squared_distance_limit_reconnection) { traced_poly.lows.push_back(candidates_begin->a); } else { traced_poly.lows.push_back(traced_poly.lows.back() + Point{scaled_spacing / 2, 0}); traced_poly.lows.push_back(candidates_begin->a - Point{scaled_spacing / 2, 0}); traced_poly.lows.push_back(candidates_begin->a); } if (connect_extrusions && (traced_poly.highs.back() - candidates_begin->b).cast().squaredNorm() < squared_distance_limit_reconnection) { traced_poly.highs.push_back(candidates_begin->b); } else { traced_poly.highs.push_back(traced_poly.highs.back() + Point{scaled_spacing / 2, 0}); traced_poly.highs.push_back(candidates_begin->b - Point{scaled_spacing / 2, 0}); traced_poly.highs.push_back(candidates_begin->b); } segment_added = true; used_segments.insert(&(*candidates_begin)); } if (!segment_added) { // Zero or multiple overlapping segments. Resolving this is nontrivial, // so we just close this polygon and maybe open several new. This will hopefully happen much less often traced_poly.lows.push_back(traced_poly.lows.back() + Point{scaled_spacing / 2, 0}); traced_poly.highs.push_back(traced_poly.highs.back() + Point{scaled_spacing / 2, 0}); Polygon &new_poly = reconstructed_area.emplace_back(std::move(traced_poly.lows)); new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend()); traced_poly.lows.clear(); traced_poly.highs.clear(); } } current_traced_polys.erase(std::remove_if(current_traced_polys.begin(), current_traced_polys.end(), [](const TracedPoly &tp) { return tp.lows.empty(); }), current_traced_polys.end()); for (const auto &segment : polygon_slice) { if (used_segments.find(&segment) == used_segments.end()) { TracedPoly &new_tp = current_traced_polys.emplace_back(); new_tp.lows.push_back(segment.a - Point{scaled_spacing / 2, 0}); new_tp.lows.push_back(segment.a); new_tp.highs.push_back(segment.b - Point{scaled_spacing / 2, 0}); new_tp.highs.push_back(segment.b); } } } // add not closed polys for (TracedPoly &traced_poly : current_traced_polys) { Polygon &new_poly = reconstructed_area.emplace_back(std::move(traced_poly.lows)); new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend()); } } reconstructed_area = union_safety_offset(reconstructed_area); ExPolygons gaps_for_additional_filling = diff_ex(filled_area, reconstructed_area); if (fill->overlap != 0) { gaps_for_additional_filling = offset_ex(gaps_for_additional_filling, scaled(fill->overlap)); } // BoundingBox bbox = get_extents(filled_area); // bbox.offset(scale_(1.)); // ::Slic3r::SVG svg(debug_out_path(("surface" + std::to_string(surface->area())).c_str()).c_str(), bbox); // svg.draw(to_lines(filled_area), "red", scale_(0.4)); // svg.draw(to_lines(reconstructed_area), "blue", scale_(0.3)); // svg.draw(to_lines(gaps_for_additional_filling), "green", scale_(0.2)); // svg.draw(vertical_lines, "black", scale_(0.1)); // svg.Close(); for (ExPolygon &ex_poly : gaps_for_additional_filling) { BoundingBox ex_bb = ex_poly.contour.bounding_box(); coord_t loops_count = (std::max(ex_bb.size().x(), ex_bb.size().y()) + scaled_spacing - 1) / scaled_spacing; Polygons polygons = to_polygons(ex_poly); Arachne::WallToolPaths wall_tool_paths(polygons, scaled_spacing, scaled_spacing, loops_count, 0, params.layer_height, *fill->print_object_config, *fill->print_config); if (std::vector loops = wall_tool_paths.getToolPaths(); !loops.empty()) { std::vector all_extrusions; for (Arachne::VariableWidthLines &loop : loops) { if (loop.empty()) continue; for (const Arachne::ExtrusionLine &wall : loop) all_extrusions.emplace_back(&wall); } for (const Arachne::ExtrusionLine *extrusion : all_extrusions) { if (extrusion->junctions.size() < 2) continue; ThickPolyline thick_polyline = Arachne::to_thick_polyline(*extrusion); if (extrusion->is_closed) { // Arachne produces contour with clockwise orientation and holes with counterclockwise orientation. if (const bool extrusion_reverse = params.prefer_clockwise_movements ? !extrusion->is_contour() : extrusion->is_contour(); extrusion_reverse) thick_polyline.reverse(); thick_polyline.start_at_index(nearest_point_index(thick_polyline.points, ex_bb.min)); thick_polyline.clip_end(scaled_spacing * 0.5); } if (thick_polyline.is_valid() && thick_polyline.length() > 0 && thick_polyline.points.size() > 1) { thick_polylines.push_back(thick_polyline); } } } } std::sort(thick_polylines.begin(), thick_polylines.end(), [](const ThickPolyline &left, const ThickPolyline &right) { BoundingBox lbb(left.points); BoundingBox rbb(right.points); if (lbb.min.x() == rbb.min.x()) return lbb.min.y() < rbb.min.y(); else return lbb.min.x() < rbb.min.x(); }); // connect tiny gap fills to close colinear line struct EndPoint { Vec2d position; size_t polyline_idx; size_t other_end_point_idx; bool is_first; bool used = false; }; std::vector connection_endpoints; connection_endpoints.reserve(thick_polylines.size() * 2); for (size_t pl_idx = 0; pl_idx < thick_polylines.size(); pl_idx++) { size_t current_idx = connection_endpoints.size(); connection_endpoints.push_back({thick_polylines[pl_idx].first_point().cast(), pl_idx, current_idx + 1, true}); connection_endpoints.push_back({thick_polylines[pl_idx].last_point().cast(), pl_idx, current_idx, false}); } std::vector linear_segment_flags(thick_polylines.size()); for (size_t i = 0;i < thick_polylines.size(); i++) { const ThickPolyline& tp = thick_polylines[i]; linear_segment_flags[i] = tp.points.size() == 2 && tp.points.front().x() == tp.points.back().x() && tp.width.front() == scaled_spacing && tp.width.back() == scaled_spacing; } auto coord_fn = [&connection_endpoints](size_t idx, size_t dim) { return connection_endpoints[idx].position[dim]; }; KDTreeIndirect<2, double, decltype(coord_fn)> endpoints_tree{coord_fn, connection_endpoints.size()}; for (size_t ep_idx = 0; ep_idx < connection_endpoints.size(); ep_idx++) { EndPoint &ep1 = connection_endpoints[ep_idx]; if (!ep1.used) { std::vector close_endpoints = find_nearby_points(endpoints_tree, ep1.position, double(scaled_spacing)); for (size_t close_endpoint_idx : close_endpoints) { EndPoint &ep2 = connection_endpoints[close_endpoint_idx]; if (ep2.used || ep2.polyline_idx == ep1.polyline_idx || (linear_segment_flags[ep1.polyline_idx] && linear_segment_flags[ep2.polyline_idx])) { continue; } EndPoint &target_ep = ep1.polyline_idx > ep2.polyline_idx ? ep1 : ep2; EndPoint &source_ep = ep1.polyline_idx > ep2.polyline_idx ? ep2 : ep1; ThickPolyline &target_tp = thick_polylines[target_ep.polyline_idx]; ThickPolyline &source_tp = thick_polylines[source_ep.polyline_idx]; linear_segment_flags[target_ep.polyline_idx] = linear_segment_flags[ep1.polyline_idx] || linear_segment_flags[ep2.polyline_idx]; Vec2d v1 = target_ep.is_first ? (target_tp.points[0] - target_tp.points[1]).cast() : (target_tp.points.back() - target_tp.points[target_tp.points.size() - 1]).cast(); Vec2d v2 = source_ep.is_first ? (source_tp.points[1] - source_tp.points[0]).cast() : (source_tp.points[source_tp.points.size() - 1] - source_tp.points.back()).cast(); if (std::abs(Slic3r::angle(v1, v2)) > PI / 6.0) { continue; } // connect target_ep and source_ep, result is stored in target_tp, source_tp will be cleared if (target_ep.is_first) { target_tp.reverse(); target_ep.is_first = false; connection_endpoints[target_ep.other_end_point_idx].is_first = true; } size_t new_start_idx = target_ep.other_end_point_idx; if (!source_ep.is_first) { source_tp.reverse(); source_ep.is_first = true; connection_endpoints[source_ep.other_end_point_idx].is_first = false; } size_t new_end_idx = source_ep.other_end_point_idx; target_tp.points.insert(target_tp.points.end(), source_tp.points.begin(), source_tp.points.end()); target_tp.width.push_back(target_tp.width.back()); target_tp.width.push_back(source_tp.width.front()); target_tp.width.insert(target_tp.width.end(), source_tp.width.begin(), source_tp.width.end()); target_ep.used = true; source_ep.used = true; connection_endpoints[new_start_idx].polyline_idx = target_ep.polyline_idx; connection_endpoints[new_end_idx].polyline_idx = target_ep.polyline_idx; connection_endpoints[new_start_idx].other_end_point_idx = new_end_idx; connection_endpoints[new_end_idx].other_end_point_idx = new_start_idx; source_tp.clear(); break; } } } thick_polylines.erase(std::remove_if(thick_polylines.begin(), thick_polylines.end(), [scaled_spacing](const ThickPolyline &tp) { return tp.length() < scaled_spacing && std::all_of(tp.width.begin(), tp.width.end(), [scaled_spacing](double w) { return w < scaled_spacing; }); }), thick_polylines.end()); } Algorithm::sort_paths(thick_polylines.begin(), thick_polylines.end(), bb.min, double(scaled_spacing) * 1.2, [](const ThickPolyline &tp) { Lines ls; Point prev = tp.first_point(); for (size_t i = 1; i < tp.points.size(); i++) { ls.emplace_back(prev, tp.points[i]); prev = ls.back().b; } return ls; }); if (connect_extrusions) { ThickPolylines connected_thick_polylines; if (!thick_polylines.empty()) { connected_thick_polylines.push_back(thick_polylines.front()); for (size_t tp_idx = 1; tp_idx < thick_polylines.size(); tp_idx++) { ThickPolyline &tp = thick_polylines[tp_idx]; ThickPolyline &tail = connected_thick_polylines.back(); Point last = tail.last_point(); if ((last - tp.last_point()).cast().squaredNorm() < (last - tp.first_point()).cast().squaredNorm()) { tp.reverse(); } if ((last - tp.first_point()).cast().squaredNorm() < squared_distance_limit_reconnection) { tail.points.insert(tail.points.end(), tp.points.begin(), tp.points.end()); tail.width.push_back(scaled_spacing); tail.width.push_back(scaled_spacing); tail.width.insert(tail.width.end(), tp.width.begin(), tp.width.end()); } else { connected_thick_polylines.push_back(tp); } } } thick_polylines = connected_thick_polylines; } rotate_thick_polylines(thick_polylines, cos(-aligning_angle), sin(-aligning_angle)); return thick_polylines; } } // namespace Slic3r