#include "SupportableIssuesSearch.hpp" #include "tbb/parallel_for.h" #include "tbb/blocked_range.h" #include "tbb/parallel_reduce.h" #include #include #include #include "libslic3r/Layer.hpp" #include "libslic3r/EdgeGrid.hpp" #include "libslic3r/ClipperUtils.hpp" #define DEBUG_FILES #ifdef DEBUG_FILES #include #endif namespace Slic3r { namespace SupportableIssues { void Issues::add(const Issues &layer_issues) { supports_nedded.insert(supports_nedded.end(), layer_issues.supports_nedded.begin(), layer_issues.supports_nedded.end()); curling_up.insert(curling_up.end(), layer_issues.curling_up.begin(), layer_issues.curling_up.end()); } bool Issues::empty() const { return supports_nedded.empty() && curling_up.empty(); } namespace Impl { struct EdgeGridWrapper { EdgeGridWrapper(coord_t edge_width, ExPolygons ex_polys) : ex_polys(ex_polys), edge_width(edge_width) { grid.create(this->ex_polys, edge_width); grid.calculate_sdf(); } bool signed_distance(const Point &point, coordf_t point_width, coordf_t &dist_out) const { coordf_t tmp_dist_out; bool found = grid.signed_distance(point, edge_width, tmp_dist_out); // decrease the distance by half of edge width of previous layer and half of flow width of current layer dist_out = tmp_dist_out - edge_width / 2 - point_width / 2; return found; } EdgeGrid::Grid grid; ExPolygons ex_polys; coord_t edge_width; }; #ifdef DEBUG_FILES void debug_export(Issues issues, std::string file_name) { Slic3r::CNumericLocalesSetter locales_setter; { FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_supports.obj").c_str()).c_str(), "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "Debug files: Couldn't open " << file_name << " for writing"; return; } for (size_t i = 0; i < issues.supports_nedded.size(); ++i) { fprintf(fp, "v %f %f %f %f %f %f\n", issues.supports_nedded[i](0), issues.supports_nedded[i](1), issues.supports_nedded[i](2), 1.0, 0.0, 0.0 ); } fclose(fp); } { FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_curling.obj").c_str()).c_str(), "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "Debug files: Couldn't open " << file_name << " for writing"; return; } for (size_t i = 0; i < issues.curling_up.size(); ++i) { fprintf(fp, "v %f %f %f %f %f %f\n", issues.curling_up[i](0), issues.curling_up[i](1), issues.curling_up[i](2), 0.0, 1.0, 0.0 ); } fclose(fp); } } #endif EdgeGridWrapper compute_layer_edge_grid(const Layer *layer) { float min_region_flow_width { 1.0f }; for (const auto *region : layer->regions()) { min_region_flow_width = std::min(min_region_flow_width, region->flow(FlowRole::frExternalPerimeter).width()); } ExPolygons ex_polygons; for (const LayerRegion *layer_region : layer->regions()) { for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) { for (const ExtrusionEntity *perimeter : static_cast(ex_entity)->entities) { if (perimeter->role() == ExtrusionRole::erExternalPerimeter || perimeter->role() == ExtrusionRole::erOverhangPerimeter) { Points perimeter_points { }; perimeter->collect_points(perimeter_points); assert(perimeter->is_loop()); perimeter_points.pop_back(); // EdgeGrid structure does not like repetition of the first/last point ex_polygons.push_back(ExPolygon { perimeter_points }); } // ex_perimeter } // perimeter } // ex_entity } return EdgeGridWrapper(scale_(min_region_flow_width), ex_polygons); } //TODO needs revision coordf_t get_flow_width(const LayerRegion *region, ExtrusionRole role) { switch (role) { case ExtrusionRole::erBridgeInfill: return region->flow(FlowRole::frExternalPerimeter).scaled_width(); case ExtrusionRole::erExternalPerimeter: return region->flow(FlowRole::frExternalPerimeter).scaled_width(); case ExtrusionRole::erGapFill: return region->flow(FlowRole::frInfill).scaled_width(); case ExtrusionRole::erPerimeter: return region->flow(FlowRole::frPerimeter).scaled_width(); case ExtrusionRole::erSolidInfill: return region->flow(FlowRole::frSolidInfill).scaled_width(); default: return region->flow(FlowRole::frPerimeter).scaled_width(); } } coordf_t get_max_allowed_distance(ExtrusionRole role, coord_t flow_width, bool external_perimeters_first, const Params ¶ms) { // <= distance / flow_width (can be larger for perimeter, if not external perimeter first) if ((role == ExtrusionRole::erExternalPerimeter || role == ExtrusionRole::erOverhangPerimeter) && !(external_perimeters_first) ) { return params.max_ex_perim_unsupported_distance_factor * flow_width; } else { return params.max_unsupported_distance_factor * flow_width; } } Issues check_extrusion_entity_stability(const ExtrusionEntity *entity, float slice_z, const LayerRegion *layer_region, const EdgeGridWrapper &supported_grid, const Params ¶ms) { Issues issues { }; if (entity->is_collection()) { for (const auto *e : static_cast(entity)->entities) { issues.add(check_extrusion_entity_stability(e, slice_z, layer_region, supported_grid, params)); } } else { //single extrusion path, with possible varying parameters //prepare stack of points on the extrusion path. If there are long segments, additional points might be pushed onto the stack during the algorithm. std::stack points { }; for (const auto &p : entity->as_polyline().points) { points.push(p); } float unsupported_distance = params.bridge_distance + 1.0f; // initialize unsupported distance with larger than tolerable distance -> // -> it prevents extruding perimeter start and short loops into air. float curvature = 0; // current curvature of the unsupported part of the extrusion - it is accumulated value of signed ccw angles of continuously unsupported points. float max_curvature = 0; // max curvature (in abs value) for the current unsupported segment. Vec2f tmp = unscale(points.top()).cast(); Vec3f prev_fpoint = Vec3f(tmp.x(), tmp.y(), slice_z); // prev point of the path. Initialize with first point. coordf_t flow_width = get_flow_width(layer_region, entity->role()); bool external_perimters_first = layer_region->region().config().external_perimeters_first; const coordf_t max_allowed_dist_from_prev_layer = get_max_allowed_distance(entity->role(), flow_width, external_perimters_first, params); while (!points.empty()) { Point point = points.top(); points.pop(); Vec2f tmp = unscale(point).cast(); Vec3f fpoint = Vec3f(tmp.x(), tmp.y(), slice_z); coordf_t dist_from_prev_layer { 0 }; if (!supported_grid.signed_distance(point, flow_width, dist_from_prev_layer)) { // dist from prev layer not found, assume empty layer issues.supports_nedded.push_back(fpoint); unsupported_distance = 0; curvature = 0; max_curvature = 0; } if (dist_from_prev_layer > max_allowed_dist_from_prev_layer) { //extrusion point is unsupported unsupported_distance += (fpoint - prev_fpoint).norm(); // for algortihm simplicity, expect that the whole line between prev and current point is unsupported if (!points.empty()) { const Vec2f v1 = (fpoint - prev_fpoint).head<2>(); const Vec2f v2 = unscale(points.top()).cast() - fpoint.head<2>(); float dot = v1(0) * v2(0) + v1(1) * v2(1); float cross = v1(0) * v2(1) - v1(1) * v2(0); float angle = float(atan2(float(cross), float(dot))); // ccw angle, TODO replace with angle func, once it gets into master curvature += angle; max_curvature = std::max(abs(curvature), max_curvature); } if (unsupported_distance // if unsupported distance is larger than bridge distance linearly decreased by curvature, enforce supports. > params.bridge_distance / (1.0f + (max_curvature * params.bridge_distance_decrease_by_curvature_factor / PI))) { issues.supports_nedded.push_back(fpoint); //DEBUG stuff TODO remove std::cout << "SUPP: " << "udis: " << unsupported_distance << " curv: " << curvature << " max curv: " << max_curvature << std::endl; std::cout << "max dist from layer: " << max_allowed_dist_from_prev_layer << " measured dist: " << dist_from_prev_layer << " FW: " << flow_width << std::endl; unsupported_distance = 0; curvature = 0; max_curvature = 0; } } else { unsupported_distance = 0; curvature = 0; max_curvature = 0; } // Estimation of short curvy segments which are not supported -> problems with curling // Currently the curling issues are ignored if (max_curvature / (PI * unsupported_distance) > params.limit_curvature) { issues.curling_up.push_back(fpoint); } prev_fpoint = fpoint; if (!points.empty()) { //oversampling if necessary Vec2f next = unscale(points.top()).cast(); Vec2f reverse_v = fpoint.head<2>() - next; // vector from next to current float dist_to_next = reverse_v.norm(); reverse_v.normalize(); int new_points_count = dist_to_next / params.bridge_distance; float step_size = dist_to_next / (new_points_count + 1); for (int i = 1; i <= new_points_count; ++i) { points.push(Point::new_scale(Vec2f(next + reverse_v * (i * step_size)))); } } } } return issues; } Issues check_layer_stability(const PrintObject *po, size_t layer_idx, bool full_check, const Params ¶ms) { std::cout << "Checking: " << layer_idx << std::endl; if (layer_idx == 0) { // first layer is usually ok return {}; } const Layer *layer = po->get_layer(layer_idx); //Prepare edge grid of previous layer, will be used to check if the extrusion path is supported EdgeGridWrapper supported_grid = compute_layer_edge_grid(layer->lower_layer); Issues issues { }; if (full_check) { // If full checkm check stability of perimeters, gap fills, and bridges. for (const LayerRegion *layer_region : layer->regions()) { for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) { for (const ExtrusionEntity *perimeter : static_cast(ex_entity)->entities) { issues.add(check_extrusion_entity_stability(perimeter, layer->slice_z, layer_region, supported_grid, params)); } // perimeter } // ex_entity for (const ExtrusionEntity *ex_entity : layer_region->fills.entities) { for (const ExtrusionEntity *fill : static_cast(ex_entity)->entities) { if (fill->role() == ExtrusionRole::erGapFill || fill->role() == ExtrusionRole::erBridgeInfill) { issues.add(check_extrusion_entity_stability(fill, layer->slice_z, layer_region, supported_grid, params)); } } // fill } // ex_entity } // region } else { // If NOT full check, check only external perimeters for (const LayerRegion *layer_region : layer->regions()) { for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) { for (const ExtrusionEntity *perimeter : static_cast(ex_entity)->entities) { if (perimeter->role() == ExtrusionRole::erExternalPerimeter || perimeter->role() == ExtrusionRole::erOverhangPerimeter) { issues.add(check_extrusion_entity_stability(perimeter, layer->slice_z, layer_region, supported_grid, params)); }; // ex_perimeter } // perimeter } // ex_entity } //region } return issues; } } //Impl End std::vector quick_search(const PrintObject *po, const Params ¶ms) { using namespace Impl; size_t layer_count = po->layer_count(); std::vector layer_needs_supports(layer_count, false); tbb::parallel_for(tbb::blocked_range(1, layer_count), [&](tbb::blocked_range r) { for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) { auto layer_issues = check_layer_stability(po, layer_idx, false, params); if (!layer_issues.supports_nedded.empty()) { layer_needs_supports[layer_idx] = true; } } }); std::vector problematic_layers; for (size_t index = 0; index < layer_needs_supports.size(); ++index) { if (layer_needs_supports[index]) { problematic_layers.push_back(index); } } return problematic_layers; } Issues full_search(const PrintObject *po, const Params ¶ms) { using namespace Impl; size_t layer_count = po->layer_count(); Issues found_issues = tbb::parallel_reduce(tbb::blocked_range(1, layer_count), Issues { }, [&](tbb::blocked_range r, const Issues &init) { Issues issues = init; for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) { auto layer_issues = check_layer_stability(po, layer_idx, true, params); if (!layer_issues.empty()) { issues.add(layer_issues); } } return issues; }, [](Issues left, const Issues &right) { left.add(right); return left; } ); #ifdef DEBUG_FILES Impl::debug_export(found_issues, "issues"); #endif return found_issues; } } }